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SOME NECESSARY CONDITIONS 
FOR CONVERGENCE OF THE GBDF METHODS 

MOHAMED BIN SULEIMAN 

ABSTRACT. The Generalized Backward Differentiation methods for solving stiff 
higher-order ordinary differential equations are described. The convergence, 
zero stability and consistency of these methods are defined. Next, the zero 
stability and consistency conditions necessary for convergence are proven. The 
order for which the methods are zero stable is also determined. 

1. INTRODUCTION 

We shall consider the numerical solution of higher-order ordinary differential 
equations (ODEs) given by 

(1.1) (Yd,) f 
(Il. l ) YI() =i(X , Y) , i = 1 , 2 , ...,s , Y(a) = l, 

where the ith equation is of order di and 

yT = (Y1'.. y(di -l y (ds _1 

17 = (61l, *-- 1,di-I , *- -, - s,O, *--, r s,ds-1)- 

Many of these problems which arise naturally in physical situations are stiff. 
The problem in ( 1.1) is considered stiff whenever the corresponding first-order 
system is stiff. A method proposed by Krogh [5] for solving ( 1.1) directly is to 
interpolate back values of Yjd '-j) ji = 0, 1, ... , di, by polynomials Pk, (x) 

of degree ki, differentiating or integrating as the case may be to obtain the 
other derivatives, and then equating them using ( 1.1). The integer ji is termed 
the stiffness capability index. The method when ji = 0 is called the Direct 
Integration Method (DI) and is associated with solving nonstiff problems. The 
convergence of the variable-order and variable-stepsize version of this method is 
proven in [6]. The stability of this method for second-order ODEs is discussed 
in [3] and [2]. 

The case ji > 0 is associated with stiff problems and is called the Generalized 
Backward Differentiation (GBDF) method. An attempt has been made in [7] 
to develop a strategy for the correct choice of j, the stiffness capability index, 
for a single second-order ODE. 

In this paper we will discuss some necessary conditions for convergence of the 
constant-stepsize GBDF method. These conditions are those that are normally 
associated with a multistep method, namely, zero stability and consistency. The 
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coefficients of the GBDF method for various j will also be generated, and the 
order for which the method is zero stable will be determined. Prior to the above 
discussions, some numerical results will be given which give some indication of 
how a higher-order ODE should be solved by the GBDF method. These results 
motivate us to look at the theory behind the method. 

2. SOME NUMERICAL RESULTS USING THE GBDF METHOD 

The need for a theoretical study of the GBDF method arises from some re- 
cent results on solving higher-order ODEs directly by multistep methods. These 
results, given in [7] and [8], show that in many problems the direct method is 
more desirable than reduction to first-order systems. The prime reason for this 
is that, for the solution of (1.1), we require an interpolation polynomial with 
s-dimensional vector coefficients, whereas transformation to a first-order sys- 
tem requires higher-dimensional (s*-dimensional, where s* = Z=- di) vector 
coefficients. This accounts for a considerable saving in storage and overhead. 
The work in [8] deals with the DI method, the case ji = 0, for solving nonstiff 
problems. In [7] results are given for a single stiff second-order ODE. Also given 
in [7] is a discussion of the correct choice of j for a second-order ODE. For 
this, the absolute stability regions of the direct method for cases j = 0, 1 and 
2 of the simple, scalar test problem 

(2.1) y" =y' + y 

are investigated. 
It has been noted that for the same step number k, the method with j = 2 

has better stability than the one with j = 1, while the method with j = 1 has 
better stability than the one with j = 0. For the case j = 2, the method is 
stiffly stable. The best approach to solve problem (2.1) is to start with j = 0 
and then switch to j = 1 when instability occurs with j = 0, and subsequently 
to j = 2 when instability occurs again with j = 1 . A similar generalization can 
be made for other higher-order ODEs. An indication of instability in a variable- 
order and variable-stepsize multistep code is frequent step failures at low order, 
viz., k < 4 for j = 0 and k = j + 1 for j > 0 . For the problem in (2.1) other 
tests which ascertain instability were developed before j is increased, cf. [7]. 

