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STATISTICAL INDEPENDENCE OF A NEW CLASS 
OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS 

JURGEN EICHENAUER-HERRMANN 

ABSTRACT. Linear congruential pseudorandom numbers show several undesir- 
able regularities which can render them useless for certain stochastic simula- 
tions. This was the motivation for important recent developments in nonlinear 
congruential methods for generating uniform pseudorandom numbers. It is 
particularly promising to achieve nonlinearity by employing the operation of 
multiplicative inversion with respect to a prime modulus. In the present paper 
a new class of such inversive congruential generators is introduced and ana- 
lyzed. It is shown that they have excellent statistical independence properties 
and model true random numbers very closely. The methods of proof rely heav- 
ily on Weil-Stepanov bounds for rational exponential sums. 

1. INTRODUCTION 

The outcome of a stochastic simulation strongly depends on the quality of 
the pseudorandom numbers. General background material on pseudorandom 
number generation can be found in the book of Knuth [23] and the survey 
article of Niederreiter [28]. The classical standard method of generating uni- 
form pseudorandom numbers in the interval [0, 1) is the linear congruential 
method. Theoretical results on the structural and statistical properties of the 
generated sequences indicate that a reasonable behavior can be obtained if a 
judicious choice of parameters is made which depends on the dimension of the 
simulation problem (cf. [27-29]). Hence, a considerable computational effort 
has to be expended to guarantee acceptable properties, at least for a very modest 
range of dimensions (cf. [1, 19, 20]). However, linear congruential sequences 
show an unfavorable coarse lattice structure which stems from the simple nature 
of the underlying linear recursion and cannot be overcome even by the most 
judicious choice of parameters (cf. [25, 26, 37]). 

This state of affairs provided the motivation for recent work on nonlinear 
congruential methods in order to overcome the deficiencies of the linear con- 
gruential method (cf. [2-9, 11-18, 30-33]). A review of the development of 
this area is given in [10] and in Niederreiter's excellent survey articles [34, 35]. 
The key idea behind these methods is the use of different nonlinear recursions 
in modular arithmetic instead of the simple linear recursion. Understandably, 
all these techniques are somewhat slower than the linear congruential method. 
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However, nowadays the computer time taken for pseudorandom number gener- 
ation in a typical stochastic simulation can almost always be neglected (cf. [21, 
36]). 

The most promising results have been obtained for prime moduli. For a 
(large) prime p put Zp = {0, 1, ..., p - 1} and Zp = Zp\{0}. The follow- 
ing general class of nonlinear congruential generators was introduced in [2]: A 
nonlinear congruential sequence (Yn)n>o of elements of Zp is generated by 

Yn+1 = f(yn), n > 0, 
where f: Zp -* Zp is a function such that (Yn)n>O is purely periodic with 
maximal period length p. Niederreiter [30] pointed out that there exists a 
uniquely determined permutation polynomial g of degree s with 1 < s < p - 2 
over the finite field Zp such that 

Yn = g(n), n > 0. 
In Niederreiter [31] it is shown that any nonlinear congruential generator has 
excellent statistical independence properties for all dimensions d < s provided 
the degree s of g is small relative to pl/2. 

In contrast, the present paper deals with certain polynomials g of maximal 
degree s = p - 2 and establishes favorable statistical independence properties 
for all dimensions d < p . In the following the abbreviation = Zp-2 (mod p), 
z E Zp, is used for integers z. Note that z is the multiplicative inverse of z 
modulo p if z 4 0 (mod p). A method for its efficient calculation is based 
on the Euclidean algorithm with the integers z and p (cf. [10]). The stan- 
dard inversive congruential method, which was introduced in [4], generates a 
sequence (Yn)n>O of elements of Zp by the recursion Yn+1 _= aj7n + b (mod p) 
for n > 0. In the present paper the following new class of inversive congru- 
ential generators is considered which has even better structural and statistical 
independence properties than the standard type. For integers a, b E ZP with 
a 5$ 0 an inversive congruential sequence (Yn)n>O of elements of Zp is defined 
by 

yn=an+b, n>0. 
A sequence (xn)n>o of inversive congruential pseudorandom numbers in the 
interval [0, 1) is obtained by the normalization xn = Yn/P for n > 0. Ob- 
viously, any inversive congruential sequence is purely periodic with maximal 
period length p, i.e., {yo, YI, . .. , yp l- } = Zp, which guarantees that the one- 
dimensional distribution of the corresponding pseudorandom numbers is as 
good as possible. Hence, any inversive congruential generator passes the unifor- 
mity test for equidistribution in [0, 1) . 

