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PARABOLIC APPROXIMATIONS 
OF THE CONVECTION-DIFFUSION EQUATION 

J. P. LOHEAC, F. NATAF, AND M. SCHATZMAN 

ABSTRACT. We propose an approximation of the convection-diffusion operator 
which consists in the product of two parabolic operators. This approximation 
is much easier to solve than the full convection-diffusion equation, which is 
elliptic in space. We prove that this approximation is of order three in the 
viscosity and that the classical parabolic approximation is of order one in the 
viscosity. Numerical examples are given to demonstrate the effectiveness of our 
new approximation. 

1. INTRODUCTION 

The purpose of this paper is to develop an approximation of the steady 
convection-diffusion equation (1.1) which consists in paraxial (or parabolic) 
equations (i.e., equations which are evolution equations in the direction x), 

O9u a2u092u\ 
S(u) =a(x, y) - v( 2 + 2= f O<x<L, yER, 

(1.1.a) a(x, y) > ao> 0, 
u(O,y)= Uo(y) atx=O 

with an open boundary condition at x = L of the form 

(1.1Lb) aOau - O aU= A0 - 
02u 

and the requirement that u be bounded at infinity (in y). 
Equation (1.1) models, for instance, the concentration of a pollutant or a col- 

orant in natural environmental flows (see, for instance, [2]). When the viscosity 
v is small, a classical parabolic approximation to (1.1) is made by neglecting 
the diffusion in the direction of the flow with respect to the transport term (see, 
for instance, [1, 9-1 1]). We have (p stands for parabolic) 

Yp (up) = a(x, Y) ax - v 0y2 = ' <X<L, yER, 

up(O,y)=Uo(y) atx=O. 

Received by the editor May 2, 1991. 
1991 Mathematics Subject Classification. Primary 76Rxx, 65N99. 
Key words and phrases. Convection-diffusion equation. 

? 
1993 American Mathematical Society 

0025-5718/93 $1.00 + $.25 per page 

515 



516 J. P. LOHEAC, F. NATAF, AND M. SCHATZMAN 

The main numerical advantage of (1.2) is that it can be solved faster and de- 
mands less computer memory than (1.1). Indeed, problem (1.1) is elliptic in 
space, while problem (1.2) is elliptic only in the direction y. 

Let us describe formally the error up - u. We make an asymptotic expansion 
of the form 

u=uo+vu1 +v2u2+... and up=upo+vup + vup2+-, 

which we introduce respectively in (1.1) and (1.2). We set equal to zero the 
terms of each order in v. At order zero we have 

O09 O09upo aa? f and a f 

and hence upo is equal to uo: 

uo(x, y) = UpO(x, Y) = Uo(y) + f (s, Y) ds. 

At order one the terms are different, since we have 

au, d2uo x (2 f a f (X Y) a 2= y s5 )d O9x dy J0y2 a a/ x\a/ 

and 
O9upi - d2Uo __a2 

Ox 2f((s ,y) ds. a9 x dy2 (y) + a 2 a 

Thus, in the general case the error seems to be of order I in the viscosity v. 
The goal of this paper is to introduce an approximation of (1.1) of order 3 in 

v which is almost as easy to solve as (1.2). It generalizes the case f = 0 and the 
case where the velocity a depends only on y, which has been considered in [7, 
8]. In ?2 we derive the form of the approximation in the case of constant a. We 
are able to approximately factor the operator aax - vA as a product of operators 
-V(a, - Al)(ax - A-), where A+ (resp. A-) is a positive (resp. negative) 
differential operator in the y-direction. The exact form of this approximation 
is 

(1l.3) -v( - + - <2) -- 2)Up f 

and is of order 3 with respect to v. When a is not constant, this form yields 
an error of order 2. To increase the order of the error, we replace (1.3) by 

(1.4) - v 

where a is to be determined. From the mathematical point of view, factoring 
partial differential operators is a well-known technique in the theory of pseudo- 
differential operators. However, we use this idea in a somewhat unusual fashion 
here, since we are interested in global estimates and we consider singular per- 
turbation. Equation (1.4) can be numerically solved by a double sweep over the 
computational domain. Solving (1.4) costs only twice as much as solving (1.2) 
and is much less costly than solving (1.1). The paper is organized as follows: 
in ?2, (1.4) is introduced and a is "optimized" with the aid of an asymptotic 
development. In ?3, we consider the well-posedness of (1.4) and we prove that 
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the L2-norm of the difference between the solutions of (1.1) and (1.4) is of 
order 3 in v and that the difference between the solutions of (1.1) and (1.2) is 
of order 1 as mentioned. In ?4, we present numerical results. 