Raising j to j + 1 at the point of instability increases the efficiency of the 
method. First, it ensures better stability, which consequently allows for the use 
of larger stepsizes within the required accuracy. Second, it allows the use of the 
minimum value of j, as long as stability permits it. This implies that, whenever 
accuracy rather than stability is determining the stepsize, we are using the GBDF 
method whose derivatives have local errors with the smallest magnitudes. This 
results in better accuracy or the use of larger stepsizes or both. Further, it allows 
the use of fixed point iteration at j = 0, which is computationally cheaper than 
Newton's iteration. 

For the two problems below we present numerical results, using our variable- 
order and variable-stepsize GBDF code. For the second-order problem, we 
incorporate the tests for increasing j developed in [7]. For the third-order 
problem we check indications of instability, that is, step failures at low order, to 
increase j . We increase j = 0 to j = 1 if k < 4, and j to j + 1 if k = j + 1. 
This illustrates the capability of the GBDF method. Investigations are still 
being carried out with respect to other tests for increasing j. In parentheses 
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for the first two tables are the results when the problems are reduced to first- 
order systems and solved using the standard BDF method. The notations are 
self-explanatory, except for 

TOL: tolerance used, 
[j; (x, h)]: The stiffness capability index is increased from j - 1 to j at 

the point x and when the stepsize is h. 
Throughout, a number of the form 4.5(-3) will mean 4.5 x 10-3. 

Problem 1. 

y" + 300xy' + 300y = 900x2 + 302, 

yV(0) = 2, y'(0) = 0, 0 < x < 30. 

Solution. 1 + x + e-15x2 
This problem is adapted from the stiff problem given in Varah [9]. 

TABLE 1. Results for Problem 1 

Total Total Maximum 
LogIOTOL Number Step Jacobian Error [j; (x, h)] 

of Steps Failures Evaluations Maxi Iy(xi) - yi 

-2 54 10 7 7.0(-2) [1; (4.0(-1), 8.6(-3))] 

(55) (27) (19) (2.9(-2)) 

-4 57 6 9 1.3(-3) [1; (4.1(-1), 1.2(-2))] 

(79) (6) (29) (5.6(-5)) 

-6 71 9 11 1.7(-5) [1; (3.8(-1), 1.6(-2))] 

(144) (9) (39) (2.3(-6)) 

Problem 2. 

y"' =(105 + 103 + 10)y" - (108 + 106 + 104)y' - 109y + 108, 

y(0) =3.1, y'(0) = _(105 + 103 + 10), Y",(O) = (1010 + 106 + 102) 

0 < x < 50. 

Solution. 0. 1 + exp(- 105x) + exp(- 103x) + exp(- I Ox) . 

For the results given, the BDF implementation is the one which is obtained 
within the GBDF implementation, after applying it to the transformed first- 
order system, that is, fixing j = 1 throughout for each equation in the first- 
order system. Notice that the computed solution using the BDF method is far 
more accurate than the tolerance required, especially on the second problem. 
This is because in the reduction to a first-order system, the local errors of all 
the derivatives are controlled, whereas in the GBDF method, only the local 
error of y(d-1) for i = 0 or y(d-j) for i > 0 is controlled. Therefore, in the 
BDF case, the error control strategy is more restrictive and hence resulting in the 
larger number of steps. Further, the cost per step is generally higher for the BDF 
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TABLE 2. Results for Problem 2 

Total Total Maximum 

LogjOTOL Number Step Jacobian Error [j; (x, h)] 
of Steps Failures Evaluations Maxi Iy(xi) - yi 

-2 123 7 6 6.5(-2) [1; (2.7(-4), 1.7(-5))] 

[2; (1.1(-2), 1-7(-3))] 

[3; (3.6(0), 4.4(-2))] 

(786) 37 (101) (1.0(-5)) 

-4 184 11 17 4.4(-4) [1; (2.7(-4), 1.3(-5))] 

