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ON THE COEFFICIENTS OF THE MINIMAL POLYNOMIALS 
OF GAUSSIAN PERIODS 

S. GUPTA AND D. ZAGIER 

ABSTRACT. Let 1 be a prime number and m a divisor of I1 -I. Then the Gauss 
period t-) = + + 12 + ...+ m ,where 4 = e2n'ill and )A is a primi- 
tive mth root of unity modulo 1, generates a subfield K of Q(4) of degree 
(1 - 1)/m. In this paper we study the reciprocal minimal polynomial 
F, m(X) = NK/Q(I - wX) of to over Q. It will be shown that for fixed 
m and every N we have F, m(X) = (Bm(X)1/(1 - mX))l/m (mod XN) for 
all but finitely many "exceptional primes" 1 (depending on m and N), where 
Bm (X) E Z[[X]] is a power series depending only on m . A method of compu- 
tation of this set of exceptional primes is presented. The generalization of the 
results to the case of composite 1 is also discussed. 

1. STATEMENT OF RESULTS 

Let I be an odd prime numberl and I - 1 = m * d a decomposition of I - 1 
into positive factors. Then there is a unique cyclic extension Kd/Q of degree d 
ramified only at 1. It is contained in the cyclotomic field Q(C) (C = primitive 
Ith root of unity) and is generated over Q by the Gaussian period 

cl = TrQ(C)/Kd 
= C + C1 + C1 +* + Am-1 

where A E (Z/lZ) x is a primitive mth root of unity modulo 1. The minimal 
polynomial of cc), 

fi m(X) = x -|( (cr + cAr + C12r + . + CAm-IT) 
rE3 

where 3 denotes a set of coset representatives for (Z/lZ) x modulo (A), gives 
an explicit irreducible polynomial of degree d with cyclic Galois group and 
discriminant a power of 1. We include I and m rather than I and d into 
the notation because we will be studying the coefficients of these polynomials 
for m fixed and I varying. Specifically, we will show that for m and n fixed 
the nth coefficient "from the end" of fl,m(X) is a polynomial in I for all 
but finitely many "exceptional" primes 1, and we will describe the computation 
of this polynomial and of the set of exceptional primes. The statement about 
the nth coefficient being a polynomial in I for I large, and some of our other 
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results, were first proved by Gurak [1, 2]; we will give a detailed comparison 
with Gurak's work at the end of ? 1. 

To state the basic result conveniently, we turn fi,Km(X) around, setting 

Fi,m(X) = Xdf, m (X- 1) = 171(1 - (4+r + + 2r +... + Sm- T) X). 
rE3W 

Clearly, this reciprocal polynomial also has cyclic Galois group and generates 
the field Kd. 

Theorem 1. For each integer m > 1 there exist power series Am (X), Bm (X) E 

Z[[X]] related to one another by 
(1) Bm(X) = (1 -mX) Am(X)m, 

such that for each natural number N the congruence 

(2) Fl,m(X) =Am(X)Bm(X)(-1l)/m (mod XN) 

holds for all but finitely many primes I 1 (mod m) . 

Here, "all but finitely many" means all primes not belonging to a computable 
finite set depending only on m and N. The computation of Am and Bm will 
be given in ?2. The beginnings of these power series for m < 10 are given 
in Table 1. Theorem 1 implies that for fixed m and n the nth coefficient 
of Fl m(X) is a polynomial of degree < n in I except for a finite number of 
exceptional primes I. If m is a power of a prime number p, then Bm (X) is in 
fact a power series in XP , as we can see in Table 1 and will prove in Theorem 
2. In this case it follows that the power series in question has degree at most 
[n/p] rather than n and in particular is actually a constant for n < p, is linear 

TABLE 1. Coefficients of Am(X) and Bm(X), m < 10 

1 X X2 X3 X4 X5 X6 X7 X8 X9 X10 
AI (X) 1 1 1 1 1 1 1 1 1 1 1 
BI (X) 1 0 0 0 0 0 0 0 0 0 0 
A2(X) 1 1 1 2 3 6 10 20 35 70 126 
B2(X) I1 0 -1 0 -1 0 -2 0 -5 0 -14 
A3(X) 1 1 2 4 11 29 73 207 574 1542 4435 
B3(X) 1 0 0 -2 0 0 -13 0 0 -158 0 
A4(X) 1 1 2 7 21 77 257 963 3377 12816 46240 
B4(X) 1 0 -2 0 -7 0 -50 0 -456 0 -4728 

