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SOLVING REAL POLYNOMIAL SYSTEMS 
WITH REAL HOMOTOPIES 

T. Y. LI AND XIAOSHEN WANG 

ABSTRACT. When a real homotopy is used for solving a polynomial system with 
real coefficients, bifurcation of some of the homotopy paths at singular points 
is inevitable. The main result of this paper shows that, generically, the solution 
set of a real homotopy contains no singular point other than a finite number 
of quadratic turning points. At a quadratic turning point, the bifurcation phe- 
nomenon is quite simple. It consists of two bifurcation branches with their 
tangent vectors being perpendicular to each other. 

1. INTRODUCTION 

Let P(z) = 0 denote a system of polynomial equations in n unknowns. 
Denoting P = (P, ..., p,n), we want to find all solutions to 

P1(Z1, **,Zn) = 0, 

(1) 

Pn(Zl , Zn) = ? 

for z = (z1, ..., Zn) E Cn. The homotopy continuation method for solving 
this system consists of a start system Q(z) = (ql(z), ... , qn(z)) with known 
solutions, homotopy H(z, t) for transforming the start system Q(z) into the 
target system P(z), and a method for tracking solution paths as the transfor- 
mation proceeds. 

Most practical polynomial systems in application consist of polynomials with 
real coefficients, and in most cases the only desired solutions are real solutions. 
Recently, the subject has received increasing attention [2, 3, 5, 6, 9]. This also 
suggests the usage of real homotopies. That is, when the coefficients of the target 
polynomial system P(z) we want to solve are all real, we choose the start system 
Q(z) = 0 with real coefficients, making the homotopy H(z, t) = 0 to consist 
of a real polynomial system for each t. Thus, for a fixed t, if z is a solution 
of H(z, t) = 0, so is its conjugate zf. Accordingly, a major advantage of the 
real homotopy is that when a complex homotopy path (z(s), t(s)) is followed, 
its conjugate homotopy path (z, t(s)) can be obtained as a by-product without 
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any further computations. Furthermore, although the homotopy H(z, t) is a 
map from Cn x [0, 1] to Cn, when a real homotopy path is traced, we may 
consider H(z, t) as a map from Rn x [0, 1] to Rn. Hence, the computation 
of real paths may be done in real space, and will use real arithmetic. In this 
way, the amount of computation can be reduced considerably. 

The regularity of the homotopy algorithm is usually achieved by random 
perturbations of certain parameters of the homotopy. For obvious reasons, the 
perturbation for real homotopies must be restricted to real perturbations. In 
contrast to the complex perturbations used in [3, 4], the real perturbation cannot 
assure complete regularity of our homotopy paths. Indeed, bifurcation of some 
of the homotopy paths is inevitable. Bifurcation occurs at singular points. It 
turns out that at a particular kind of singular point, quadratic turning points, the 
bifurcation phenomenon is very simple. It consists of two bifurcation branches 
with their tangent vectors being perpendicular to each other. The proof of this 
assertion will be given in ?2. 

It was conjectured in [3] that, generically, the solution set of a real homotopy 
contains no singular points other than a finite number of quadratic turning 
points. A paper by Verlinden and Haegemans [9] asserts that this conjecture is 
true but their proof has a gap, and the authors agreed this gap exists. A review 
in Mathematical Reviews (MR 91e, p. 2783, #65071) reported this error. 

The purpose of this paper is to give a proof of this conjecture, using a different 
approach. In ?3, we first characterize the quadratic turning point of H(z, t) = 0 
as a nonsingular solution of the n + 1 equations 

{ H(z, t) = 0 

ldet(H,(z, t)) = O 

in the n + 1 variables z1, ..., Zn, t. From this characterization, we prove 
in ?5 that for certain randomly chosen real parameters in the real homotopy 
H(z, t) the set H-I (0) contains no singular points other than a finite number 
of quadratic turning points. As an important consequence of this result, the 
influence of the occurrence of the bifurcation on the efficiency of the algorithm 
will be minimal. 