[2; (5.7(-1), 9.0(-3))] 

[3; (3.0(0), 3.8(-1))] 

(1537) (14) (94) (1.8(-6)) 

-6 251 7 15 9.9(-6) [1; (7.2(-4), 1.0(-5))] 

[2; (4.5(-2), 4.6(-3))] 

[3; (9.5(0), 9.2(-1))] 

(3159) (16) (114) (2.8(-8)) 

method compared to the GBDF case, as the former involves higher-dimensional 
vector coefficients for the polynomial interpolation and higher overhead for 
the related divided differences and the control of the local errors of all the 
derivatives. Thus, the direct method, a combination of the DI and the GBDF 
methods, shows an advantage over the BDF method. 

TABLE 3. Results restricting j up to 1 and 2 for Problem 2. 
The first row for each tolerance gives the result for j = 1 and 
the second row in parentheses for j = 2. The values of (x, h) 
at which j is increased to 1 and 2 are the same as in Table 2 

Total Total Maximum 
Log1OTOL Number Step Jacobian Error 

of Steps Failures Evaluations Maxi Iy(xi) -y I 

-2 827 82 137 6.5(-2) 

(146) (20) (14) (6.5(-2)) 

-4 796 64 87 4.4(-4) 

(197) (12) (22) (4.4(-4)) 

-6 982 83 109 9.9(-6) 

(299) (18) (16) (9.9(-6)) 
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For Problem 1, it suffices to solve the problem with j up to 1. The stepsize 
does not increase sufficiently to cause instability for j = 1. This is due to the 
stepsize constraint for accuracy of the steady state term x2. For Problem 2, 
the index j may be increased gradually from 0 to 3. 

Table 3 shows the result for Problem 2 when using the direct method and 
restricting first j to 1, and then j to 2. Restricting j to 1 needs far too 
many steps to finish the integration and frequent step failures, indicating the 
restriction of stepsize increase due to stability. Restricting j to 2 shows a far 
better result compared to restricting j to 1 in terms of total steps, but most 
efficient is still the gradual increase of j to 3. Note that the maximum global 
errors for the direct method in Tables 2 and 3 indicate that they occur just prior 
to j being increased to 1. These results show the merit of the GBDF method 
and the way it should be implemented. 

3. THE GBDF METHOD 

For ease of notation, and without loss of generality, a single dth-order ODE 
will be considered, 
(3.1) y(d) = f(x, Y), Y(a) = il, 
where yT = (y, yl, y(d-1)) and UT = (0io, 67.d 1 rd )) . Let Pk(x) 
be the kth-degree polynomial which interpolates the set {(Xn+l-r Yn+l-r)}r=O 
the equally spaced back values of steplength h of the derivative y(d-;), and is 
given by 

Pk(X) L iL (x)y(dJ) where Li(x) = (x Xn+j) 
i=O~~~~~~~~= 

j#i 

The other derivatives at xn+l are obtained by differentiating or integrating 
Pk(x) successively, as the case may be, giving 

[ (r) + hy (r+0) + h d-. + h I 
(d-j- 1) 

k 

(3.2) Yn+ = E i,rY+li r =0,.. , d -j- 1, 
i=O 

hr (d )ZEai,rY+i(d-, r = d-j + I d - I 
i=O 

where 
{ 1 f5Xn+I ftd-j-r ft2 

| hd j r Jxn Jxn Li(t) dt, . dtd-j-r , 

ai,r -r = , d - j 

rdj dr-(d-i) 
I hr-( 

Xr-d-i) L1X=X) 
l ~dx'r(d1) ix| v r =d-j +1, .. d-1. 

