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CHEBYSHEV EXPANSIONS FOR MODIFIED STRUVE 
AND RELATED FUNCTIONS 

ALLAN J. MACLEOD 

ABSTRACT. We consider the approximation of the modified Struve functions 
Lo and L1 , and the related functions Io - Lo and I, - L, where Io, I, are 
modified Bessel functions. Chebyshev expansions are derived to an accuracy of 
20D for these functions. By using generalized bilinear and biquadratic maps 
we optimize the number of coefficients for 20D accuracy. 

1. INTRODUCTION 

The modified Struve functions L, (x) satisfy the equation 

(1.1) X2L/ + xL' - (x2 + n2)Ln 4(x/2)n+l 

and are clearly closely related to the modified Bessel functions of the first kind, 
In (x) . The functions L0 and L1 appear in the fluid dynamics of water waves; 
see, for example, Hirata [5] or Shaw [10]. The functions Io - Lo and I, - LI 
appear in surface wave problems, Wehausen and Laitone [1 1], and in unsteady 
aerodynamics, Ahmadi and Widnall [2]. Tables of values for L0 and L1 (small 
x) and Io- L0, I, - L1 (large x) appear in Chapter 12 of Abramowitz and Ste- 
gun [1]. Luke [6] gives coefficients for Chebyshev expansions for L0 L1 in the 
range 0 < x I < 8. The computation of Io - L0, I, - L1 by separate computa- 
tion of the I and L functions leads to severe cancellation problems. Desmarais 
[4] developed expansions for these functions, but his results are incomplete. 

In this paper, we derive Chebyshev expansions for the computation of L0 
and L1 for all x, and Io - L0 and I, - L1 for x > 0. The coefficients 
are derived to an accuracy of 20D, with the number of coefficients minimized 
by generalized mappings. Test procedures show these values give the required 
accuracy. 

2. RESULTS FOR L0, Io - Lo 

In this section, we describe in detail the procedures used for the functions 
of order 0. The methods are then applied to the order-I functions, so only the 
relevant results are given in the next section. 
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Lo(x) has the power series 

(2.1) Lo(x) = I 9 

which is convergent for all x. Thus, Lo is an odd function, so we need only 
restrict attention to approximating it for x > 0, then use Lo(-JIx) = -Lo(IxD). 

Asymptotically, we have 

(2.2) Lo(x) I0(X) - 1 (( r' 
(k 

-4)) (2) 

The power series for To gives 

2x x2 
(2.3) Io-Lo=I--+ 4 + 

7( 

which is decreasing for x > 0, the physically significant range. 
Equation (2.1) suggests that we approximate Lo as 

(2.4) Lo(x) = xg(x), 0 < x < a, 

where we can expand g(x) in terms of Chebyshev polynomials, and use the 
fact that g will be even. Schonfelder and Razaz [8] showed, however, that such 
expansions can give rise to serious error amplification if the function g varies 
greatly in size, as we have with Lo. They recommend extracting an explicit 
exponential term which will absorb most of the function variation, leaving a 
more stable function to be expanded. 

This idea, together with (2.2) and (2.3), suggests the following set of approx- 
imations: 

(2.5) Lo =-exgi(x), O < x < P 

(2.6) Io-Lo=g2(x) O<x<P, 

(2.7) Io-2Lo = g3(x) x > P, 

where values of Lo for x > P can be derived from (2.7) and one of the 
readily available approximations to Io. The functions g1, g2, and g3 are to 
be expanded as Chebyshev series. Thus, the intervals [O, P] and (P, oo) need 
to be transformed into [-1, 1]. For g, and g2 the simple standard transform 
is t = 2x/P - 1, while the nature of (2.2) gives for g3 the standard form 
t = 2P2/x2 - 1. 

Scraton [9] and Schonfelder [7] have both shown the advantages of more 
general bilinear and biquadratic maps, so we consider the forms 

ax - b 
(2.8) = x?b a=1+2b/P, b>0 
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FIGURE 1. Plots for map (2.8) 

for [0, P], while for (P, oo) we consider 

x 2 _ C 
(2.9) t= d -X2 d=2p2 c, c> p2. 