A5(X) 1 1 3 11 44 180 796 3532 15906 72490 331282 
B5(X) I1 0 0 0 0 -24 0 0 0 0 -11052 
A6(X) 1 1 3 14 66 335 1736 9227 49744 271647 1497407 
B6(X) 1 0 -3 -4 -18 -60 -269 -1152 -5412 -25580 -125478 
A7(X) 1 1 4 20 110 638 3828 23412 146865 930385 5955040 
B7(X) I 0 0 0 0 0 0 -720 0 0 0 
A8(X) [1 1 4 25 152 1034 6981 49554 350709 2553004 18557553 
B8(X) I1 0 -4 0 -34 0 -696 0 -19795 0 -672916 
A9(X) r 1 5 31 221 1637 12510 98618 789167 6394033 52492327 
B9(X) I1 0 0 -6 0 0 -387 0 0 -68726 0 

A10(X) [1 1 5 38 289 2416 20428 179188 1587720 14328461 130327089 
B10(X) I1 0 -5 0 -55 -48 -1500 -3360 -58450 -214560 -2809859 
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TABLE 2. Coefficients of A5(X)B5(X)d and of Fl, 5(X) 

1: 11 31 41 61 71 101 131 151 181 191 
d: 2 6 8 12 14 20 26 30 36 38 

n: 0 I I 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
2 3 3 3 3 3 3 3 3 3 3 
3 o 1 1 1 1l I I I I I II I 1l 
4 0 44 44 -17 44 44 44 44 44 44 
5 0L36 -53 -169 -156 -300 -444 -540 -684 -732 
6 0 32 153 325 -250 316 172 76 -973 -116 
7 0 0 -160 167 749 1991 1660 1 -893 -870 -2069 
8 0 0 59 -804 1560 -80 -4713 5721 2782 2818 

in I for p < n < 2p, etc. For instance, if m = 7 we have 
B7(X) = 1 - 720X7 - 48389400X14- , 

A7(X) = 1 + X + 4X2 + 20X3 + 1 lOX4 + 638X5 + 3828X6 + 23412X7 +* 
so the coefficient of X5 in Flm(X) is 638 for all but finitely many primes 
1 1 (mod 7) (in fact, as we shall see, for all such 1 except 29, 43, 71, 113, 
197, 421, 463 and 547) and the coefficient of X7 equals (164604 - 7201)/7 
for all but finitely many 1 (namely, those mentioned and 211, 239, 281, 337, 
379, 449, 757, 1583, 1597 and 2689). Table 2 illustrates Theorem 1 in the case 
m = 5 by giving the first coefficients of Fl,5(X) for some small values of 1 
and showing (broken line) how long each polynomial Fl,5(X) agrees with the 
power series 

A5(X)B5(X)d = 1 + X + 3X2 + 11X3 + 44X4 + (180- 24d) X5 

+ (796 - 24d) X6 + (3532 - 72d) X7 + (15906 - 264d) X8 

+ (72490 - 1056d) X9 + (331282 - 15660d + 288d2) X1O 

+ (1544418 - 30444d + 288d2) X1I 

+ (7211960 - 118788d + 864d2) X12 

+ (33850952 - 506484d + 3168d2) X13 

+ (159612948 - 2238720d + 12672d2) X14 + 

(1= 5d+ 1). 
Clearly, the theorem is equivalent to saying that the nth coefficient of the 

logarithm of Flm(X) is a linear function of 1 for all but finitely many 1 (for 
fixed m and n). More precisely, write 

(3) Bm (X) = exp (-E flm (n )-) 

(it turns out that fim(n) is integral and nonnegative, which is the reason for 
including the minus sign and the factor l/n); then Theorem 1, except for the 
integrality statement, is equivalent to 

Theorem 1'. Fix integers m, n E N. Then the coefficient of Xn in log Fim(X) 
equals 

mn - lAm(n) 

mn 
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for all 1 _ 1 (mod m) not belonging to an effectively determinable finite set 
em (n)). 

In the notation of this theorem, the set of exceptional primes in Theorem 1 
is simply Un<N Fm (n) , and the "new" exceptional primes for given n are the 
elements of the set Fm?(n) = m(n)\Un'<n'm(n'). Examples of the sets Fm2(n) 
for m < 12 and some small values of n are given in Table 3 (when this set 
contains 25 or more primes, we have given only its first three and last three 
elements and its cardinality). The way to determine these sets will be explained 
in ?3. 