Differentiating successively for y(d+) which is needed to satisfy (3.1), we obtain 
k 

(3.3) Eli,dYn+1-i = hlfn+l 
i=O 
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where fn+ l = f (Xn+ l, YYn+l). Replacing Yn+l in terms of the derivative y (d-j) where fn+i = f(xn+l, ~~~~~~~~n+1 
given in (3.2), we then solve (3.3) for y(dj), from which the other derivatives 
can then be obtained. Our discussion will be based on a generalized version of 
the equation (3.3), viz., 

k k 

(3.4) ai, dY+- = hi E flifn+i-i, 
i=O i=O 

where Iak,dl + lIfkl > 0 and laO,dl $ 0. Hence, for fio = 1 and f3i = 0, i = 
1, ... , k, we obtain (3.3). In the implementation of the method, the difference 
equation (3.4) is solved for y d-j') with the help of (3.2). With the linear 
multistep method (3.4) we associate the polynomials p(z) = Ek i, dzk-i 

and O(z) = EZk f1izk-i. Convergence for the method above is defined in the 
usual way. 

Definition 1. The multistep method (3.2), (3.4) is said to be y(t)-convergent if 
for any function f(x, Y) for which a unique solution to (1.1) exists one has 

lim y(t) = y(t) (X) 
h-0 

n 
n-+oo 

where n = (x - a)/h for any x E [a, b], and for all solutions {jyt)} of (3.2), 
(3.4) with starting values yt) - (t)(h) satisfying the conditions limh o (t) (h) 

rot0 
,u = O, I,.. k- I1, where 

y(t)(,yh) = -(t) + yh?l(t+') + + (Mh)(dt) 1(d-1) + R 

and the remainder term satisfies Rd = d((dth)(d-t)) . 
The method is said to be convergent if it is y(t)-convergent for t = 0, 1, 2, ... 

d - 1; that is, all the derivatives converge to the true solutions. 

For both zero stability and consistency conditions for convergence, we allude 
only to y(d-j)-convergence. These may not be the only conditions, as they 
are related only to the coefficients aci d of (3.4). There may need to be other 
conditions related to the coefficients ai,r of (3.2). 

4. ZERO STABILITY AND ZERO STABLE METHODS 

Theorem 1. A necessary condition for y(d-j)-convergence (hence convergence) of 
the linear multistep method (3.2), (3.4) is that the modulus of no zero of p(Q) 
exceed 1 and the multiplicity of any zero with unit modulus be at most j . (This 
is termed the condition of zero stability.) 
Proof. The following proof is a generalization of that given in [4]. For conve- 
nience of notation, we deal first with the case d = j. Consider the initial value 
problem y(i) = 0, y(r)(0) = 0, r = 0, 1, ... , j - 1, whose exact solution is 
y(x) = 0. The difference equation (3.4) then becomes 

k 

(4.1) E ai,dYn+l-i = 0 
i=O 
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Since the method is convergent, we have limh,O, OY, = 0 for x > 0. If 
4 = reiO is a root of p(Q) = 0 of multiplicity at most j, then Yn = hirneino 
defines a solution and satisfies the initial condition in Definition 1. Hence, if 
Yn is convergent, it follows that r < 1. 

Similarly, if 4 is a root of multiplicity greater than j, then Yn = hi- l/2nirneino 
satisfies the initial conditions. Therefore, if Yn is convergent, we have r < 1. 

For the case d $ j, we consider the initial value problem y(d) = 0 with 
initial conditions y(r)(O) = 0, r = 0, 1, ... , d - 1, and exact solution for 
y(d-j)(X) = 0. This proves the theorem. 0 

To determine for which k-step methods (for different values of j) the linear 
difference equation (3.4) is zero stable, we find the roots of the characteristic 
polynomial p. We proceed in the following way to obtain a j, d, the coefficients 
of the characteristic polynomial p, written henceforth ai(k) to distinguish the 
various k-step methods. 