To see the effect of such maps, consider P = 4 and P = 16, and the expansions 
for g2 and g3. The coefficients of the Chebyshev expansion tend to zero fairly 
quickly, so we can count how many terms are needed before all coefficients are 
less than 10-20 in size. Figure 1 shows the number of terms for g2, with the 
solid line representing P = 4, and the dotted line P = 16. The standard map 
is the limit of (2.8) as b oo , giving 21 terms for P = 4, and 33 terms for 
P = 16. The minimum number of terms is 17 for P = 4, and 24 for P = 16. 
Similarly, Figure 2 (next page) shows the same information for g3, with, here, 
the standard map being given by (2.9) with c = 2P2. Again, the minimum 
number of coefficients is below that of the standard map. 

We thus have to choose (a) a cutoff value P, (b) for this value of P, good 
values for b and c, with possibly different b-values for g, and g2. For each 
possible combination of (P, b, c)-values we generate the Chebyshev coefficients 
by using Clenshaw's method [3]. This gives an infinite system of linear equations 
for the coefficients. By assuming that all coefficients beyond a certain point, 
which is called the zero coefficient cutoff point, are exactly zero, we derive a finite 
linear system which can be easily solved. To derive values for the parameters, we 
assumed 101 possibly nonzero coefficients, and performed the arithmetic using 
quadruple precision on a Prime 6350 (giving about 28 significant decimals). 

A large amount of data is obviously generated. The decisions on reasonable 
values for P, b, c were based on this data. The value P = 16 was chosen 
as this gave a simple value, and approximately equal numbers of coefficients 
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FIGURE 2. Plots for map (2.9) 

for 0 < x < 16 and x > 16. With this value of P, we varied b and c and 
found that, for b, the minimum number of coefficients occurred over a fairly 
wide range of values of b, while, for c, the minimum was more sensitive to 
values of the parameter. Since we only considered integral b and c, the range 
of b together with (2.8) enabled us to select a value of b giving simple exactly 
representable transformation coefficients. Integral c means that this also occurs 
in (2.9). The values chosen led to the following transformations: 

(2.10) Lo: 0 < x < 16, t = x+24 

- - ~~x -240 

(2.11) Io-LO: 0 < x < 16, t = x+40 

800- 2 

(2.12) Io-Lo: x > 16, t 

With these transformations fixed, we repeated Clenshaw's method using a 
multiple-precision floating-point arithmetic package, written by the author. This 
performed calculations to about 75 significant decimals. The zero coefficient 
cutoff point was started at 60, and increased successively by 20, until the coeffi- 
cients agreed to 40D. These coefficients > 10-20 in size were then output, and 
are given in Tables 1-3. 
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TABLE 1. Coefficients for g1 (x) for 0 < x < 16 

0 0.42127 45834 99799 24863 E 0 

1 -0.33859 53639 12206 12188 E 0 

2 0.21898 99481 27107 16064 E 0 

3 -0.12349 48282 07131 85712 E 0 

4 0.62142 09793 86695 8440 E -1 

5 -0.28178 06028 10954 7545 E -1 

6 0.11574 19676 63809 1209 E -1 

7 -0.43165 85743 06921 179 E -2 

8 0.14614 23499 07298 329 E -2 

9 -0.44794 21180 54614 78 E -3 

10 0.12364 74610 59437 61 E -3 

11 -0.30490 28334 79704 4 E -4 

12 0.66394 14015 21146 E -5 

13 -0.12553 83577 03889 E -5 

14 0.20073 44645 1228 E -6 

15 -0.25882 60170 637 E -7 

16 0.24114 37427 58 E -8 

17 -0.10159 67435 2 E -9 

18 -0.12024 30736 E -10 

19 0.26290 6137 E -11 

20 -0.15313 190 E -12 

21 -0.15747 60 E -13 

22 0.31563 5 E -14 

23 -0.4096 E -16 

24 -0.3620 E -16 

25 0.239 E -17 

26 0.36 E -18 

27 -0.4 E -19 
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TABLE 2. Coefficients for g2(x) for 0 < x < 16 

0 0.52468 73679 14855 99138 E 0 

1 -0.35612 46049 96505 86196 E 0 

2 0.20487 20286 40099 27687 E 0 

3 -0.10418 64052 04026 93629 E 0 

4 0.46342 11095 54842 9228 E -1 

5 -0.17905 87192 40349 8630 E -1 

6 0.59796 86954 81143 177 E -2 

7 0.17177 75476 93565 429 E -2 

8 0.42204 65446 91714 22 E -3 

9 -0.87961 78522 09412 5 E -4 

10 0.15354 34234 86922 3 E -4 

11 -0.21978 07695 84743 E -5 

12 -0.24820 68393 6666 E -6 

13 -0.20327 06035 607 E -7 

14 0.90984 19842 1 E -9 

15 0.25617 93929 E -10 

16 -0.71060 9790 E -11 

17 0.32716 960 E -12 

18 0.23002 15 E -13 

19 -0.29210 9 E -14 

20 -0.3566 E -16 

21 0.1832 E -16 

22 -0.10 E -18 

23 -0.11 E -18 
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TABLE 3. Coefficients for g3 (x) for x > 16 