In general, the coefficients fim(n), and hence the power series Bm(X) and 
Am (X) occurring in Theorem 1, are difficult to determine. A simple description 
of these coefficients in certain special cases is given by the following theorem: 
Theorem 2. The coefficients flm(n) for m = pi (p prime, j > 1) and m =2p 
(p > 2 prime) are given by the generating functions 

(4) 1 Pdn) Xn = E 

n=O n= ! 

n=O noo r- 0 V=O 

TABLE 3. New exceptional primes for m < 6 
m=3 m=4 m=5 m=6 

n =3 5 11 7 

4 7 61 13 

5 13 13,17 41 19 

6 31,71,181,521 31 

7 19, 31 29, 37 101, 151, 191, 461 37, 43 

8 43 131,241,251,401,421,991 

9 41, 53 281,331,491,641,881,941,1871 61, 67, 73 

10 37,73 271, 311,661,1181 79 

11 67 61, 73, 101 211, 431, 601, 631, 691, 751, 97,103 

1051,1481,1531,1621,1741,2531, 

2801,3001,3011,9091 

12 701, 761, 971, 1021, 1201, 1321, 109 

1381, 1511, 1721, 1801, 2141, 2371, 

2441,2741,5051,13421 

13 61,79,103 89,97,109 541, 571, 811, 821, 1031, 1171, 127,139,157 

1291, 1301, 1471, 1861, 1901, 2381, 

2551,2671,4421,4561,4621,4831, 

7741,7841,12391,19141 

14 97,157 911, 961, 1061, 1151, 1451, 1571, 151,163 

2081,2251,2351,2411,2791,3121, 

3301,3371,3511,3931,4001,4201, 

4231,4441,6121,6521,6971 

15 113,137,173,197 1091,2011,2161,2221,3221, 181,199,211 

3331,4951 
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TABLE 3 (continued). New exceptional primes for 7 < m < 12 
m n exceptional primes 

7 3 43 

4 29, 71, 547 
5 113, 197,421,463 
6 211, 379, 449, 757, 2689 
7 239, 281, 337, 1583, 1597 
8 127, 491, 673, 743, 827, 911, 953, 967, 1051, 1289, 1303, 1471, 2213, 

2297, 2549, 2591, 3067, 4159, 4663, 5153, 7673, 10039, 10501, 11243 
9 617, 631, 659, ... , 33601, 35281, 91309 (35 primes) 

10 1429, 1723, 2087, . 89237, 209441, 212633 (52 primes) 
8 3 17 

4 41 
5 73, 89, 97, 113, 257 
6 137, 313 
7 193, 233, 241, 281, 337, 353, 409, 433, 641, 1297 
8 401, 673, 1201 
9 449, 457, 521, 569, 577, 593, 601, 617, 761, 769, 809, 881, 929, 

937, 953, 1033, 1097, 1217, 1289, 1481, 1553, 1609, 2417, 2473 
10 977, 1049, 1409, 1433, 2129 

9 3 19 
4 37 
5 73, 109, 163, 199 
6 127, 181, 433, 487 
7 271, 307, 379, . 3511, 3547, 5779 (28 primes) 
8 811, 829, 883, . 18757, 19387, 19603 (38 primes) 
9 1567, 1999, 2053, . 9901, 14347, 18253 (27 primes) 

10 1369, 2467, 2683, . 120763, 131041, 132499 (115 primes) 
10 3 11, 31 

4 41,61 
5 71, 101, 131, 181, 211 
6 151, 191, 241, 271, 281, 461, 521 
7 251, 311, 331, 401, 421, 431, 541, 571, 631, 991, 1031 
8 491, 601, 641, 691, 701, 751, 761, 881, 911, 941, 971, 1321, 1481, 2801 
9 661, 811, 821, 1021, 1051, 1061, 1091, 1151, 1171, 1201, 1231, 1291, 

1301, 1361, 1601, 1831, 1871, 1901, 2371, 2381, 2441 
10 1181, 1381, 1451, . 3931, 4001, 4421 (25 primes) 

11 3 23,683 
4 67, 89, 419, 661, 991 
5 331, 353, 397, 463, 617, 1409, 2113, 2311, 3191, 4621, 35839, 39139, 51679 
6 199, 727, 859, ... , 353827, 715397, 825353 (27 primes) 
7 1013, 1277, 1607, . 809447, 7605071, 51828151 (74 primes) 

12 3 13 
4 37, 61, 73 
5 97, 109, 157, 193,241 
6 181, 229, 277, 313, 373, 409, 601 
7 337, 349, 397, 421, 433, 457, 541, 613, 709, 733, 757, 829, 1021 
8 577, 661, 673, 769, 853, 1009, 1213, 1297, 1453, 1789, 1933 
9 877, 937, 997, ... , 2797, 3217, 3361 (27 primes) 

10 1249, 1381, 1429, 1657, 1669, 1693, 1753, 1861, 1873, 2113, 2137, 2161, 
2293, 2341, 2437, 2677, 2953, 3709, 3769, 3853, 4297, 5233, 6481 

11 1993, 2017, 2029, , 8221, 8461, 9901 (42 primes) 
12 289, 2713, 2857, . 9241, 10453, 12541 (43 primes) 

In particular, the coefficients flm(n) for m = p (p prime) and m = 4 are 
given by 

(n/p)!P if n- 0 (mod p), 
( otherwise, 
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(7) /34(n) = I (n/2)!4 if n 0_ (mod 2), 
O otherwise. 