The backward difference representation of the polynomial Pk (x) is given by 
k 

Pk(X) = (-1)m SVmY(dn) X-h 
m=O 

Differentiating j times at x = xn+1 gives 
k 

p(i) V j'5'mVm(d) Pk (Xn+l) = h E ,mVYn+i 
m=O 

where 

osj = (-1)mhj d ( =( 1) d1- _ 
dxi kin X=Xn+l dsi min] _ 

In order to obtain a useful recurrence relation for sj,m, the method of gener- 
ating functions is used. Let 

00 

Dj(t) = Z 5,mtm. 

m=O 

Then 

m=O dsi m m s=O dsi / E m) 

d (1 - t)S | di_e-slog(l-t) 
dslj s=O ds' s=O 

Hence, 

(4.2) Dj (t) = I-1)i logi (I1 - t) . 

For the case j = 1, it has been proved [ 1 ] that the polynomials of degree one to 
six are zero stable. Here, the cases j = 2 to j = 5 are examined. For j = 2, 
we have from (4.2), 

520 + a52 t + (5,2 2 +t + l t + t+ 2t + -t 

= 
22 1 2 1 .3 

3 1 2 2. + 3 *1 )t+ 
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Equating coefficients gives 

(2,m = , m =O, 1, 
rn-i1 1 

(52, m = E m = 2, 3 
rim - r r r=1 

For j = 3, we have 

63,0 + J3,It + (53,2t2 + (53,3t3 + 33,4t4 + 53, 5t5 + 

= (+2t 2 + -t 3+ - 

Equating coefficients gives 

(53,m = 0, m = O, , 2, 
m-1i r-I 

(53, m = E E - 1 m =3 4, 
r=2 _ Z P,r -pp' m 34 

Similarly, for j = 4, 

(54,m =0, m = O, 1, 2, 3, 
rn-i r- I p-i1 

(54,rn=ZmrZr ~-, m =4 5~ 

r=3 qr r p =1 p q q 

For j = 5, 

(55,m = 0, m= 0, 1, 2, 3, 4, 
rn-i r-I p-i q-i1 

(5, m = m Z _6 
__4 p=3 __p q=2 qs=i 

Since 
k k 

Z 5i,rmVmy(d+ij) = Z arn(k)yi(d-f) 
m=O m=O 

we get 
k 

am(k) = (-1)m Z ()5j,r- 
r=mn 

This leads to the relation 

arm(k +1) =am(k) + (-1)m ( + I)j,k+l m=O, 1, ..., k, 

and ak+i (k + 1) = (-1 )k+l5j k+l - 
Tables of am(k) for j = 2, 3, 4 and 5 are given below. 

=2 

m 0 1 2 3 4 5 6 7 8 

| 2, m 0 0 1 1 11/12 5/6 137/180 7/10 1089/1680 
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m 0 1 2 3 4 5 6 7 8 

am(2) 1 -2 1 

am(3) 2 -5 4 -1 

12am(4) 35 -104 114 -56 11 

12am(5) 45 -154 214 -156 61 -10 

180am(6) 812 -3132 5256 -5080 2970 -972 137 

180am(7) 938 -4014 7911 -9490 7380 -3618 1019 -126 

5040am(8) 29531 -138528 312984 -448672 435330 -284256 120008 -29664 3267 

j=3 

m 3 4 5 6 7 8 9 

| 3,m 1 3/2 7/4 15/8 29/15 469/240 29531/15120 

m 0 1 2 3 4 5 6 7 

am(3) 1 -3 3 -1 

2am (4) 5 -18 24 -14 3 

4am(5) 17 -71 118 -98 41 -7 

8am(6) 49 -232 461 -496 307 -104 15 

120am(7) 967 -5104 11787 -15560 12725 -6432 1849 -232 

240am(8) 2403 -13960 36706 -57384 58280 -39128 16830 -4216 

15120am (9) 180920 -1145259 3375594 -6095796 7392549 -6185970 3540894 -1328724 

m 8 9 

240am(8) 469 

15120am(9) 295326 29531 

j=4 

m 0 1 2 3 4 5 6 7 8 9 10 

4, m 0 0 0 0 1 2 17/6 7/2 967/240 89/20 4523/945 
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M 0 1 2 3 4 5 

