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The numerical method of lines for time-dependent PDEs consists of form- 
ing a spatially discrete system of ordinary differential (or possibly differential- 
algebraic) equations in time and then calling a suitable ODE or DAE integrator. 
The method is quite powerful and versatile, and is widely used in conjunction 
with the wide array of high-quality ODE and DAE solvers now available. 

This book presents, mainly by example, one approach, or paradigm, for the 
numerical method of lines (NUMOL). It fills in the details of the method by 
establishing a complete Fortran program template in which the discrete repre- 
sentation of spatial operators is done by finite differences in a certain set of 
Fortran software (the DSS routines), and the coding for problem specification 
and I/O is to be inserted into a few specific spots, with heavy use of certain 
COMMON structures. Relegating the discretization to a set of black boxes and 
imposing a structure on the problem-specific coding makes it relatively straight- 
forward to set up and solve a problem. But the price for this is a certain loss of 
flexibility in the areas of spatial discretization, boundary condition representa- 
tion, and treatment of PDE systems. 

Aside from certain limitations, and some minor errors and omissions, the 
book provides a very good introduction to the numerical method of lines. It 
assumes very little in the way of technical background of the reader. For exam- 
ple, the concepts of a PDE as a physical model, of Taylor series approximation, 
and of eigenvalues of a matrix, are all introduced from scratch as needed. Any 
scientist or engineer with a little Fortran background can read this book and 
quickly learn to solve some interesting problems. As an introduction to the 
subject, the book does not treat some of the more advanced aspects, such as 
mixed derivatives, irregular regions, or outflow boundary conditions, and it only 
briefly touches on the issues of nonuniform grid selection, differential-algebraic 
system problems, and the efficient treatment of large stiff systems. Fans of 
finite-element-type versions of the method of lines will not be accommodated 
by this book. 

Chapter 1 does a good job of introducing the basic ideas of NUMOL, with the 
heat equation as the (much repeated) example. The various steps are explained 
in great detail, although some features of the procedure could use even more 
discussion. 

A disturbing practice that appears in Chapter 1, and is continued later, is 
that of forming the discrete second derivative by two successive applications 
of a (central) first-derivative approximation ("stagewise"), rather than by direct 
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differencing. This goes against the nearly unanimous opinion of the numerical 
PDE community. In the standard example, it makes the problem bandwidth 
five, instead of three, as in the standard central differencing, and has the poten- 
tial for introducing spurious spatial oscillations (which can be demonstrated for 
the heat equation). Direct differencing for second derivatives is introduced in 
?3.4, but it is given less than equal emphasis. The relative simplicity and small 
size of the problems solved seems to allow stagewise differentiation to perform 
well here. 

The first chapter ends by setting up the Fortran template for all subsequent 
examples. It is based on a largely fixed main program and interface routine 
FCN, problem-dependent routines INITAL, DERV, and PRINT; and a set of 
COMMON blocks with a fixed overall structure but problem-dependent details. 
Many readers will quibble with the programming style, but the template does do 
the job, and provides a start for the novice. One of the largest quibbles will be 
the nondynamic nature of the COMMON structure. Despite the appearance of 
problem size NEQN in the data file in all examples, this size cannot be varied 
at run time (except for a 1-D scalar PDE), because mesh sizes are built into 
the COMMON blocks. More serious is the fact that for a system of PDEs, 
the ordering of the dependent variables is by PDE variable first and then by 
mesh point, making the problem bandwidth far from minimal. In the stiff case 
(assuming fewer PDEs than mesh points), the solution with banded treatment 
of the Jacobian is far less costly if that ordering is transposed. 

The issue of estimating and controlling the errors in a NUMOL solution is 
discussed, but somewhat too briefly. Early in Chapter 1 there is a good discus- 
sion of the important issue of setting error tolerances for the integrator. But it 
comes after an example where pure relative error control is specified on a prob- 
lem that includes a vanishing solution component. Somehow this was not fatal, 
but it was partly to blame for high costs that are instead attributed to stiffness. 
Anyway, this mistake does not occur again after ? 1.6, as all subsequent examples 
use mixed tolerances. But the use of a scalar absolute tolerance throughout sets 
a dangerous example for one faced with a system having a wide range of mag- 
nitudes in the solution components. In Chapter 2, following the first nonlinear 
example, there is a short discussion on checking the validity of the NUMOL 
solution. It mentions use of physical intuition, but fails to mention an obvious 
numerical approach: refining the spatial and/or tightening the time integration 
tolerances. This usually gives a good idea of the error level, but of course is not 
guaranteed to. 