2. BIFURCATION AT A QUADRATIC TURNING POINT 

In this section, we shall discuss quadratic turning points in a more general 
setting. For an analytic function R(z, t): Cn x R1 (or Cn x Cl) -* Cn de- 
note the partial derivatives of R with respect to z and t by DzR and DtR, 
respectively. 

Definition 2.1. A point (zo, to) E Cn x R1 (or Cn x Cl) is a quadratic turning 
point of R(z, t) =0 if 

(a) R(zo, t) -0; 
(b) rankD,R(zO, to) = n- 1; 
(c) DtR(zo, to) is not in the range of DzR(zo, to); i.e., DR = [DzR, DtR] 

is of real rank 2n - 1 at (zo, to) (or [DzR, DtR] is of rank n if (zo, to) E 
Cn xCl); 
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FIGURE 1 

(d) For T, D E C'\{O} satisfying T*DzR(zO, t?) - 0 and DzR(z?, t0)(D - 
0, 

T*DzzR(zO, t0)'DXD 54 0, 

where T* represents the transpose of the complex conjugate of '. 

Proposition 2.1. Let R: Cn x R- Cn be analytic and (z?, to) E Cn x R1 be a 
quadratic turning point of R(z, t) = 0. Then, 

(i) there are exactly two solution paths F, and r2 passing through (zo, to); 
(ii) if b is the tangent vector of F, at (zo, to), then i/ is the tangent vector 

of T2 at (zo, to). That is, at (zo, to) the tangent vectors of F, and T2 are 
perpendicular to each other; 

(iii) the second derivatives i of the component t of F, and r2 have different 
sign at (zo, to). That is, F, and T2 lie on opposite sides of (zo, to) with 
respect to the t-direction (see Figure 1). 

To prove this proposition, we need the following lemma: 

Lemma 2.2. Let R: Cn x C1 , Cn be analytic and (0, 0) E Cn x C1 be a 
solution of R(z, A) = 0 satisfying conditions (a)-(d) in Definition 2.1. Then in 
a neighborhood of (0, 0), solutions (z, A) of R(z, A) = 0 can be parametrized 
in the form 

z = z(u), A=u 2g(u), 

where g(O):$0. 
Proof. Denote A = DzR(O, 0). Let X(A) and M(A) be the kernel and the 
range of A, respectively. Normalize 1, ' in Definition 2.1 in such a way that 
T* T = 1, 'D?* = 1. Choose linearly independent vectors 02, ...D, n? in Cn 
which are orthogonal to (D. Let N = [02, ...O, 'n]. Write 

z = ylA( + NY2 = [, N] Y[ ]-Py, where P =[(, N] and y=[Yi] 

Since A02, ..., ADn are linearly independent and are orthogonal to ', the 
matrix Q = [T, AI2, ..., A'Dn] = [T, AN] is nonsingular. It is easy to see 
that the first row of Q1 is T* . Write 

Q =[1 T* 
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where K is an (n - 1) x n matrix for which KAN = I,nq. Let 

H(y, A) =Q-R(Py, A) = K R(yiD + NY2, A) 
(2) L 

_TI*R(y (D + Ny2, A) -H (YI, Y2,i) 1 
KR(y + Ny2 2) J - H2(yI, Y2,i) J 

Then we have 

(3) R(z, A) = O # H(y, A) =O 

(4) DYH(O, 0) = Q-DzR(O, O)P 

(S) =[K ]A[(D, N] = [ In-I 

Since H2(0, 0, 0) = 0 and 

(6) DY2H2(0, 0, 0) = KDzR(O, O)N = KAN = In-1, 

by the Implicit Function Theorem, in a neighborhood of (0, 0, 0) there exists 
Y2 = F(yI, A) such that F(0, 0) = 0 and 

(7) H2(yl, F(yl, A), A)-=- 

Differentiating (7) with respect to Yi at (0, 0, 0) yields 

DYIH2(O, O, 0) + DY2H2(0 0, O)DylF(O, 0) = 0. 