am(4) 1 -4 6 -4 1 

am(5) 3 -14 26 -24 11 - 2 

6am(6) 35 -186 411 -484 321 -114 

6am(7) 56 -333 852 -1219 1056 -555 

240am(8) 3207 -21056 61156 -102912 109930 -76352 

240am(9) 4275 -30668 99604 -192623 244498 -210920 

15120am(10) 341693 -2655764 9531612 -20819409 30600654 -31524696 

m 6 7 8 9 10 

6am(6) 17 

6am (7) 164 21 

240am (8) 33638 -8576 967 

240am(9) 123348 -47024 10579 -1068 

15120am(10) 22968204 -11646672 3923037 -3923037 72368 

M 5 6 7 8 9 10 

165, M 1 5/2 25/6 35/6 1069/144 285/32 

M 0 1 2 3 4 5 

am (S) 1 -5 10 -10 5 - 

2am (6) 7 -40 95 120 85 -32 

6am(7) 46 295 810 1235 1130 -621 

6am (8) 81 575 1790 3195 3580 2581 

144am(9) 3013 -23421 81444 -166476 220614 -196638 

288am(10) 8591 -72492 278313 164072 979878 1039656 

M 6 7 8 9 10 

2am (6) S 

6am (7) 190 -25 

6am (8) 1170 -305 3S 

144am(9) 117876 -45804 10461 -1069 

288am(10) 774402 -399408 136347 -27788 2S6S 
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The tables below give the roots of the polynomial for j = 2 to j = 5. The 
roots are listed by ordered triplets (a, b, c), where the first letter indicates the 
real part of the root, the second its imaginary part and the third the modulus of 
the root; (a, ?b, c)m will indicate that the root a ? ib is of multiplicity m. 

j=2 

k Roots 

5 (1, 0, 1)2, (0.488, 0, 0.488), (0.467, +0.487, 0.675) 

6 (1,0, 1)2, (0.484, +0.160, 0.510), (0.444, ?0.672, 0.806) 

7 (1,0, 1)2, (0.485,0,0.485), (0.478, ?0.284, 0.556), (0.419, +0.484, 0.945) 

8 (1,0, 1)2, (0.484, +0.113, 0.497), (0.472, ?0.393, 0.614), (0.390, ?1.02, 1.09) 

Hence, for j = 2, the methods are stable up to the 7-step method. 

j=3 

k Roots 

5 (1,0, 1)3, (0.588, +0.256,0.642) 

6 (1,0, 1)3, (0.561, 0, 0.561), (0.587, ?0.449,0.739) 

7 (1,0, 1)3, (0.578, +0.157,0.599), (0.616, ?0.652,0.897) 

8 (1,0, 1)3, (0.543,0,0.543), (0.550, ?0.271, 0.613), (0.584, ?0.786, 0.974) 

9 (1 , 0, 1)3, (0.538, ?0.109, 0.548), (0.547, ?0.376, 0.664), (0.580, ?0.946, 1.11) 

Hence, for j = 3, the methods are stable up to the 8-step method. 

j =4 

k Roots 

4 (1,0, 1)4 

5 (1,0, 1)4, (0.667,0,0.667) 

6 (1,0, 1)4, (0.657, ?0.232, 0.697) 

7 (1,0, 1)4, (0.615,0,0.615), (0.666, ?0.408,0.781) 

8 (1,0, 1)4, (0.605, ?0.142,,0.622), (0.678, ?0.566, 0.883) 

9 (1, 0, 1)4, (0.587,0,0.587), (0.603, ?0.256, 0.655), (0.690, ?0.717, 0.995) 

10 (1 , 0, 1)4, (0.580, ?0.104, 0.590), (0.604, ?0.356, 0.701), (0.702, ?0.864, 1.113) 

For j = 4, the methods are stable up to the 9-step method. Note, however, that 
for k = 9 there is a pair of isolated complex roots whose moduli are very close 
to, but less than 1. This makes the methods desirable only up to the eighth step. 
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k Roots 

5 (1,0, 1)5 

6 (1,0, 1)5, (0.714,0,0.714) 

7 (1,0, 1)5, (0.707, +0.210, 0.737) 

8 (1,0, 1)5, (0.657, 0, 0.657), (0.721, +0.372,0.811) 

9 (1,0, 1)5, (0.646, +0.134,0.660), (0.741, +0.516,0.903) 

10 (1,0, 1)5, (0.624,0,0.624), (0.645, +0.241, 0.689), (0.762, +0.654, 1.004) 

For j = 5, the methods are stable up to the 9-step method. 