0 2.00326 51024 11606 43125 E 0 

1 0.19520 68515 76492 081 E -2 

2 0.38239 52356 99083 28 E -3 

3 0.75342 80817 05443 6 E -4 

4 0.14959 57655 89707 8 E -4 

5 0.29994 05312 10557 E -5 

6 0.60769 60482 2459 E -6 

7 0.12399 49554 4506 E -6 

8 0.25232 62552 649 E -7 

9 0.50463 48573 32 E -8 

10 0.97913 23623 0 E -9 

11 0.18389 11524 1 E -9 

12 0.33763 09278 E -10 

13 0.61117 9703 E -11 

14 0.10847 2972 E -11 

15 0.18861 271 E -12 

16 0.32803 45 E -13 

17 0.56564 7 E -14 

18 0.93300 E -15 

19 0.15881 E -15 

20 0.2791 E -16 

21 0.389 E -17 

22 0.70 E -18 

23 0.16 E -18 
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3. RESULTS FOR L1, I, -L 

The relevant expansions are 

(3.1) L1(x)=2X [1+ X25+ 4575?+ 

X X3 x5 
(3.2) I' (X) = L 2 + 616 + 38 +4 

(3.3) I-LI , l[-2X - X6 - 

These expansions give rise to the approximating forms 

(3.4) LI = eXg4(X), 0 x < P, 
3ii: 

(3.5) II - LI = 2 95 (X) , 0 < X < P, 
2 

(3.6) I1-L1 = - g6(X), x > P. 
7r 

The functions g4, g5, g6 are expanded in Chebyshev polynomials. Exactly 
the same investigation procedure as in ?2 showed that P = 16 was again a 
reasonable choice, and the transformations could be taken from order 0 to the 
corresponding order 1 functions. Thus g4, g5, and g6, use respectively (2.10), 
(2.11), and (2.12). 

The 20D coefficients produced by the multiple-precision software are given 
in Tables 4-6. 

4. TESTING 

The main test used was to write a Fortran program to evaluate gl to g6 for 
various values of x (using quadruple precision), and to compare the results 
with values calculated in other ways. 

For 0 < x < 16, the various power series for Lo, LI, 10 - Lo, I, - LI 
were used to generate comparison values. In each unit interval, 1000 random 
values were generated and in all cases the maximum absolute error was less than 
.5 x 10-19. 

For g3 and g6 in the range x > 16 we experienced more problems in 
testing. For x close to 16 the power series still gives sufficient accuracy. For 
large x, the asymptotic series was transformed into a continued fraction by the 
q-d method, and gave sufficient accuracy. There was, however, an interval from 
about x = 25 to x = 50 where we were unable to generate sufficiently accurate 
comparison values from either the power series or the continued fraction. 

To get around this, we had to generate the comparison values from the power 
series using the multiple-precision package. The quadruple-precision argument 
x was transformed to multiple-precision form exactly by equivalencing it to 
eight 2-byte integers and decomposing these to give the exact binary represen- 
tation. By using a base of 212 in the package we preserve exactness. The 
results of the multiple-precision power series were then transformed back to 
quadruple-precision form. These results verified 20D absolute accuracy for g3 
and g6. 
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TABLE 4. Coefficients for g4(x) for 0 < x < 16 

0 0.38996 02735 12295 38208 E 0 

1 -0.33658 09610 19757 49366 E 0 

2 0.23012 46791 25016 45616 E 0 

3 -0.13121 59400 79608 32327 E 0 

4 0.64259 22289 91284 6518 E -1 

5 -0.27500 32950 61663 5833 E -1 

6 0.10402 34148 63720 8871 E -1 

7 -0.35053 22949 36388 080 E -2 

8 0.10574 84984 21439 717 E -2 

9 -0.28609 42640 36665 58 E -3 

10 0.69257 08785 94220 8 E -4 

11 -0.14896 93951 12271 7 E -4 

12 0.28103 55825 97128 E -5 

13 -0.45503 87929 7776 E -6 

14 0.60901 71561 770 E -7 

15 -0.62354 37248 08 E -8 

16 0.38430 01206 7 E -9 

17 0.79054 3916 E -11 

18 -0.48982 4083 E -11 

19 0.46356 884 E -12 

20 0.68420 5 E -14 

21 -0.56974 8 E -14 

22 0.35324 E -15 

23 0.4244 E -16 

24 -0.644 E -17 

25 -0.21 E -18 

26 0.9 E -19 
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TABLE 5. Coefficients for g5(x) for 0 < x < 16 