Since 

(8) Dy1H2(O, 0, 0) = KDzR(O, 0)'D = KAO = 0, 

it follows from (6) that Dy,F(O, 0) = 0. Substituting Y2 = F(yi, A) into 
H1 (YI, Y2, A), we have 

E(yj, A) =- HI (yl, F(yl, A), A) = T*R(yi(D + NF(yl, A), A) . 

Now, in a neighborhood of (0, 0), 

E(yi, A) = E(O, 0) + DylE(O, O)Yi + DAE(O, 0)A 

+ I(Dyly,E(0, O)yl + 2DyA1E(O, 0)yl) + DAE(O, 0),{) +A.2 . 

First of all, E(O, 0) = T*R(O, 0) = 0. Next, 

(9) Dy1E(0, O) = *DzR(O, 0) * (4D + NDy, F(O, O)) = T*AD = O, 
(10) DAE(O, O) = T*DAR(O, O) =_ b :A 0 (by Definition 2.1), 

Dy y1E(0, 0) = T* [DzzR( 0, O)((D + NDy,F(0, O))((D + NDy,F(0, 0)) 

(11) +DzR(O, O)(NDyly F(O, 0))] 
= T*DzzR( 0, O)D -= a $ 0 (by Definition 2.1). 

Hence, 

E(yj, A) = bA + 1 ay2 + DylAE(O, 0)yjA + I 
DE(O, 0),2 +.... 

Further, since E(O, 0) = 0 and DAE(O, 0) = b 54 0, by the Implicit Function 
Theorem again, in a neighborhood of (0, 0) there exists an analytic function 
'(Yj) such that A(0) = 0 and 
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E(yj, A(Yj)) = bA(yi) + 1ay2 + Dy1AE(0, 0)Yi)(y1) 
+ ]D,AE(O, 0)(Q(yl))2 + 0 =0. 

Let 

(13) A(Y0) = CO + CIYI + C2yl2 + 

Since A(0) = 0, we have c0 = 0. Substituting (13) into (12) yields 

E(yj, A(Yj)) = b(clyi + c2y2 + ...) + lay2 + DyAE(0, O)yi(cly, + c2y2 + ) 

+ ]DAE(0, 0)(cly, + c2yl2 +* )2 + higher-order terms = 0. 

Comparing the coefficients of the powers of Yi on both sides, we have 

cl = 0 and C2 - 54 ?. 

Thus, 

{(Y) = - Y1 + c3y+ + C4y=+ y1yg(yl) 

with g(y) =-a + c3y1 + c4y2 +.., and g(0)=-2a :0. 
On the other hand, since z = YA + Ny2, in a neighborhood of (0, 0) the 

z-component of solutions (z, A) of R(z, A) = 0 can be written as 

z = ylA + NF(yl, A(Yj)). 

Thus, z = z(yi), the z-component can also be parametrized by Yi . E 

Proof of Proposition 2.1. First we complexify R by letting A = t + is, which 
yields R(z, )): Cn x Cl -* Cn, and at (zO, to), we have AO = t? + is0 with 
so = 0. It follows from Lemma 2.2 that in a neighborhood of (zo, ,AO) solutions 
(z, A) of R(z, A) = 0 can be parametrized in the form 

z(u) = zo + h(u), i(u) = AO + u2g(U), 

where g(u) is an analytic function such that g(0) :$ 0. Since g(0) :$ 0, there 
exists an analytic function f (u) defined in a neighborhood of u = 0 such that 
g(u) = f2(u) and 

Ai(U) = AO + (Uf(U))2. 

Let v = uf(u); then 

dv dv g0=(0)$0 = . 

So, in a neighborhood 0 of 0, there is a one-to-one correspondence u = k(v) 
between u and v, and hence we may parametrize (z, A) by v. That is, 

z(v) = zo + h(k(v)), A(v) = AO + v2 v E 0. 