If m = pi (p prime, j > 1), then the coefficient flm(n) is nonzero only if p 
divides n. 

The cases m = 3 and 4 of this theorem were proved by D. and E. Lehmer 
[3] and the case m = p by S. Gurak [2] (Corollary 2, p. 322). 

If m = 2, then we can sum the series Ej fl2(n)Xn/n explicitly to give closed 
formulas for the power series A2(X) and B2(X). However, here one can give 
much more information than in Theorem 1, since fi, 2 can be calculated in 
closed form, essentially as a Chebyshev polynomial (Theorem 3). The result, 
which will be proven in ?4, is the formula 

fl,2(X) = n([2](2) x d ( 2 ) 
n=O 

It was essentially known to Gauss (Disquisitiones Arithmeticae, Article 337). 
As mentioned in the beginning of the section, several of our results overlap 

with the results in the papers [1] and [2] by S. Gurak, whose existence we learned 
about after completing our work. Specifically, Gurak proves in [1] that the co- 
efficient of Xn in Fi,m(X) is Pm,n(l) for primes 1 > nk(m) (q = Eulertotient 
function), where Pm,n is a polynomial of degree < n/p (p= smallest prime 
factor of mi). Equation (10) of [1] (resp. equation (28) of [2]) is equivalent to 
our Theorem 1' and thus to all parts of Theorem 1 except for the integrality 
of the power series Am and Bm . The explicit description of these power series 
in the special cases m = p and m = 4 were also given in [2], as mentioned 
after Theorem 2. The description of the algorithm for finding the exceptional 
sets Fm(n), and the numerical computations concerning them, are new. 

2. PROOF OF THEOREM 1 

Using the Taylor series of log( 1 - T) around T = 0, we find 

logF,m(X)=_E( (r+r+(r+...+ m1r)n) lAn 
n=1I rE3W 

Replacing the inner sum by one over all r E (Z/lZ)' simply multiplies it by 
m, since the value of the summand is independent of the choice of coset rep- 
resentative r, and there are m cosets. Hence, the inner sum equals 

1 m-l n1 ~ Z-l 

m~~~~ E (cAr) = Mn-I +_ <('+ ..An)r 

r$O (mod 1) i=O r (mod 1) i,, in=O 

=-Mn-_+ Il Am (n), m 
where 

/h,m(n) = #{(ii, , in) E (Z/mZ)n I Ai, +** +Ain = 0 in Z/1Z} 

(recall that A here refers to a fixed primitive mth root of unity in (Z/1Z) X 
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to obtain this formula, we have added and subtracted a term corresponding to 
r = 0 and then used the fact that Er (mod 1) Ckr equals 1 if k 0 (mod 1) and 
vanishes otherwise. 

We now define coefficients flm(n) ( n > 1 ) by 

flm(n) = #1(il,. , in) E (Z/MZ)n |IAil + * * * + AlOn = O} S 

where AO = e2nilm is a primitive root of unity in the complex number field 
rather than in the finite field IF, . We will show that flt, m(n) = flm (n) for all but 
finitely many primes I/ 1 (mod m), for fixed m and n . This implies Theorem 
1' and hence, with Bm(X) defined by equation (3), Theorem 1 (except for the 
asserted integrality of the power series Am and Bm ), because for 1 = md + 1 
prime and sufficiently large (depending on N and m ) we have 

log Fl, m (X) _ QE(_ md + 1 Am (n))- 
n= 1 

---log(1 - mX) + (d + m) logBm(X) 

- log Am(X) + d log Bm(X) (mod XN). 

Let (Dm (x) be the mth cyclotomic polynomial, i.e., the irreducible monic 
polynomial (of degree (a(m), the Euler totient function of m ) of AO over Q. 
Then a polynomial P(x) with rational coefficients vanishes at AO if and only 
if it is divisible by (Dm (x) . Thus, 