2. DESIGN OF THE APPROXIMATE OPERATOR 

2.1. Form of the approximate operator. We denote by k the dual variable 
of y for the Fourier transform in y and by A the dual variable of x for the 
Laplace transform in x. 

The case when a is a positive constant can be treated by performing a Fourier 
transform in y and a Laplace transform in x. The convection-diffusion oper- 
ator is transformed to 

(2.1) Y(A, k) = aA - vA2 +vk2 
The zeros of this polynomial are 

A+ (k) = 2a (1 +21+ 4k2v )\ 2v 

~~a2)?0 (2.2) / ) 2 
A-(k) =I- (< <0. 

Let A+ and A- be the pseudodifferential operators in y of respective symbols 
A+ and A- . We have the exact factorization 

(2.3) =-vY+Y- 

where Y+ = Ax - A+ and Y- = Ax - A-. Problem (1.1) can now easily be 
solved with the following boundary conditions: 

u(0, y)=Uo(y) and Y-(u)(L, y) = O. 

This boundary condition is an exact open boundary condition, see [3]. We intro- 
duce w (x, y) = Y- (u), so that solving the elliptic problem (1.1) is equivalent 
to solving two successive parabolic problems in the x direction (one in the 
direction of negative x and the other in the direction of positive x): 

(2.4) 5Y+(W) = f and w(L, y) = 0, and then 

Y- (u) = w and u(O, y) = Uo(y). 

As the operators A+ and A- are pseudodifferential, they are difficult to use in 
a numerical computation except if spectral methods are used. Even worse, they 
are very difficult to generalize to the case of nonconstant coefficients. To use 
only differential operators, A+ and A- are approximated for small v by 

vk 2 a vk2 
i- -2 A(k) = -a and A+ =A+(k) =- + vk 

Ia v a 
Equality (2.3) becomes 

= -Vy1+yl- - v 3S 

where Yi- has for symbol (ax - Al (k)) and M is an error term with symbol 

T2. When a depends on x and y, we let 

1 a(x, y) v 02 = xa(x y) ay2 
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Then we have 

where 

(2.6) ~ = 1 02 (1 
2 

and M, = ax (1 2 
(2.6) m 

a(x, y) ay2 \a(x, y) ay2 )= a(x, ( 02 

Thus, if we replace the operator Y by its approximate factorization -vt+y- 
and consider the following approximate problem: 

(2.7) -v2+Y(up) =f, 
up(O, y) = Uo(y) and 5f-(up) = 0 at x=L, 

we may expect the difference between u and up to be O(v2). When a depends 
only on y, the error term Ml is zero and the difference between the solutions 
of (2.7) and (1.1) is a priori of order v3 . In the next subsection, we design an 
approximate problem which yields an error still of O(v3) when a depends on 
x, as in the constant a case. 

2.2. Construction of a more precise approximate operator. We introduce a new 
function a to be determined, and we define a new approximation 

(0 a V0a2 0 V a__ 
(2.8) -v ( + - 2 - - 0 2 Up f a0x V aay2J a~x a2U~ 

up(O,y)=Uo(y) atx=O, 
(2.9) &up _ a2U P= t = a Ox ay2 =0 atx=L 

and up bounded at infinity (in y). We consider now problem (1.1) with the 
following boundary condition: 

(2.9.bis) aWau - v, 2 =0 atx=L. 