The author's procedure for enforcing Dirichlet boundary conditions is strange 
at first sight, but as eventually adopted it is quite valid, though not thoroughly 
explained. Early on, this is done by resetting values of the dependent variable 
in the FCN routine, in violation of the usage instructions for most ODE in- 
tegrators. However, with the introduction of the COMMON structure in ? 1.8, 
what is actually being done is to load boundary values into the appropriate com- 
ponents of the temporary arrays in COMMON/Y/, where they are used in the 
evaluation of all the other derivatives. The derivatives of those boundary vari- 
ables are returned to the integrator as zero. Thus the ODE solver is integrating 
a dummy equation (with a constant solution) for each such boundary condition, 
while the true boundary value (which may or may not be constant) is absorbed 
into the remaining ODEs as needed. (Cases of nonconstant boundary values 
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appear in ?3.5 for ramp and pulse functions, and in Chapter 6 for the Burgers 
equation.) The correct boundary values get printed by the PRINT routine by 
virtue of the call to DERV just before the call to PRINT. In fact, this practice 
is not dangerous or erroneous, provided that it follows the given program struc- 
ture. The alternative of having the ODE solver integrate the derivative of the 
boundary values can be impractical in the nonconstant case. 

Chapter 2 gives several substantial examples that make the case for the 
ease of setup and application of NUMOL. These range from 1-D linear scalar 
PDEs to 2-D nonlinear systems, with hyperbolic and elliptic examples as well 
as parabolic. The wave equation example and the example with two coupled 
PDEs illustrate how two different forms (generic and problem-specific) of the 
COMMON blocks work together. 

Chapter 3 is a primer on finite difference representations of 1-D derivatives, 
coupled with some of the DSS routines that implement them. Most of it as- 
sumes a uniform grid, though this is not clearly stated at the outset. For an 
introductory book, there is unexpected emphasis on higher-order differences. 
For example, the simplest case of direct second derivatives (three-point second- 
order, corresponding to DSS042) is not given, only the more involved five-point 
fourth-order case. Three-point differencing appears only in passing in ?5.2. The 
final section of the chapter gives a good description of the obstacles involved 
with advection equations, and introduces noncentral difference schemes. 

An interesting feature of all of the differentiation routines used is that they 
sacrifice bandwidth at the endpoints for the sake of preserving the order of 
accuracy. For example, for a parabolic problem with Neumann boundary con- 
ditions, DSS042 gives the standard 3-point second derivative approximation at 
each interior point, but also a 3-point difference expression at each boundary, 
making the system Jacobian pentadiagonal instead of tridiagonal. This tradeoff 
is probably a bad one in the stiff case, as the loss of efficiency is likely to offset 
the gain in accuracy at the boundary. In fact, one can easily have the best of 
both by keeping the tighter bandwidth but refining the mesh at the boundary if 
necessary, but doing this with the existing DSS routines would be awkward. 

Chapter 4 does a good job of introducing the basic notions of explicit and 
implicit ODE methods, stability of ODE systems, and stability of numerical 
ODE methods. Moreover, it does this in a way that encourages the use of avail- 
able ODE software. The important issue of stiffness in the NUMOL context 
is discussed, motivating the introduction of BDF methods. Following that are 
sections describing a number of available sophisticated ODE solvers. There are 
a few minor flaws in the presentation. In the sections on stability of the Euler 
methods, the equations connecting the problem eigenvalues A to the charac- 
teristic growth factors J8 could have been obtained for general coefficients, 
by noting that the characteristic equation for J8 with the change of variable 
,8 = 1 + AAt (explicit case) or J8 = 1/(1 - AAt) (implicit case) is exactly the 
characteristic equation for A. The section on BDF methods misstates the usual 
procedure for the initial guess; it is actually to extrapolate from existing data 
at order q, rather than use the base point. The section on the LSODE inte- 
grator incorrectly states that for a problem with banded coupling, programming 
a dense Jacobian is harder than a banded one; in fact both involve the same 
programming-of nonzero elements only. 
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The first two sections of Chapter 5 derive the von Neumann stability condi- 
tions for the advection equation (with centered and upwind differencing) and 
the heat equation with centered differencing. The results are correct, but the 
attempt to link them to actual NUMOL integrations is flawed. First, there is 
no note of the fact that, because the von Neumann analysis ignores boundary 
conditions, the actual eigenvalues of the ODE systems solved are somewhat dif- 
ferent. There are two notes that attempt to make the connection in the case 
of the advection equation. But the first note incorrectly cites the real stability 
interval, whereas the better stability of RKF45 on the imaginary axis (vs ex- 
plicit Euler) probably does account for its good performance. The second note 
gives undue credit to the variable stepsize algorithm for rescuing an otherwise 
unstable integration method. In all cases, the correct CFL condition is given, 
leading to conclusions on increasing stiffness with mesh refinement, but there is 
no discussion of convergence or Lax equivalence. 