0 0.67536 36906 23505 76137 E 0 

1 -0.38134 97109 72665 59040 E 0 

2 0.17452 17077 51339 43559 E 0 

3 -0.70621 05887 23502 5061 E -1 

4 0.25173 41413 55880 3702 E -1 

5 -0.78709 85616 06423 321 E -2 

6 0.21481 43686 51922 006 E -2 

7 -0.50862 19971 79062 36 E -3 

8 0.10362 60828 04423 30 E -3 

9 -0.17954 47212 05724 7 E -4 

10 0.25978 82745 15414 E -5 

11 -0.30442 40632 4667 E -6 

12 0.27202 39894 766 E -7 

13 -0.15812 61441 90 E -8 

14 0.18162 09172 E -10 

15 0.64796 7659 E -11 

16 -0.54113 290 E -12 

17 -0.30831 1 E -14 

18 0.30563 8 E -14 

19 -0.9717 E -16 

20 -0.1422 E -16 

21 0.84 E -18 

22 0.7 E -19 

23 -0.1 E -19 
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TABLE 6. Coefficients for g6 (x) for x > 16 

0 1.99679 36189 67891 36501 E 0 

1 -0.19066 32614 09686 132 E -2 

2 -0.36094 62241 01744 81 E -3 

3 -0.68418 47304 59982 0 E -4 

4 -0.12990 08228 50942 6 E -4 

5 -0.24715 21887 05765 E -5 

6 -0.47147 83969 1972 E -6 

7 -0.90208 19982 592 E -7 

8 -0.17304 58637 504 E -7 

9 -0.33232 36701 59 E -8 

10 -0.63736 42173 5 E -9 

11 -0.12180 23975 6 E -9 

12 -0.23173 46832 E -10 

13 -0.43906 8833 E -11 

14 -0.82847 110 E -12 

15 -0.15562 249 E -12 

16 -0.29131 12 E -13 

17 -0.54396 5 E -14 

18 -0.10117 7 E -14 

19 -0.18767 E -15 

20 -0.3484 E -16 

21 -0.643 E -17 

22 -0.118 E -17 

23 -0.22 E -18 

24 -0.4 E -19 

25 -0.1 E -19 



746 A. J. MACLEOD 

TABLE 7. Coefficients for relationship (4.6) 

J ri,j Si,; 

-3 (3 - i)/8i - 

-2 (9i- 18)/2i 1400/i 

-1 435(1 - i)/8i 2800/i 

0 225 0 

1 -435(1 + i)/8i -2800/i 

2 9(i + 2)/21 - 1400/i 

3 -(3 + i)/8i 

A completely different test can be performed using the relationships between 
the functions of different orders and properties of Chebyshev polynomials. We 
illustrate the method for Io - Lo and I, - L1 in the range 0 < x < 16. 

We have Io = I, and Lo = L1 + 2 so 

(4.1) (Io - Lo)' = (I - LI) -2/, 

giving 

(4.2) 2 + 

Since t = (6x - 40)/(x + 40), standard algebra gives 

3dg2 560 
(4.3) (6-t)3 - = 5600(1 +t)g56 ) 

dt~~~~~~~~~~7 

Integrating gives 

(216 - 108t + 18t2 - t3)g2 + J(108 - 36t + 3t2)g2 

= 5600 J(1 + t)g5 + 280t2 - 30t. 

Let 

(4-5) 92 = E Ci Ti (t), 95 = E' 57diTi(t); 
i=o i=o 

then, using standard Chebyshev relationships, we derive 

3 +2 

(4.6) E rijci+j = E sijdi+, i = 3, 4, 5, ... 
j=-3 j=-2 

where the coefficients rij (j = - ...3 , 3) and sij (j = -2, ..., 2) are given 
in Table 7. Applying these relationships to the coefficients, we get agreement to 
within acceptable rounding error. Similar techniques can be applied to relate 
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the coefficients of Lo and L1 , and the asymptotic forms of Io -Lo and I, -L1 . 
Again acceptable agreement is found. 

This mixture of tests leads us to accept the given coefficients as accurate. 
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