We shall look for an a(x, y, v) so that the error e = u - up is in V3 and the 
problem (2.8)-(2.9) is well posed. Let us first remark that we have 

a0up /02 up 02U p a L - v ~+ 1 

(2.10) ax aX2 + y2 
2 qX1 

aa aU p v3 02 10a2up + v2[ G+ a+]O2~ ( 
a ((X) vat ] ay2 a ay2 a ay2 / 

To begin with, we write a formal asymptotic expansion of the solutions of (1. 1) 
and (2.8) in the form 

U = Uo + VUl + V2 + and up = uPo+ vupl + V2Up2+*-- 

We wish to choose a such that 

(2.11) g(x,5 y,5 v) = va[x (c, + Iv ac 

is uniformly bounded, independently of v. Possible choices are 

(2.12) a=a+vax a 
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or 

(2.13) a = a . 
a2 

Moreover, we require a > 0. This is automatically satisfied for small v for 
either choice (2.12), (2.13). From a numerical point of view, it may be inter- 
esting to switch between these two expressions according to the sign of ax: this 
guarantees that a will be positive for all v at the expense of a loss of regularity. 

The results of the identification in the asymptotic expansions are as follows: 

aupo a<X f; 
a9 x 

f 
ax 

& u~~~~~~~1 ~~~au, a = AuPO, a 9 = Auo; 
xup2 aU2 

a =Aup1, a aU2 =aAu, 
a9 x~ ax3 

a ax = Aup2 a ax = AU2 

92upo 1 02 f 1 a2UpO 
+go y2 ao&.y2 kao ay2 / 

Here, go(x, y) = g(x, y, 0) and ao(x, y) = a(x, y, 0) = a(x, y). 

Remark. We now relate the value of a given by our procedure to previous 
results. For the time-dependent convection-diffusion equation with constant 
coefficients, 

au + au - vAu at +a- =0, 

Halpern [3] has given the following infinite family of open boundary condition 
operators: ( .' +a 19 )n . The case n = 1 corresponds to the Euler approximation 
of ( 1.1). If a depends on x and y, n = 2, and we reduce our problem to the 
stationary case, the open boundary operator becomes 

a a2 
(2.14) a +ai2- 

Multiplying (2.14) by - and subtracting Y, we get 

( ax a 02 
a + v d--v ,=0 

which corresponds to the choice (2.12) of a. For a justification, see [6]. 

3. ERROR ESTIMATES 

It is first necessary to consider the well-posedness of the different problems. 

3.1. Well-posedness of the approximate problem. We make the following 
strong assumptions: 

(3.1) a belongs to W?? ??((O, L) x R) and there exists ao > 0 such that 
a > aO > 0; f belongs to HI((O, L) x R) and Uo to Cc(R). 
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For v small enough, there exists a(x, y, v) such that: 

a belongs to W?' ??((O, L) x R), 

(3.2) 
there exists ao > 0 independent of v such that a > ao > 0, 

for each integer k, a is uniformly bounded in Wk, oo((O, L) x R), 
g defined by (2.1 1) is uniformly bounded in L?. 

Problem (2.8)-(2.9) can be decomposed in two parabolic problems in the x- 
direction, 

_V 0_-+- 2W= ff w(L,y)=0, 
a~x V aOy2 ] 

and 

( - 
_Vy 2 )Up = W, Up(0, y) = Uo(y). 

For v small enough, both problems are well posed since they are uniformly 
parabolic for sufficiently small v (see, for instance, [4, 5]), and we have for each 
problem a unique solution in H??((0, L) x R) . As for problem (1.1)-(2.9.bis), 
it is easy to see that for classical solutions the maximum principle holds and 
it is thus natural to suppose that there is a unique solution to (1.1 )-(2.9.bis) in 
H?? ((0 , L) x R) . 

3.1. Majorations. We set e = u - up . By subtracting (2.10) from (1.1) we 
can see that the error e satisfies 

2e (92e +2e 2 -aX 1 a -a 02Up 
ax a02y 

L 
~ a vaJ ay2 
v 3 a2 (1 a2up 

(3.3) +kay2 / 
aOay2a y 

e(O, y)=0, = a a- v a2 =0 atx=L. 

Under assumption (2.1 1) we obtain 

v2 [X (I) + 
a 

] 
a 

v3g(x y v ). 

The main result of this section is: 

Theorem 3.1. Assume (3.1) and (3.2) and denote by u the solution of (1.1)- 
(2.9.bis) and by up the solution of (2.8)-(2.9). Then there exists vo > 0 such 
thatfor 0 < v < vo there exists Ml > 0 independent of v such that (e = u -up) 

(jLj ae)2 1/2 
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The order in v of the error estimate is the same as when a is constant or 
depends only on y (see [7, 8]). 