Statistical independence properties of pseudorandom numbers are at least 
as important for stochastic simulations as uniformity properties. A reliable 
theoretical test for statistical independence is the serial test, which employs the 
discrepancy of tuples of pseudorandom numbers. For a given dimension k > 2 
and for N arbitrary points to, tl, ..., tN I E [0, 1)k the discrepancy is defined 
by 

DN(to, tl, ... , tNA-) = supIFN(J) - V(J)I, 
J 

where the supremum is extended over all subintervals J of [0, 1 )k, FN(J) is 
N- I times the number of terms among to, t, .. . , tN- I falling into J, and V(J) 
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denotes the volume of J. In the present paper, for a sequence of inversive 
congruential pseudorandom numbers (xn)n?o, the points 

xn = (xn+nl, xn+n2, . . ., xn+nk) E [O,1)k, O < n < p, 

are considered, where n1, n2, ... , nk are arbitrary integers with 0 = n1 < n2 < 
* < nk < p, and the abbreviation 

Dpk) - D (xo, x1, .., xp-1 

is used for their discrepancy. An inversive congruential generator passes the 
k-dimensional serial test if Dpk) is reasonably small. Since an exact calculation 
of the discrepancy Dpk) is impossible, one is interested in bounds for DPk). 
In the present paper upper and lower bounds for Dpk) are established, which 
are essentially best possible. In ?2 the main results are stated precisely and the 
behavior of inversive congruential generators under the serial test is discussed. 
Section 3 contains several auxiliary results. The proof of the main results is 
given in ?4. The methods of proof rely heavily on Weil-Stepanov bounds for 
rational exponential sums. Extensive background material on exponential sums 
can be found in [24]. 

2. MAIN RESULTS 

Theorem 1. Let 2 < k < p. Then the discrepancy D(k) for any inversive con- 
gruential generator satisfies 

< 2p"l/2 ((k- 1) (-logp+ 5) + 1) +kpr1. 

Theorem 2. Let 0 < t < 1. Then there exist more than Ap (t) (p - 1) values of a E 
Z such that the discrepancy D(k) for any corresponding inversive congruential 
generator satisfies 

D (k) > t 1/2 
P - 2(7r + 2)p 

for all dimensions k > 2, where 

(1 - t 2)p 
AP(t) = (4 - t2)p + 12pi/2 + 9 

Theorem 1 shows that Dp(k) - O(p 1/2(logp)k) for any inversive congruential 
generator, where the implied constant is absolute. It should be observed that this 
bound is independent not only of the specific choice of the parameters a, b in 
the inversive congruential method, but also of the parameters n2, . . ., nk . This 
is a remarkable contrast to the linear congruential method, where the behavior 
under the serial test strongly depends on these quantities (and on the dimension 
k) . 

Theorem 2 implies that a positive proportion of the inversive congruential 
generators has a discrepancy D(k) which is at least of the order of magnitude 
p-1/2 for all dimensions k > 2. Therefore the upper bound in Theorem 1 is 
in general best possible up to the logarithmic factor. 

Theorems 1 and 2 show that in the inversive congruential method the dis- 
crepancy D$k) has on the average an order of magnitude between p-1/2 and 
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p- 1/2(logp)k . It is in this range of magnitudes where one also finds the discrep- 
ancy of p independent and uniformly distributed random points from [0, 1 )k, 
which should be roughly p-1/2 (log logp)1/2 according to the law of the iterated 
logarithm for discrepancies (cf. [22]). In this sense, inversive congruential pseu- 
dorandom numbers model true random numbers very closely. 