5. CONSISTENCY 

In this section, we define consistency and show it to be a necessary condition 
for convergence. With the difference equation (3.4), we associate the difference 
operator 

L[y(d1i) (x); h] = aky(d i) (x + kh) + ak-ly(d j)(x + (k - 1)h) 

(5.1) + * * + aoy(d1j)(X) 

- hi{flky(d)(x + kh) + fk_ly(d)(X + (k - 1)h) 

+ *.* + floY(d) WI 

Then (5.1) can be expanded in a power series of h to give 

L[y(dj)(x); h] = coy(d-j)(X) + c1hy(d-J+l)(x) 

+ c2h2y(d-j+2)(X) + . . . + cqhqy(d-j+q)(x) + 

where the coefficients Cq, q = 0, 1, 2, ..., are independent of y(d-j)(X). 
In particular, 

Cq = q (1 iqai) - r (1 iq-j)6, 

where 

0, 0 <O q<j-, 
{ j?<q. 

(q -j)! ' ] 

We define the order p of the operator (5.1) to be the unique integer such that 

co = cl = * j = cj+p_I = 0 but cj+p 0 O. If p > 1, then the method is said to 

be y(d-j)-consistent. 

Theorem 2. A necessary condition for the method defined in (3.2), (3.4) to be 

y(d-j)-convergent (hence convergent) is that it is y(d-j)-consistent. 

To prove the above theorem, we have to show co = cl = = cj = 0. Thus, 

in particular, 

(5.2) ct = {Oao+ ltal +2a2 +..+ktak}=0, t=0, 1, ...,j-1, 
.! 
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and the condition is equivalent to showing p(l) = p'(l) = = p(U-1)(1) = 0 
and p(i)(1) = j!a(l). 

Proof of Theorem 2. Again, for simplicity of notation, we consider the case 
j = d first. 

Consider the initial value problem y(J) = 0 with y(O) = 1, y'(O) = y"(O) = 
= y(U-1)(O) = 0 and exact solution y(x) = 1 . 
The difference equation is now 

(5.3) akYn+k + ak-lYn+k-1 + * * * + aOYn = , n =O, 1, 2,. 
Assuming exact starting values, we see that the initial condition in Definition 1 
is satisfied, and we must have limh,o, nh=x Yn = 1 for x > 0 . 

Letting n - oo in (5.3), we get 

(5.4) ak + ak-1 + * + ao = Co = O. 

Next consider the problem y(J) = 0 with y(O) = 0, y'(O) = 1, y"(O) = 
O, ... , y(-l)(O) = 0, whose exact solution is y(x) = x. Again, Yn satisfy the 
initial conditions. Assuming exact starting values y, = ,uh, ,u = 0, 1, ..., 
k - 1, we have Yn = hzn, where the sequence {Zn} is also a solution to (5.3) 
with starting values z. = , . Since the method is convergent, 

lim Yn = 1 for x > O. 
h- O X 
nh=x 

It follows that 

(S.S) lim Zn = 1. 
n-+oo n 

Summing the equations 

akZm+k + ak-1Zm+k-1 + + aOZm = O for m = O, 1, ...,n, 
we obtain in view of (5.4) the relation 

(5.6) akZn+k + (ak + ak-1)Zn+k-1 + * * * + (ak + ak-l + * * + al)Zn+l =-D, 

where D = zoao + zi (a I + ao) + * * * + Zk_l (ak- l + ak-2 + * * * + ao) is independent 
of n. Dividing (5.6) by n, and letting n -x oo, we obtain, using (5.5), 

akk + (ak + ak-1) + + (ajk + ak-1 + * * * + al) = 0, 

that is, 
kak + (k - 1)ak-1 + * - + latl = 0 = cl . 