For the proof of the theorem we shall need five intermediate lemmas. 

Lemma 3.2. Let e belong to H??((O, L) x R) and satisfy Y(e) = z(x, y, v) E 

L2((O, L) x R), e(O, y) = O, and a0e - V92 = O at x = L. Then there exists 
vo > 0 such that e for any 0 < v < vo satisfies the following estimate: 

L a(xy Y) (Oae 2 

+ v2 ((02)e 2 (02e)2 (2e 2) L 2 

Proof. We square Y(e) = z, divide it by a, and then integrate by parts over 
the vertical strip. We obtain 

fLf 1 ae a2e 2 v2 a(2e 2 fLf a2e (ae v 02e 

JO JRaO "O aX y2} a OX2J Jo JR X2 aX aay2J 

]O] Oe 2I 2ay2e2 2)+a()e = lIa (x) + v 
y(e) 

+ O X2 

+ V j ( )(L, y)dy - 2vJO 2e ( v O2e) 
JR 

~~ 
jY Ox2 OaOX a y2 

We now rewrite the last integral: 

fL f 2e (Oe v O2e' 
V1 

JR OX2 X a aOy2J 

L a Oe (2e (va a 2e) 2 ( )e 2 
=2|x (<e )d + 2v |x dy -2v[ 

RO9X OX2 Ox aOay2 _- 9 

- Oe 2 dy + 2v J( d- 2 |dy 

/o IR0X a aXdy- 2vl (a 1 ?)d 

=xL O Xx-L O 
= fv/|Oae 2 f le'2 L Oe ( a 02e = vI( dy +vI ( dy -2v 2 I a 

J=L OX /J =O O9x JJRx \a/ Oy2 

- 2v 2 f a Oe I2v __ 
2 

IX=LJRO)xaOxOy2 =L ( a) 

" (e' 2 fLf Oe (i' 02e fLf( 2e_ 
2 

= V] O - 2v2 axOJR~ + 2v 2 JRK0e 2 

ax ayy a Ox a02OO 

ae2 ( O 2a- 
_ _ O e _ _2 
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Finally, we get the following equality: 

XLfl (age - Ae) 2 

- 
a 

- 
v- 2 

fL f 2e (2 + 2 e 2 2 ( 2e )2 2 a 2e 2 

IOIR0X) oa Ox __ v a( 

With the hypothesis on a and a, the ratio e is uniformly bounded in v 
and the last integral of the second line can be controlled by the last integral of 
the first line for small v . Moreover, by using the inequality - < 2(2 + ta), 
we can control the other integrals of the second line, and there exists v0 > 0 
such that for v > v >O, 

/oL/R ~ ~~ a 2ed9 1\ aeae2a 

] o]R2ay vA e)- _ v- 2 O2e 22( O2 \2\ 

(!IJRa ax 9Y a ax (=L2)a9X xv) 

and we get (3.4). 0 

To end the proof of Theorem 3.1, we need to estimate the right-hand side of 
equation (3.3). Let us introduce w defined by 

(0 a v02'\ 
-V t --+0-a2 J W =f. 

We first have to estimate the auxiliary unknown w and its derivative with 
respect to y. The equation for w corresponds to a parabolic problem in the 
direction of negative x . We shall use 

Lemma 3.3. Let /3(x, y, v) and y(x, y, v) belong to W??'??([O, L] xR) and 
have derivates of any order uniformly bounded with respect to v . Let q(x, y, v) 
be in L??((O, L), L2(R)) for any v in (0, vo). Assume th ththere exists a 
constant C independent of v such that 

(j q2(x yZ) dy)' < C for anyvI in (0, vo) and x in (0, L) . 

For vi in (0, v0), let p satisfy 

L-V -+-0 2 +vfJ0-+vy)p =q, 0<x<L, yER, 

p(L, y) = 0. 
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Then, under assumptions (3.1) and (3.2), for v small enough, we have the fol- 
lowing estimate: 

/ (2 ~ I1/2 2C 
p2(X, y)dy) < 2 for anyx in (O, L). 