3. AUXILIARY RESULTS 

First, some further notation is necessary. For integers k > 1 and q > 2 let 
Ck(q) be the set of all nonzero lattice points (hi, ..., hk) E Zk with -q/2 < 

hj < q/2 for l < j < k. Put 

r(h, q)= 
1 for h 

=O, r(h q)= lq sin 'IhL for h e C; (q) , 

and define 
k 

r(h, q) = fi r(hj, q) 
j=l 

for h = (hi, ..., hk) E Ck(q) . For t E R the abbreviation e(t) = e2 it is used, 
for integers z we put % (z) = e(z/p), and u * v stands for the standard inner 
product of u, V E IRk 

Below, four known results are stated. The first two lemmas follow from 
Lemmas 2.2 and 2.3 in [27], the third lemma is a special case of a classical 
result of Weil [39] (cf. [32, 38]), and the last lemma is a special version of 
Lemma 1 in [33]. 

Lemma 1. Let N > 1 and q > 2 be integers. Suppose that yo, Yi, .--, YN-I E 

zk. Then the discrepancy of the points tn = q-1yn E [0, 1)k for 0 < n < N 
satisfies 

k 1 1 N-i 

DN(to, tl, .*, tN ) < - + N E r(h q) e(htn) 
q NhE Ck(q) 0(,q = 

Lemma 2. Let q > 2 be an integer. Then 

I: 
1 

<2 lo 
2 

hE(q) r(h, q) 7r 5 

Lemma 3. Let P, Q be polynomials over the finite field Zp with 1 < deg(Q) < 
deg(P) < p. Let r denote the number of distinct poles of PQ in the alge- 
braic closure of Zp (including the point at infinity) and let ml, ..., mr be the 
multiplicities of the poles. Then 

Z X(P(z)Q(z)) < r - 2 +Imi) P/I 
zEZp 

Q(z)$O (modp) 

Lemma 4. The discrepancy of N arbitrary points to, t1, ..., N1 E [0, 1)k 
satisfies 
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N-1 

D00t, ti,... tN- 1) > (c+21hhg e(h * t,)| 2(7r + 2)jh1h2jN __=e( 

for any lattice point h= (hl, h2, 0, ..., 0) E Zk with h,1h2 $4 0. 

Lemmas 1 and 4 show that the exponential sums S(h) = nEZ e(h* xn) for 
h E Ck(p) are the crucial quantities for the analysis of the discrepancy D,k). 
Put J(h) = {1 < j < klhj $ O} for h = (hl, , hk) E Ck(p). The following 
technical result is used for the proof of Theorems 1 and 2. 

Lemma 5. Let h E Ck(p). Then IS(h)l < m(2p1/2 + 1) - (2p1/2 - 1), where m 
denotes the number of nonzero coordinates of h. 

Proof. The definition of an inversive congruential sequence implies that 

S(h) = ZX (X E hj(a(n + nj) + b)) 
nEZp jEJ(h) 

for h= (hi,., hk) E Ck(p). If m= 1, then 

S(h) = X(z) = 0, 
zEzp 

which proves the desired inequality. From now on, m > 2 is assumed. Put 

N(h)={nEZpla(n+nj)+b=O (modp)forsomejeJ(h)}. 

Then one obtains 

IS(h)l < m + E X ( hj (a (n + nj) + b) + 
nEZp jEJ(h) 

NJN(h) 

=m+ = X{(( - hj II (a(n+nl)+b)} 
nEZp jEJ(h) 1EJ(h) 

nf N(h) 1& 

.II(a (n +nj) +b)) 
jEJ(h) 

Now, let jo E J(h) be fixed and put 

Z(h) = fa(nj,, - nj) E Zplj E J(h)}- 
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Then the transformation z = a(n + nj1) + b yields 

IS(h)l<m+ E X (( hj l(h) (+a(ni-njo))) 
ZEZp jE J(h) 1E J(h) 

z~Z(h) # 

* (n7I (Z + a(nj - nj,))) 
(jEJ(h) ( 

=m+ , X(z ( hj II (a(n,-(nj-n)z + 1)) 