The bulk of Chapter 5 is devoted to the most complicated example problem in 
the book, a 1-D humidification column with three PDE variables plus a control 
variable. The example is noteworthy for its complexity and the fairly complete 
solution given. However, there is one improper feature, and a few omissions. 
The DERV routine includes lines that reset negative values of dependent vari- 
ables. This is dangerous because it can make the integration unstable; the small 
negative values are harmless and if desired can be replaced by zero in the print- 
ing of output. The data lines displayed have four new entries (" 1000 11 1 REL") 
that are not discussed. The computed spectrum displays damping modes with 
Re(A) -5000, while the final time is t = .5. This raises questions of stiffness 
and efficiency that are not discussed. The solution was probably done with a 
nonstiff solver at a high price. The details of solving the problem with a stiff 
solver, including the use of the sparse structure of the Jacobian, would have 
made the example much more interesting and useful. 

Chapter 6 begins with a heuristic classification of PDEs in terms of the ap- 
pearance of dependencies, rather than rigorously in terms of discriminants of 
coefficient matrices. But for the novice this is probably more appropriate. The 
rest of the chapter gives various treatments of the Burgers equation that illus- 
trate (again) handling different boundary conditions and setting up 2-D and 3-D 
problems. Finally, the adaptive grid solution of a Burgers equation provides an 
interesting and useful departure from all of the previous fixed-uniform-grid ex- 
amples. But the program structure appears unable to permit the extension of 
the adaptive grid scheme to a system of PDEs. 

In the appendices are (A) equations for the Laplacian in three coordinate 
systems, (B) a list of the DSS spatial differencing routines available, and (C) 
a list of over 200 applications from various disciplines, for which NUMOL 
solution programs are available. 

Numerous typographical errors have crept into the book. I have a one-page 
list of corrections from the author, and have generated another (slightly longer) 
list in my own reading. Most of the errors are fairly innocuous, but a few are 
not. For example, in an exercise at the end of Chapter 1, the coding given for a 
modified Euler method has two errors (one in the time variable in the FCN call, 
and one in the dependent variable in the final loop). An error of a different sort 
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was also made in my copy of the book: the binding was attached upside-down! 

A. C. HINDMARSH 
Mathematics Division 
Lawrence Livermore Laboratory 
Livermore, CA 94551 
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The first edition of this book was published in 1989 and has been reviewed 
in [1]. That a second edition is appearing just three years after the first attests 
to the success of, and continued demand for, the book. 

The principal changes made by the author are as follows. In Part I, deal- 
ing with basic concepts and transformations, new paragraphs have been added 
on chaos in dynamical systems, existence and uniqueness theorems in ODEs 
and PDEs, inverse problems, normal form of ODEs, and stability theorems for 
ODEs. Prufer and modified Prufer transformations, which originally appeared 
in Parts II and III, respectively, have been moved to Part I. Part II on exact 
methods has a new paragraph on exact first-order PDEs. The most extensive 
changes occur in Part IV, dealing with numerical methods, where one finds a 
reworked paragraph on available software, a long new paragraph on software 
classification, including excerpts from the GAMS manual, and new sections on 
finite difference methodology, grid generation, stability concepts in numerical 
ODEs, multigrid methods, parallel computer methods, and lattice gas dynamics 
(particle methods). In addition, many minor improvements have been made 
throughout the book: new examples, additional notes, and updated bibliogra- 
phies. All in all, the text has expanded from the original 635 pages to 760 
pages. 

It should be clear from this brief review that the new edition of this refer- 
ence work continues to be a useful aid to scientists and engineers and will be 
indispensable to anybody who needs to solve differential equations. 

W. G. 
1. W. F. Ames, Review 1, Math. Comp. 54 (1990), 479-480. 
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This collection of 83 papers and short abstracts from the 1989 SIAM Con- 
ference on Parallel and Scientific Computing covers five areas: matrix com- 
putations, numerical methods, differential equations, massive parallelism, and 
performance and tools. Papers range from theoretical studies to performance 
evaluation to descriptions of software systems. Many of the major researchers 
in these fields are represented, and these papers give a good overview of research 
in this fast-changing area as of 1989. Many of the topics are still current, and 