JR ~~~~ao 
Proof. Observe first that this result seems natural, since as v tends to zero we 
have formally ap = q . It is useful to make the change of variables x -* L - x . 
The equation becomes, with the same notations, 

>0 -+---,)2-vE,8 --vy p=q, O<x<L, yeR, 

p(O, y) = 0. 

Multiply the equation by p and integrate by parts over R, 

d vf 22a f(+ i 2~i (a \ 2\ 

dx 2JR R( 2 ay 2 ay yau ) 

+ 2 J (ay 
2 

q +V2j (- 2 qp, 

so that we have for v small enough 

d / 2+aOtp 
? ( q2) 1 (jp2) 

' 

Let 

h(x) = (jp2(x, y) dy) 

We then have 

vda +/ ao.\I/h- < c . 
"dx 2 

By Gronwall's lemma we obtain 

2C 
v/h < 2C 

ao 

which enables us to conclude the proof. 5 

With Lemma 3.3, it is easy to establish Lemma 3.4 below. Recall that w is 
defined by 

-v - v+ W=f w(L, y) = 0. 

Lemma 3.4. Assume (3.1) and (3.2); then for v small enough, w satisfies the 
following estimate: 

(| ( ) (x, y) dy) < Ci Sup IIf(x, *)IIH,(R) ayi 
)dY <x<L 

for any x in (0, L) and i = 0, 1, . . ., 4, 

with Ci independent of v . 
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Proof. For i = 0, this reduces to Lemma 3.3. Suppose the assertion is true for 
some i > 0 . Differentiating i + 1 times with respect to y the equation satisfied 
by w, we get 

( a v 0 . a 1\ a i(ij+) 02( ,+w 
ax v -+a 2 VIlay ta ay +V 2 ay j y2 

+V 
2ayi+l 

ai+lf 0'wi 

-ayi+l + E,j(X, y, v)a j 
1=0 y 

ai+IW (L y) O, ai+1 

where the functions 
83j 

are uniformly bounded. To complete the proof, it 
suffices to apply Lemma 3.3 with 

fi(i+1) -() j=~(i +l)4a2 1 
a ( 0y (a) ' Y 2 ( )ay2 (a)' 

and 

q = {+ + fij(x, y, V)0j 
j-0 

We now consider the parabolic equation in the direction of positive x. We 
will prove two lemmas. 

Lemma 3.5. Let po(y) belong to L2(R), and let 83(x, y, v) and y(x, y, v) 
belong to W?? ?' ([O, L] x R) and have derivates of any order uniformly bounded 
with respect to v. Let q(x, y, v) be in L"((O, L), L2(R)) for any v in 
(0, vo). Assume that there exists a constant C independent of v such that 

1/2 

(]q2(x, y, v) dy) < C for any v in (0, vo) and x in (0, L). 

For v in (0, vo), let p satisfy 

2+v80+vy2 p=q, O < X < L, y E R, 

p(A, y) = Po(Y)- 

Then, under assumptions (3.1) and (3.2), for v small enough, there exists K 
independent of v such that we have the following estimate: 

p2(x, y) dyf < p2(y) dy eKL+ (eKL 1) 
C R !~ ? jp()d)l2uKL 

Proof. As in Lemma 3.3, we multiply by p, integrate by parts, and get 

d Viih 
.+hvK h<C, dx 

where 

h(x) = p2 (X,y) dy and K =Sup{ |ayy (-K) | + 1y () + IYI} 
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Thanks to Gronwall's lemma we obtain 

( p2(x, Y)d) 
? 

(JPo(Y)dY) evKx+ - (evKx-1) 

Since 0 < x < L and the functions ex and (ex - 1) Ix are increasing, the proof 
of the estimate of Lemma 3.5 is complete. El 

We can now estimate the derivatives with respect to v of the solution to 
problem (2.8)-(2.9). 
Lemma 3.6. Assume (3.1) and (3.2); then for v small enough, there exist con- 
stants Ci independent of v such that 

( J 2_ _ 1/2 
/ a (x, y) dy < Ci for any x in (O, L) and i = O, 1, ...,4, 

with Ci independent of v. 