For the original equation R(z, t) = 0, t is real; thus, we are only interested 
in real values of A. Since AO = t? is real, A(v) will be real if and only if we 
choose v either on the real axis or on the imaginary axis. To be more precise, 
for real r, let 

vl(r) = ri and v2(r) = r. 

Then, two branches of R(z, t): Cn x R- Cn in the neighborhood of (zO, to) 
are obtained, that is, 
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r J Z= Z(ri), F2 z =Z(r), 
ti { O t0 V2 O-r2 t thj+V2$=to+ r2 

1 2t0-r2, 2- l 

Obviously, on L, t < to, and on F2, t > to. The conclusions (ii) and (iii) 
follow easily. El 

Remark 2.2. When one of the solution paths F, and i2 is a real path, the 

assertion (ii) of this proposition was proved in [1, 7]. The proof given here 

covers the more general case where both FL and F2 may be complex solution 

paths. 

3. A CHARACTERIZATION OF A QUADRATIC TURNING POINT 

Let (zo, to) be a solution of R(z, t) = 0. Without loss of generality we may 
assume (zo, to) = (0, 0). The following proposition provides a characteriza- 

tion of a quadratic turning point, which is essential in proving our main result 

in ?5. 

Proposition 3.1. The point (0, 0) is a quadratic turning point of R(z, t) = 0 if 
and only if (0, 0) is a nonsingular solution of 

(14) ~ ~ k(z 
5 
t)~ R(z, t) = 0, 

(14) R(z, t) = { det(DzR) =0. 

Proof. (=z) With t real in R(z, t) = 0, we can still use the same notations and 
development as in the proof of Lemma 2.2. Namely, with z = y ID+ Ny2 = Py, 
where P = [DI, N] and y = (Yi , Y2)T, and 

Q l [ ] H(y, t) = Q lR(Py, t), 

we have DYH = Q-I (DzR)P. Hence, det(DzR) = 0 if and only if 

det(DyH(y, t)) = 0. 

Therefore, we may replace the system (14) by 

(15) H(y, t) = { det(DyH(yt t)) = 0. 

More precisely, from (2), 

H1(y1, Y2, t) = *R(yi(D + NY2, t) = 0, 

H(y, t) | H2(yI, Y2, t) = KR(y1(D + NY2, t) = 0, 

det(DyH) = 
DyI H2 DY2H| = -0 

From (6) and (8), DY2H2(0, 0, 0) = In-I and Dy,H2(0, 0, 0) = 0. Carrying 
out the same calculations as in (9), (10), and (1 1), we have Dy, HI (0, 0, 0) = 0, 
DtHI(0, 0, 0) = T*DtR(0, 0) b and DY2H1(0, 0, 0) = 0. On the other 

hand, since DY2H2(0, 0, 0) = Is-i, in a neighborhood of (0, 0, 0), DY2H2 is 

invertible. Thus, 
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( In-I1 )Y( 

_ (1 -(DY2H1)(DY2H2>)-1 (Dy1 H1 DY2 H1 
0 In-I J } Dy IH2 Dy2H2 J 
Dy(Hl - (DY2HA)(DY2H2W '(DYI H2) 0D H 

-V ~~~Dy, H2 DY2H2J 

It follows that 

det(DyH(y, t)) = [DYI HI - (DY2H1)(DY2H2)' _(DY1 H2)] det(DY2H2) 

and 

Dy, (det(DyH(y, t))) 

- (DY1 [Dy HI - (DY2H1)(DY2H2)-1 (Dy, H2)]) det(DY2H2) 

+ [DYI H1 - (DY2H1)(DY2H2)1 (DY H2)] * Dy (det(DY2H2))- 

Now, since Dy,HI(0, O, 0) = 0, DylH2(0, 0O0) = 0, DY2H1(0, 0, ) =0 and 
DY2H2(0 0,0 ) = In-,, we have, at (y, t) = (0, 0), Dy,(det(DyH(y, t))) = 

Dylyl HI (0, 0, 0) = T*Rzz(,0, 0)'N?1 _ a 54 0 as in Lemma 2.2. Thus, 

[ - Dy1H1 DY2H1 DtHi 
DH(O, 0) = Dy H2 DY2H2 DtH2 

( 1 6 ) ~ LDY, (det(DyH)) Dy2(det(DyH)) Dt(det(DyH)) j Y=o 

= OIn-I 

La * *j 
is nonsingular, since b = T*DtH(O, 0) :$ 0. Hence, (0, 0) is a nonsingular 
solution of (14). 