flm(n) = #{i = (i, ..., in) E (Z/mZ)n I (m(X)jPi(X) }, 

where P;(x) denotes the polynomial x" +I xIn . (Strictly speaking, this is not 
a polynomial unless we choose actual integer representatives of the classes i, 
(mod m), say 0 < i, < m, but obviously the condition that (Dm divide Pi is 
independent of this choice, since (Dm (x) (xm - 1).) Obviously, every n-tuple 
i contributing to 13m (n) also contributes to 3i, m(n), since A E F1 is a root 
of the polynomial (Dm (x) and hence of all of its multiples. Hence, Il, m(n) is 
at least as large as flm (n), but might be larger. However, the fact that (Dm (x) 
is irreducible over Q means that the g.c.d. of (Dm(x) with any polynomial 
P(x) not divisible by it is 1. In particular, if i is an index in (Z/mZ)n not 
counted in 13m (n), i.e., one for which Pi is not divisible by (Dm, then there are 
polynomials with rational coefficients g(x) and h(x) (depending on m and 
n ) such that g(x)(Dm(x) + h(x)Pi(x) =-1 . If the prime 1 _ 1 (mod m) does 
not occur in the denominator of any coefficient of g or h, then we can reduce 
this equation (mod 1), and the fact that (Dm (A) vanishes then implies that 
Pi (A) is also nonzero modulo 1. The condition that 1 does not occur in the 
denominators of g or h is equivalent to the condition that 1 should not divide 
the resultant of (Dm and Pi (essentially, the smallest positive integer R such 
that the equation g(x)(Dm(x) + h(x)Pi(x) -R is solvable with polynomials 
g, h E Z[x]). Therefore, Theorem 1' is true if we take for Fm(n) the union 
over all i E (Z/mZ)n with (Dm I Pi of the set of primes 1_ 1 (mod m) dividing 
the resultant of Dm and Pi. 
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It remains to prove the integrality of the coefficients of the power series 
Am(X) and Bm(X). Pick an integer N > 0. By Theorem 1, there is an 
integer do (depending on m and N) such that the first N coefficients of 
AmBd are equal to those of Fi,m, and hence integral, for all d > do for which 
1 = md + 1 is prime. If d, and d2 are two such values of d, then it follows 
by division (since the power series Am and Bm start with 1) that Bm d-d2 also 
has integral coefficients up to degree N. But if Ba and Bb have integral 
coefficients, then so does B(' b), where (a, b) denotes the g.c.d. of a and 
b, because this g.c.d. can be written as ar + bs for some integers r and s. 
This proves that Bm(X)Il has integral coefficients up to order N, where ,u is 
the greatest common divisor of all of the differences d, - d2 with di > do and 
mdi + 1 prime. Dirichlet's theorem on primes in arithmetic progression implies 
that ,u equals 1 if m is even and 2 if m is odd. (Indeed, it is obvious that 
this value of u divides all d, and hence all differences of d, with the stated 
property. Conversely, the definition of u says that all sufficiently large primes 
1 which are congruent to 1 modulo m are in fact congruent to a fixed number 
11 modulo rum, and hence-by Dirichlet's theorem-that there is only one 
arithmetic progression {kum + C}k>I with (c, uum) = 1 and c_ 1 (mod m) . 
But this implies that r9(,um) = (0(m) and hence that ,u = 1 if m is even, #u12 
if m is odd.) Therefore, Bm has integral coefficients up to degree N for large 
d with md + 1 prime, so the fact that AmBd also has integral coefficients up 
to this degree implies that Am does as well. Since N was arbitrary, it follows 
that Am(X) has integral coefficients, as claimed, and then Bm (X) must, too, 
because of equation (1). (For m odd, the first part of our argument gave only 
the integrality of the coefficients of the square of Bm .) This completes the proof 
of Theorem 1. 

Remark. For m > 1 define 

Cm(X) = exp ( (nlm ) xn)Xn 

Then Theorem 2 implies that Cm (X) has integral coefficients when m is prime 
(since then Cm(X) = Bm(Xl/m)-1 ). Numerical calculations for small m sug- 
gested that this remains true also for m composite. Maxim Kontsevich showed 
us how to prove the stronger assertion that Cm(X)1/(m-1)! has integral coeffi- 
cients. This is best possible, since Cm(X) begins with 1 + (m - 1)!X + O(X2). 

3. PROOF OF THEOREM 2 AND DETERMINATION OF THE EXCEPTIONAL SET 

In this section we discuss the computation of the coefficients /8m(n) and 
fI, m(n) and the determination of the primes 1 for which they differ. 