Proof. With the help of Lemmas 3.4 and 3.5, the proof is very similar to the 
one of Lemma 3.4, and is omitted here. 5 

To finish the proof of Theorem 3.1, we apply Lemma 3.2 with z equal to 
the right-hand side of (3.3), and then Lemma 3.6 to problem (2.8)-(2.9). 
3.2. Lower bounds. In this subsection, we shall prove that the difference be- 
tween the solution of the convection-diffusion equation (1.1) and the solution 
of (1.2) is of order one in the viscosity, for v small enough, when Dx (f/a) is 
different from zero. We rewrite both equations: 

Y(u) = a(x, y)u - V a2 u a2 = 
ax KDx2+Dy2 

O<x<L, yER, a(x,y)>ao>O, 

u(O,y)=Uo(y) and D -Dv,2 D x Dy2 
and 

a(x,y)t - va -v f O<x<L, yeR, 

v(O, y) = Uo(y). 

For this purpose, we set up, as in ? 1, an asymptotic expansion of the form 

u=uo+vul+*** and v=vO+vvj+***. 

At order zero, we get 

uO(x, y) = vO(x, y) = Uo(y) + f(S ) ds ja(s, y) 

and at order one, 

au dUO(y)J+ (s ( ds+ DY ( (X(Y) Dx oy2 a ax a 
ui(0, y) = 0 



526 J. P. LOHEAC, F. NATAF, AND M. SCHATZMAN 

and 
Dy1 d 2U0 xDa2 

avl d2 o(Y)+ <;x f2 ( (s, y)ds, VI (O' Y) = Dx =dy2 () y2 (a(~)s~ V~~- 

We now write the difference u - v in the form 

U - V = {u - Uo- vul} - {V - Vo- vvI} + v(uI - V1) 

(we used the equality of uo and vo). We can estimate the terms inside the 
curly brackets with the help of Lemmas 3.2 and 3.5. Indeed, v - vo - vv1 = Ve 
satisfies 

v aD2Ve 2 D2V1 

09X ay20= 
D2 

and u - uo - vuI = ue satisfies 

D9Ue (D 2Ue D2Ue ) 2 
a(x, y) -iiv aI 92 VA, Dx (OX2 D y2 )= v'Au1- 

By Lemma 3.2 for Ue, and by Lemma 3.5 for Ve, we know that for v small 
enough there exist Mu and Mv (independent of v) such that 

DUe D~~0ve 2 || aUe ||< v2Mu and | e||< vMv, 

where 
II* 

denotes the L2 norm in L2((O, L) x R). Finally, 

D(u-v) >-v2Mu -v2M +v a (a ) 

Thus, for v small enough, since ax(f/a) is different from zero, we have 

D(u- v)> i 1 D (f\ 
ax 2 aax kal 

4. NUMERICAL EXPERIMENTS 

In this section we consider a convection-diffusion problem in Q = (0, 1) x 
(0, 1) (see Figure 1). We denote: 

FO = {0} x (0, 1), F= {1} x (0, 1), 12 = (0, 1) x {0, 1}. 

y 

1 r2 

To r1 

0 C x 

FIGURE 1. Computational domain 
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The convection-diffusion problem is: 

(aux-vAu=f inQ, 

(4.1) u=-uO O onFo, 
au 2- vuyy 0 on Fl, 

t UY = O on l2- 

Starting from a given solution, u4, of (4.1), we deduce f and uo. We 
compare iu with the numerical solutions of the parabolized approximations to 
(4.1). These are: 

1. "Single-sweep": 

(4.2)|ux - _uyy =- in Q, 
(4.2) on F0 

uy = UO on Fo, 
UY = 0 ~ on F2. 

2. "Double-sweep": 
( a v f t vx + _v v yy = in Q, 
v = O on Fl, 

t VY = O on F2 

followed by 

[ux-_uyy=v inQ, 

(4.3) U u = on Fo, 
t UY = O on F2. 

3. "Optimized double-sweep": { a v f 
-VX + av --v yy =- in Q, 

v a V 
v = O on Fl, 

t VY = O on F2 

(4.4) followed by 

UX - _u yy = v in Q, 

{u = uO on F0, 

UY = 0 on F2.- 

Here, a is a function which satisfies (2.1 1). When replacing (4.1) by (4.2) or 
(4.3) or (4.4), we introduce a theoretical error which is O(v), O(v2), O(v3), 
respectively. We are going to verify these estimates in numerical experiments. 