(.=) If (0, 0) is a nonsingular solution of the system (14), then the rank of 
the matrix DZR(O, 0) = A is at least n - 1. Since det(D,R(O, 0)) = 0, we 
have rank (DzR(O, 0)) = n - 1. Since DR(O, 0) has full rank, DtR(O, 0) ? 

3 (A). Thus, we can define H and H and follow the same development as 
in the proof of (?f) part. Since DH is nonsingular, it follows from (16) that 
T*DzzR(O, 0)'DND 5 0. g 

4. A STRONGER PARAMETRIZED SARD'S THEOREM 

Let f: RP -* Rq be a smooth map. A point y E Rq is called a regular 
value of f if for any x E f- (y) the Jacobian Df(x) is of full rank. For a 
polynomial map P: Cp __ Cq, we say y E Cq is a regular value of P if y E R2q 
is a regular value of P when P is considered as a real map P: R2P -* R2q. 

Theorem 4.1 (Parametrized Sard's Theorem). Let U C Rm and V C RP be 
open sets, and P: U x V -* Rq be a smooth map. If 0 E Rq is a regular value 
of P, then for almost all c E V, 0 is a regular value of PC(.) P(., c) . 

For the purpose of proving our main result in the next section, a stronger 
version of the Parametrized Sard's Theorem is presented here. 
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Definition 4.1. A set A c Cn is called a closed Zariski set or a closed algebraic 
set if it is the zero set of a finite number of polynomials. An open Zariski set is 
the complement of a closed Zariski set. A set A C Cn is said to be constructible 
if it is a disjoint union TF U ... U Tk , where for each i = 1, ... , k there holds 
Ti = Ti.- T'", with T' a closed algebraic set and T1 a smaller closed algebraic 
set. 

Proposition 4.2 [8, p. 37]. Let U c Cm and V c CP be Zariski open sets and 
A c U x V be a constructible set. Then n2(A) c V is constructible, where 72 
is the natural projection of the second component, that is, 72(U, v) = V . 

Proposition 4.3. Let U C Cm and V c CP, and P: U x V -_ Cq be a polyno- 
mial map. If 0 is a regular value of P, then there exists a Zariski closed proper 
subset S of CP such that for all c E V - S, the point 0 is a regular value of 
pC(.) = P(., c). 

Proof. Let 

A = {(z, c) E U x VIP(z, c) = 0 and D,P(z, c) is not of full rank}. 

Then A is a constructible set, since deficiency in the rank of D,P(z, c) can 
be characterized by polynomial equations. By Proposition 4.2, 72(A) is also a 
constructible set. Thus, 7r2(A) = T1 U ... U Tk , where T, = Tl - Tl', with T1 
a closed algebraic set and T/' a smaller closed algebraic set. Regarding P as 
a real map, P: R2m x R2P -> R2 , one derives from the classical Parametrized 
Sard's Theorem that 7r2(A) is of measure 0. Therefore, each Ti is of measure 
O and so is TF'. Let S = Tlj U ... U Tk,. Then S is a Zariski closed proper 
subset, since it is of measure zero. a 

Notice that S n RP is a proper algebraic subset of RP, since every complex 
polynomial vanishing identically over RP vanishes identically over CP . Thus, 
we have the following 

Corollary 4.4. Under the assumption of the above proposition, if 0 is a regular 
value of P, then there exists a proper algebraic subset S' of RP with measure 
O such that for all c E V n RP - S', 0 is a regular value of Pc()=P(,c). 