Obviously, the polynomial Pi(x) corresponding to i = (iI, . . . , in) depends 
only on the set i up to permutation and hence on the numbers ni = #1v I iv = 
i}, 0 < i < m - I. These numbers ni satisfy ni > 0 and nO + * * + nm-I = n; 
conversely, for any such integers ni there are n!/(no! ... nm- j!) corresponding 
n-tuples i, foreach of which Pi(x) is the polynomial no0+nlIx+ .+nmIlxm- . 
Hence, 
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(8) /Jm(n) = E n'! I 
no nl,..-+,nm-1f> 

n 

no+nl +- -+nm- X=n 

Dm(x)lno+nlx+---+nm-lxm l 

The third condition in the summation can be replaced by no + n1 IAo + + 
n,n-lAm-1 = 0, and if AO is replaced in this with the mth root of unity A E 
ZZ/1ZZ, then the same expression gives a formula for ,B, m(n) 

We now consider m of some special types. If m = p is prime, then the 
cyclotomic polynomial (Dm is the polynomial 1 +x +... +xP- I of degree m - I, 
so the last condition under the summation sign in (8) can be satisfied only if 
no = n, = = nm-I, in which case the common value must be n/rm = n/p. 
This proves (6) of Theorem 2. More generally, if m = pi, then (Dm(x) = 
(xm - 1)/xm'-I = 1 + xm' + + xm'(P-1), where m' = m/p = p'- I . If this 
divides no+nlx+. .+nmlxm- , then the quotient is no+nlx+ r-+nm, ixm - 

andthesequence (no, n1, ... nmi,) isjustthesequence (no, ni, *., nm,fl) 
repeated p times. Hence, 

fJm (n) = >3! 
nO, nl,..,n 1m-1>0 n n,1 

p(nO+nli+--+nm/li)=n 

Multiplying this by Xn/n! and summing over n, we obtain the generating 
function given in (4). Obviously, (6) is a special case of (4), but we have 
preferred to give it separately since it is simpler and since here one can give a 
closed formula for each 8m (n) . This is also the case for m = 4, where equation 
(4) gives ,84(n) = 0 for n odd and 

fl4(2n)= z (2n)! - (2n) ? (n)2 (2n)2 

no+nl=nn!n! no=no 
n 

proving equation (7). Finally, if m = 2p with p an odd prime, then (m(X) = 

(xP + 1)/(x + 1) = 1 - x + x2 - + xP-1, and it is easily checked that no + 

n1x+. * .+n2p-1X2P-l is divisible by this if and only if (no, ni , ... , n2p- ) has 
the form (no, ni, ..., np_l, no + r, n1 - r, ..., np-, + r) for some integers 

no, . . . , np-I and r satisfying 2(no + * - - + np -I) + r = n; this easily leads to 
(5)bysetting A=no+*+ +np-, if r>0, A=no+*+ +np_i+r if r<0. In 

general, the smaller the difference between m - 1 and (an(m) the easier it is to 

analyze the divisibility condition in (8) and hence to give an explicit description 

of the coefficients flm (n) . 
Finally, we discuss the computation of the exceptional set Fm(n). For fixed 

values of m and n, we consider n-tuples i = (i , ... , in) E (Z/MZ)n and 
denote by R; the resultant of the polynomials Pi and Dm(x). This resultant 

is easily computed as the norm of the algebraic number Pi(Ao), i.e., as the 

product of the numbers Pi(A) as A ranges over the primitive mth roots of 

unity in C. The number of n-tuples i with R; = 0 is ,Bm(n), and the primes 
1 _ 0 (mod m) dividing any nonzero R; are the members of the exceptional set 

Fm(n). Obviously two values of i which are equivalent under (i) permutation 

of the ij 's, (ii) translations ij |-4 ij + c (mod m) for any c E (Z/mZ), or (iii) 

scalings ij ~-? kij (mod m) for any k E (Z/mZ)x give the same value of Ri, 
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TABLE 4. Examples of resultant computations 

m = 7, n = 5: m =11, n = 4: m=12, n=3: 

i Ri i Ri i Ri 

(0,0,0,0, 1) 29 * 113 (0,0,0, 1) 67 * 661 (0,0, 1) 1 3 
(0,0,0, 1, 1) 463 (0,0, 1, 1) 210 (0,0,2) 72 
(0,0,0,1,2) 421 (0,0,1,2) 232 (0,0,3) 52 
(0,0,0,1,3) 23 * 71 (0,0,1,3) 991 (0,0,4) 32 
(0,0,0,1,6) 132 (0,0,1,5) 23 * 67 (0,0,6) 1 
(0,0,1,1,2) 29 (0,0,01,7) 419 (0,1,2) 22 
(0,0,1,1,3) 197 (0,0,1,10) 1 (0,1,3) 13 
(001,1,4) 1 (0,1,2,3) 1 (0,1,4) 1 
(0,0,1,2,3) 43 (0,1,2,4) 23 (0,1,5) 22 
(0,0,1,2,4) 26 (0,1,2,5) 89 (0,1,6) 1 
(0,0,1,2,5) 29 (0,1,3,4) 1 (0,2,4) 24 
(0,0,1,2,6) 23 (0,2,6) 1 
(0,1,2,3,4) 1 (0,3,6) 1 