We choose a and iu such that 

(i) a depends on x only; 
(ii) iu(x , y) = ii I(X) COS7y . 

With these assumptions, we can write 

f(x, y) = fi (x) cos ry, 
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and we have, in (4.2), (4.3), and (4.4), 

u(x, y) = ul (x) cosiry and v(x,y)=vl(x)cos7ry. 

Furthermore, the function a , in "optimized double-sweep", depends on x 
only. Now, we may replace (4.2), (4.3), (4.4) respectively by the following 
ordinary differential equations: 

1. "Single-sweep": 

V V7r2 f 

(4.5) 1 ~~a a 
ul(O) = Uo2 

2. "Double-sweep": 

{-VI + (a + 
1^t)VI 

= 
fVl in (0, 1), 

VI(l) = 0 

(4.6) followed by 

ul+ ~a u1=vI in(0,1), 

Ul(O) = uo. 

3. "Optimized double-sweep": 

(4 7) { ~~-VI + (-+- VI f in (0, 1) 

VI(l) = 0 

followed by 

(4.8) { u1 +-uo =VI in (0, 1), 
Ul(O) = UO. 

Numerical solutions are computed by using a Crank-Nicolson scheme. It is 
well known that this scheme is of second order and is unconditionally stable. 
In numerical experiments we choose the mesh width h = 10-4 , so that the 
discretization error is negligible. 

For the function a which appears in (4.8), we propose two choices: 
1. First choice: 

a' 
a = a + v- if a' > 0, 

(4.9) a 
a=a a 

I 
if a'<0. 

1 V a' 

2. Second choice: a is such that 

({ - -a( )+1=0 in(0,1), 
(4.10) 

aa V 

1 (1) 
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10 * e singlesweep 

A a ==a 

0 n ax given by (4.9) 

1og(N(e i) 0 a given by (4.10) O.A3 D3 

*0 AA l 3 log(N(e)) *20 A 

0 AA 
0 AA 
0 A 

-30 -0* A 
U 

000 
-40 . . 

0 5 10 15 20 

-log(v) 

FIGURE 2. Log of the error as a function of the log of the 
viscosity for the first example 

In this case, we compute (l) by using a Crank-Nicolson scheme. (In fact, 
we chose g = 0 in (2.1 1).) 

If we denote by e the difference between the exact solution iu of (4.1) and 
the solution of (4.2), (4.3), or (4.4), we define by analogy to Theorem 3.1: 

N(ex) = J 2 lex 12. 

We have performed many numerical experiments. In every case, we obtained 
results which are very similar to the results given here. We plot log(N(ex)) as 
a function of - log v . 

1. First example. Here we have chosen 

U(X) = (X -1)2 

and 
a(x) = 2(3 - cos 50(x - 1)). 

We can see in Figure 2 that the error N(ex) is O(v) for the "single-sweep", 
O(v2) for the "double-sweep", and O(v3) for the "optimized double-sweep". 
The choice (4.10) of a is better than (4.9). 

2. Second example. Here we have 

iu(x)=(x- 1)2+vir2(x- 1)-I 

and 
a(x) = 1 +x(1 -x). 

When 0 < -log v < 8, we can see in Figure 3 (next page) results which are 
similar to the previous ones. For larger values of - log v (or smaller values 
of v) we can observe that the choice (4.10) of a is clearly better than (4.9). 
We can explain this by the following remark: for the choice (4.10) of a, the 
conditions along F, in (4.1) and (4.7) are similar because a(1) = a(1). This 
is not the case for (4.9), and we are not in the conditions of Theorem 3.1. 
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10 U single sweep 

A a=a 

0 a given by (4.9) 

O oEX 0 agiven by(4.10) 

-10- ~ A 

log(N(ex)) 8 A 
3 

3 a 

-20 O * A 
A 
AA 

-20- A~~U 
0 M 

-30 0 *MA 
0 

000 
-40 

0 10 20 

-log(v) 

FIGURE 3. Log of the error as a function of the log of the 
viscosity for the second example 
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