We have shown (5.2) to be true for t = 0 and t = 1. 
We prove the general result by induction. Assume (5.2) is true for ct, 0 < 

t < j - 2. Consider the initial value problem y(i) = O, y(O) = 0, y'(O) = 
0, ... , y(t)(O) = 0, y(t+l)(O) = 1, ... , yU-l)(0) = 0, whose exact solution is 
y = xt+l/(t + 1)!; Yn satisfies the initial conditions. Assuming exact starting 
values 

t+' ht+l =, 1 k- 1), 

we obtain Yn = ht+l z+I /(t + 1)!, where the sequence {zZn } satisfies the differ- 
ence equation 

(5.7) ktakZm+k + (k - 1)tak-lZm+k-1 + + OtaoZm = 0 
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with starting values zM = ,u. This solution is independent of h. For, if Xt+1 

is a root of p(s) = 0, then 4 will be a root of Zk=o iaeisi = 0, i.e., Czn+1 
is a solution of (5.3) for some constant C satisfying the initial condition in 
Definition 1. By convergence, 

lim Yn 1 and lim Zn = 1 
h -O y(x) n-oo n 
nh=x 

Summing up (5.7) for m = 0, 1, ..., n, and using the fact, that ct = 0 for 
O < t < j - 2, we have 

(5.8) ktakzn+k + {ktak + (k - 1)tak-l}Zn+k-l 
( * ) + + {ktak + (k- 1)tak-l + + 1 tal}Zn+l = D, 

where D = zl(ltal) + * + Zk/_{(k - 1)taklI + (k - 2)tak-2 + - + ltal} iS 
independent of n. Dividing (5.8) by n and letting n -* 00, we get 

k ak + {ktak + (k - 1)tak-11 + *-+ {ktak + (k - 1)tak- 1 + *-*+ ltall = , 

kt+lak + (k- 1)t+ ak- + + 

lt+1aj 

= 

Ct+1 

= O t+lak+.. + ~ai =(t + l)!C+=0 

implying that ct+l = 0. Hence, (5.2) is true for all t = 0, 1, 2, ...,j-l. 
Finally, consider y(J) = j!, y(O) = y'(O) = = y(J-1)(O) = 0, with exact 

solution y(x) = xi. The difference equation (3.4) now reads, 

(5.9) akYn+k + ak-lYn+k- 1 + + aOYn = j!h'(13k + + fiA) 

For a convergent method, we have shown that p(l) = p'(1) = = p(-1)(1) - 

0, and in view of zero stability, p(j)(1) $ 0; hence 

kJak + (k - l)Jakq- + + lIai = p(')(1) + p(-1)(1) + + + 0. 

It can be verified that Yn = Rhin', where 

R AA + j!(fik-I + *+ ,Bo) 

kiak + (kl- ))iak-1 + *- + lial 

is a solution of (5.9) that satisfies the initial condition in Definition 1. Thus, in 
view of y(d-j)-convergence of the method, 

Rxj = lim Yn = Xj for all x > O. 
h-40 
nh=x 

It follows that R = 1, implying cj = 0, as desired. 
For the case j $& d, add (d - j) to the order of all the derivative values 

in the differential equations, with the addition of the initial values, y(O) = 
Y'(0) = .. = y(d-j+l)(O) = 0, and in the discussion replace y by y(d-j); e.g., 
in considering the differential equation y(')(x) = 0 with y(O) = 0, y'(O) = 1, 
y"(0) = * = y(T l)(0) = 0 with the exact solution y(x) = x, we obtain, if d $ 
j, that y(d)(x) = 0 with y(0) = y'(0) = = y(d-j-l)(0) = 0, y(d-j+l)(o) - 1 
y(d-j+2)(0) = -.. = y(d-l)(0) = 0, and the solution y(d-j)(x) = X. 
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