so we need only compute the resultants for inequivalent values of i. Table 4 
shows the results of this computation for all inequivalent n-tuples i in the cases 
(m, n) = (7,5), (11,4), and (12,3), illustrating the way that the corresponding 
entries of Table 3 were computed. (Note that only the prime divisors of R; 
congruent to 1 modulo m must be taken-this is automatic if the prime occurs 
to the first power-and also that the primes occurring for a given value of n 
may be new exceptional primes for any n' < n.) However, in these three 
examples there are only about a dozen inequivalent n-tuples i, whereas, for 
example, computing the final entry in Table 3 required looking at over thirty 
thousand inequivalent orbits. 

4. THE CASE m = 2 

In this case we find from (3) and (6) 

B2(X) 
- 

(2n)!x2n-1 1( A 
B2(X) L n!2 1-4X2}I 

from which we obtain the closed formulas and power series expansions 

B2(X) = 2 V(1+ 1 ) E n 
n=O + 

A2(X) = 
I 

(1 + X ) 2 E (n) 2 2n + X 2n+1) 

However, here we can give complete formulas on the polynomials Flm(X) 
First of all, the mth root of unity A here is just -1 (mod 1), so we can extend 
the definition of Flm(X) to all odd values of 1 by 

d 

F1,2(X) = Pd(X) =7J(1 - (4i + 4I7) X) (Cl = e27,ill 1 = 2d + 1). 
j=1 
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TABLE 5. Coefficients of A2(X) B2(X)d 

1 X X2 X3 X4 XI X6 X7 x8 X9 X1O X1 .x.. 
d=1 1 1 0 1 1 3 4 10 15 35 56 126 ... 

2 1 1 -1 0 0 1 1 4 5 15 21 56 ... 
3 1 1 -2 -1 0 0 0 1 1 5 6 21 ... 
4 1 1 -3 -2 1 0 0 0 0 1 1 6 ... 
5 1 1 -4 -3 3 1 0 0 0 0 0 1 ... 
6 1 1 -5 -4 6 3 -1 0 0 0 0 0 ... 
7 1 1 -6 -5 10 6 -4 -1 0 0 0 0 ... 

Theorem 3. The polynomials Pd (X) are given by the closed formula 

Pd(X) = (1 + 2X (1 + v/42) 

+ 2 (1- ) (1X/ 2 

by the recursion 

(10) Pd(X) = Pdl(X)- X2 Pd-2(X) (d > 2) 

(with the initial conditions Po(X) = 1, P1(X) = 1 + X), by the generating 
function 

00 
I +XT 

(11) ZPd(X) Td = 1-T+X2T2 

or by the expansion 

(12) Pd(X) = Z(-1)[n [n]) 'Xn. 
n=O2 

Clearly, this sharpens Theorem 1: equation (9) implies that the congruence 

F1,2 = A2Bd holds modulo X2d+1, which determines F,2 completely since 
its degree equals d (cf. Table 5), while (12) gives all the coefficients of the 
polynomial Fl,2(X) explicitly. 

Proof. Define Pd by (9) (rather than as Fl,2 ). Then 

oo 
(X T 

2 1 -2X 2( X ) 2 

E~ ~ ~ ~~~~~42 d( I - 
)T 1-(I- 1- 4X2) T 

1 +XT 
1- T+X2T2 

This proves (1 1). The recursion (10) follows by multiplying both sides by 1 - 
T + X2 T2 and comparing coefficients of Td, while (12) follows by expanding 
the right-hand side as a geometric series 

1+ TX _(1TX (-)nT2nx2n E0 1-)[n12] Tn 
1- T+ T2X2 = (+ TX) ( T)2n+l 

X 
(I - T)2[n2+l 

a+TX (-1)iTnX tn=O (1i -e m This p e 1nc 

and using the binomial theorem. This proves the equivalence of (9)-( 12). 
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Now let Qd (X) = Xd pd (X-'), the reciprocal polynomial of Pd (X). Then 
the generating function of the Qd(X) is 