5. QUADRATIC TURNING POINT IS GENERIC 

In this section, we shall prove our main result. That is, generically, the 
solution set of a real homotopy for solving a polynomial system with real co- 
efficients contains no singular points other than a finite number of quadratic 
turning points. 

Let P(z) = (PI (z), , p(z)) be a polynomial system with real coefficients 
and degp=d, j = 1, ..., n, where z =(z1, ..., Zn) ECn. We shall con- 
sider its homogenization P(z) = (PI (z), .. ., P(z)) with z = (zo, n, Z) E 
pn , where 

(dj ( Zn 
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Here, the complex projective n-space pn is defined as 

pn = (zo, 5 . Zn) E Cn+l\(o, ... , 0)/ v 

where the equivalent relation " " is given by z y if z = cy for some 
nonzero c E C. Let Ti be the set of points z in pn with zi = 0. Then 
pn - Ti is naturally isomorphic to Cn by the map 

(zo, - ,Zn) l + (zolzi) .. zi-il/zi Zi+11zi, ...-, Zn/zj). 

It is easy to see that 
n 

pn = U(pn - Ti). 
i=O 

Thus, pn is a complex analytic manifold of complex dimension n with affine 
charts {Pn - Ti}. 

Given a starting homogeneous polynomial system Q(z) = (di (z), . n. , q (z)) 
with real coefficients, where z E pn and deg j = dj, j = 1, ..., n, consider 
the homotopy H = (hi, . . ., hn) defined by 

(17) hj(a, b, z, t) =(1 -t)dj+tpij+t(1 -t)Pj5 t E (O, 1), j = 1 ......., n, 

where 

n 
ry(~~a, b,z =?JZ + 1: bi ziz k , j ..., n, 

i=O i,k=O 
i#k 

with a = (ari) e Rnn+) b = (bJk) e Rm, where 

m = n(n + 1)(n - n, - n2/2). 

Here, nI and n2 are the numbers of j such that dj = 1 and dj = 2, 
respectively. We assume Q(z) = 0 has d1 ... dn nonsingular zeros. Since 
z E pn = UInJ_(pn - Ti), and each pn - Ti is isomorphic to Cn, we shall con- 
sider H locally as a map from Rn(n+ ) x Rm x Cn x (O, 1) to Cn. Namely, for 
Z = (zo 0 . . ., zn) E pn -Ti, H will be taken as a system in the variables a, b, 
t and zo, ..., zi-I, Zi+1 5..., zn by setting zi = 1 in H, and the Jacobian 
matrix DzH at z is understood as the n x n matrix 

'ahl ahz ahO ahl ' 
a Zo azi-i azi+i a Zn 

ahn ahn ahn ahn 
a ZO azi-1I azi+l a Zn 
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evaluated at (zo/zi, ... , zi-llz, zii+l/zi, ... , z,n/zi). Thus, for instance, by 
a quadratic turning point (z*, t*) of I(a,b)(Z, t) =H(a, b, z, t) = 0 for 
fixed (a, b), we mean (z*, t*) is a quadratic turning point of k(a b)(Z, t) = 0 
when ft(a b) is considered locally in a chart pn - Ti to which z* belongs. 
Since the charts are diffeomorphic to each other, the study of f(a b) = 0 is 
independent of the choice of the chart. We say 0 is a regular value of R(a, b) 
if 0 is a regular value of ft(aa b) in every chart pn - Ti . 

Let S(a, b, z, t) = det(D,H(a, b, z, t)) and S(a,b)(Z, t) = S(a, b, z, t) 
for fixed (a, b). From Proposition 3.1, a quadratic turning point (z*, t*) of 
ft(a b)(Z, t) = 0 for fixed (a, b) must be a nonsingular solution of 

(18) -(a b)(z { t iI(a b)(Z, t) 0 

Here, H(a b) is considered locally (in a chart pn - Ti to which z* belongs). 