ZEzp jEJ(h) 1EJ(h) 
Z Z(h) Ij,jo} 

=z( i 1 (a(njn-)njO)z)z 1 

jEJ(h) 
i -o / / 

< mS+ c + a(P (z) Q (z)) 
ZEZP 

zf Z(h)\{O} 

with the polynomials 

P(z) = z + 1 hj +I (a(n2,-.ntO)zi 1 

hEJ(h) 1E J(h) 

and 
Q(Z) 6 L (a(nj - njO)z + 

jEJ(h) 

for z E Zp . Since deg(P) = m and deg(Q) m m- I > I, Lemma 3 can be 
applied with r = deg(Q) + I = m and ml = =Mr = I1, which implies that 
IS(h)l < m + I + (2m - 2)p /, i.e., the desired result. [1: 

Finally, some further prerequisites are necessary in order to prove Theorem 
2. First, a short calculation and the transformation z =- n + aib (mod p) show 
that S(h) = K 12 R) for h = (1, -1, o, ... -, 0) E Zk, where 

K. (c) = 1: X(c(-f - (z + y))) 
zEZp 

for c E Zp* and y E Zp* . Hence, Lemma 5 implies that I K,(c) I < 2p 1/2 + 3 for 
c E Zp* and y E Zp. 
Lemma 6. Let y E Zp*. Then 

I IK,(c) 12 > p(p-_1 ) 
c E ZP 
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Proof. Easy calculations show that 

Z IKy(c)12 = Z E X(cO7 - (Y + Y) - + (Z + y))) 
cEZP cEZP y, zEZP 

= E EX(C(Y-(y+y)-z+(z+y)))-p2 
y, zEzp cEzp 

= PI{(y, z) E Zp' 1y - (y + y) _ - (z + y) (mod p)}I - p2 

? P{&(y, z) E Zp I y = z or y -(z + y) (mod p)}j _p2 

? p(2p - l ) _ p2 = p(p _ 1 ). 0: 

4. PROOF OF THE MAIN RESULTS 

Proof of Theorem 1. First, Lemma 1 is applied with N = q = p and tn =Xn 
for 0 < n < p. This yields 

Z Z rP P r(hp)) (S(h)I 

P P m=1 JC{1,...,k} hECk(p) r(h, p) 
IJI=m J(h)=J 

Now, Lemma 5 can be used in order to obtain 

D(k) < k +1 Z (m(2p 1/2 + 1 )- (2p 1))(k) (1/2 1 

p p m=1 xmi~~~~~0 1\Y)r(h, p 

Therefore, Lemma 2 implies that 

(k) k 1 +1)- 121)) ( 2 2 m 
P - +- f(m(2pl/2 + l) (2pI/2 - (Z) - log+ 

~m=l 

k +2? ((2P1/2 +-1)k logp + 2) (2 -og)) 

= 2p112 ((k 1) ( logp+ - )+ l) +(k- 1)p- 

-p- (-logp + 59k1 (2kPl/2 - k (2 logp + 1 - (llg 1 + 

<2p-1/2 ((k -1) ( logp + + I) + k -l 

-2kp-1 ( logp + 7)k (p1/2 - k logp - ), 

which yields the desired result, since pl/2 - f logp - > 0. O 
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Proof of Theorem 2. First, Lemma 4 is applied with N = p, t, = x, for 
O< n < p, and h= (1, -1, O, ..., O) EZk. Thisyields 

D 2(k > 2) IKln2(a)L. 

Now, it is proved by contradiction that for every fixed y E Zp and 0 < 
t < 1 there exist more than Ap0(t)(p- 1) values of c E Zp* such that 
IKY(c)j > tp1/2, which completes the proof. Suppose that IKy(c)l > tp1/2 
for at most Ap(t)(p - 1) values of c E Zp1. Then IKy(c)j < tp1/2 for at least 
(1 -Ap(t))(p - 1) values of c E Zp. Since IK (c)I < 2p 1/2 +3 for all c E Zp, 
it follows that 

E IKY(C)12 < ( - Ap(t))(p- 1)t2p + Ap(t)(p - )(2pl/2 + 3)2 = p(p- 1), 
cEZp 

which is a contradiction to Lemma 6. El 
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