, Qd (X) T d= , Pd (X-1) (XT)d = 1- XT + T2 X 
d=O d=O 

Substituting X = z + z-I gives 

dE Qd ( + ~ ) -(Z + Z-I )T + T2 (I -zT)( - z-1 T) 
d=O 

0 Zd_z Td, 

1-z Vl-z-lT 1-zTJ I - z 
d=O 

whence Qd (Z + z'- l) z-d(l + z + z2 + + z2d) . Thus Qd has the d roots 
,J + 4 7J ( 1 < < d), where 1 = 2d + 1. Since Qd is monic (because Pd (X) 
has constant term 1) and has degree d, this property uniquely characterizes 
Qd(X), so Qd(X) = Hj(X - Ci - 4 '), the reciprocal polynomial of F1,2. 
This completes the proof of Theorem 3. We observe that the property of Qd 
just used can be rewritten via the substitution z = eiO as 

s sin(d + 2)0 - sin(d + 1)6 + sin dO 
Qd (2cos )- =s2n sin 1 sn 

so that Qd (X) can be expressed in terms of the classical Chebyshev polynomials 
Sn(X) by Qd (X) = S2d (vX) = Sd (X) + Sdl- (X) X 

5. COMPOSITE 1 

In this section we give a partial generalization of our results to the case 
of composite 1. Let ml , ... , m, be fixed positive integers and consider 
integers of the form 1 = 11 ... 1i, where the li are distinct primes of the form 
1i = midi + 1, di > 1. Then the group G = (Z/lZ)X contains a subgroup H 
of order m = ml .m given by 

H = {x (mod 1) xm -= 1 cf. (modli for i = 1, ...,s}. 

If we identify G with the Galois group of Q(4)/Q (C a primitive lth root of 
unity), then H corresponds to a subfield K of Q(4) of degree d = d.. ds . 
This field contains, and by the result in the Appendix of [2] is in fact generated 
by, the number 

w = TrQ(4)/K(C) = S CX 
xEH 

We denote the conjugates ExEH 4'jx (j E G/H) of co by a)(i) and set 

F(X) = Fll( Is;m,.MS(X) = r ( 1- w(1)X) . 

jEG/H 

Then the same calculation as at the beginning of ?2 gives 

logF(X) =-ESnXnn 
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with 

Sn = 
n 5 5 j(Xi++Xn) 

iEG/H jHEG xi,...,XnEH 

~~~~~~~~~~~~~~~ 
=- k k @#(l Xn) E H | Xl + +Xn--0 (mod k)}, 

kIll 

where the last equality follows from the standard evaluation of the Ramanujan 
sum EjEG 4jX We can write each divisor k of 1 as liEI 'i for some subset 
I of J = { 1, ... , s}. The expression .{ } is multiplicative in the obvious 
sense, and we find 

= 1 I f(-mi )7 J(lilmi (n)). 
IcJ ioI iEI 

Thus, if we define for any set X' of (not necessarily distinct) positive integers 
a power series B,,(X) by 

B (X) = exp -1 (n) Xn) , '(n) = m (n) 
n=1l m&eX 

(this is a priori in Q[[X]] but actually in Z[[X]], as we shall see below), then 
we find that 

(13) F(X) JJ Bx, (m1,X)(-1) 'IIlEI ' /rm (mod XN) 
IcJ 

(with A, = {mi, i E I}, mp =HIli mi ) for any N > O, so long as no 1i is in 
the exceptional set Fm, (n) for any n < N. For s = 1 the power series on the 
right of (13) is B{m}(X)l/mB0(mX)-1/m which agrees with Theorem 1 since 
B{m} (X) = Bm (X) and B0 (X) = 1 - X. For s = 2 we obtain instead 

(B{mi, m2}(X)'112 ( - mIlM2X) l/m 

Bmi (m2X)1i Bm2 (mIX)12 

or 
[ X1 dd2 

B{ml, m2} (x) /2- 1 [B{ml, M21(X) 
/mi d2 

L{ml, m2} (X)J L Bmn (m2X) J [L Bm2 (m IX) I 

- 
KBfmi, M2}(X)( 1-m MI2X) 

I 
/MIM2 

X 
Lt Bm1 (M2X)BM2(M1X)J 

Using the integrality of Bt(X) and the same argument as at the end of ?2, 
we can show that each of the four expressions in square brackets is a power 
series with integral coefficients (and similarly for s > 3). This generalizes the 
integrality statement of Theorem 1. 

It remains to prove the integrality of B,,e(X) for any set X. But this fol- 
lows easily from the corresponding statement for 1['1 = 1. Indeed, a well- 
known and easily proved integrality criterion says that a power series of the 
form exp(Z'L Il(n)Xn/n) has integral coefficients if and only if the coeffi- 
cients A8(n) are integers such that ,B(n) =_ ,(n/p) (mod pV) whenever pVIn, 
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v > 1. The integrality of Bm (X) implies that the numbers /3(n) = flm (n) sat- 
isfy these congruences. It follows that the numbers ,8(n) = f/3(n) also do and 
hence that B,,(X) E Z[[X]]. 

All of the contents of this section except for the statements about integrality 
can be found essentially in [2] (Corollary 4, Prop. 3, and their proofs). 
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