On the other hand, if 0 is a regular value of H( b) when H( 'b) is considered 
locally as a polynomial system of n + 1 equations in n + 1 variables, then any 
solution (z, t) in any chart (Pn - Ti) x C1 of (18) is nonsingular. And there 
are at most finitely many nonsingular solutions. Among them, there are at most 
finitely many points with the t-component lying in (0, 1) . Therefore, our main 
result that generically the homotopy H(a b) (z, t) = 0 has no singular solution 
other than a finite number of quadratic turning points can be alternatively stated 
as follows: 

Theorem 5.1. There exists an open dense subset D of Rn(n+,) x Rm with full 
measure such that, if (a, b) E D, then 0 is a regular value of H(a b)(z, t) in 
(18). 

To prove Theorem 5. 1, we first consider the assertion of the theorem locally. 

Lemma 5.2. For 0 < i < n, there exists an open dense subset Gi of Rn(n+l) x 
Rm with full measure such that, if (a, b) E Gi, then 0 is a regular value of 
H(a b)(z, t) in (18) considered locally in (pn - Ti) x (CI\{O, 1}) . 

Proof. We prove the result for i = 0. The rest of the cases follows by exactly 
the same arguments. We shall consider H in (17) and H(a b) in (18) locally in 
Rn(n+l)xRmx(Pn-To)x(C1\{0, 1}) and (Pn-To)x(C1\{0, 1}), respectively, 

by setting z0 = 1 in H and H( b) . 
First of all, let us take a, b as complex vectors and t E C1 \{0, 1 }. It is easy 

to see that rank(DaH) = n, so 0 is a regular value of H. By Proposition 4.3 
there exists a Zariski open set N c Cn(n+,) x cm such that for fixed (a, b) E N, 
the point 0 is a regular value of ft(a b), and hence, for any solution (z, t) of 

H(a'b) = 0 in (18), rank(Dz l(ab)) - n - 1. 
For notational simplicity, write bJ = bJ 0 in ( 17). Now, consider S(a, b, z, t) 
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defined on N x Cn x (Ci\{O, 1}). For 1 < i, j < n, 

oh1 ahz. 
az1 azn 

a a 
b'S(a, b, z, t)= 

ahn ahn 
az1 azn 

a ah1 oh1 ah1 ah1 a ah1 
ab0j aZI aZ2 azn az1 abioaZn 

a ahn ohn ohn aohn a o,hn 
abJ aZI aZ2 aZn az1 ab0j aZn 

ah, ah, oh, oh, 
az1 azi1 0 azi+l aZn 

ahj-l ahj-_ 

-(-1l)'+1t(1 - t)w(i, j). 
Since Dz H(a,b) is of rank n - 1, one of the w(i, j) 's must be nonzero. 

Assume, without loss, -bl-S(a, b ,z, t)-, 7f3#O. Then, for (a, b) eN and 

H(a,b,z, t) = { H(a, b, z, t), 

DH has a submatrix of the form 

daa h,0aa0hl a hn a hn a a hn 

02 a0 0 2 - {t(1 - t)I . 

* OblhnOb 

which is obviously of rank n + 1. Thus, 0 is a regular value of H(a, b, z, t). 
By Corollary 4.4, there exists an open dense set Go c N nl Rn(n+') x Rm such 
that 0 is a regular value of H(e b) for (a, b) e Go. a 
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Proof of Theorem 5.1. For the Gi 's in Lemma 5.2, let D = nlU0 Gi. Then, G 
is still an open dense set with full measure and for (a, b) E G, 0 is a regular 
value of H(a'b)(z, t) in (18). 0 

As a consequence of Theorem 5.1 and the properties of the quadratic turn- 
ing points we have developed, for fixed (a, b) E D, a homotopy curve of 
ft(a b)(z, t) = 0 in (17), starting from a nonsingular solution of Q, may con- 
tinue, through bifurcation at, at most finitely many, quadratic turning points, 
over (0, 1). And, by the degree argument in [4], any isolated solution can be 
reached by one of those homotopy curves. 
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