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ON THE DISTRIBUTION OF k-DIMENSIONAL VECTORS 
FOR SIMPLE AND COMBINED 

TAUSWORTHE SEQUENCES 

RAYMOND COUTURE, PIERRE L'ECUYER, AND SHU TEZUKA 

ABSTRACT. The lattice structure of conventional linear congruential random 
number generators (LCGs), over integers, is well known. In this paper, we 
study LCGs in the field of formal Laurent series, with coefficients in the Galois 
field F2. The state of the generator (a Laurent series) evolves according to a 
linear recursion and can be mapped to a number between 0 and 1, producing 
what we call a LS2 sequence. In particular, the sequences produced by simple 
or combined Tausworthe generators are special cases of LS2 sequences. By 
analyzing the lattice structure of the LCG, we obtain a precise description of how 
all the k-dimensional vectors formed by successive values in the LS2 sequence 
are distributed in the unit hypercube. More specifically, for any partition of the 
k-dimensional hypercube into 2kl identical subcubes, we can quickly compute 
a table giving the exact number of subcubes that contain exactly n points, 
for each integer n. We give numerical examples and discuss the practical 
implications of our results. 

1. INTRODUCTION 

Following Tezuka [12, 13], we consider the analogue of a multiplicative linear 
congruential generator in the field K of formal Laurent expansions (at infinity) 
with coefficients in the Galois field F2: 

(1) x = anzn + an_IZn-I + 

where n is any integer. This generator is conveniently defined with the help of 
the operators 

frac(x) = alz-I + c2z 
-2 

trunc1(x) = a,zn + an -IZn-l + + a-lz I 

for x E K defined as in (1) and / e Z. Let a (the multiplier) and m (the 
modulus) be nonzero elements in K. For I > 0, we consider the pseudorandom 
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sequence 

(2) ui = truncj(frac(a1/m)), i = 0, 1, 2,. 

One can identify any element x expressed as in (1) with the real number 
an2n + ani2n-I + * * *, where each ai E F2 is identified with its representative 
integer 0 or 1. The sequence (2) in K is then identified with a pseudorandom 
sequence in the interval [0, 1), which we call a LS2 (Laurent Series over F2) 

sequence. As pointed out by Tezuka [12, 13], the usual Tausworthe sequences, 
as well as their combinations by means of addition modulo two, are instances of 
this scheme. Tezuka has also shown the influence of the last and first successive 
minima of certain lattices in Kk associated with combined generators, and with 
their components, on their k-distribution properties. 

The aim of this paper is to show that a more complete description of the k- 
distribution involves all successive minima for the corresponding lattices. For 
any partition of the k-dimensional hypercube into 2kl identical subcubes, we 
show how to quickly compute a table giving the number of subcubes that contain 
exactly n points, for each integer n. 

In ?2, we recall some facts concerning lattices in a field of series and prove 
a key theorem from which the rest of our results will follow. Section 3 gives a 
precise statement of the k-distribution problem that we want to address. We 
solve that problem in ?4 for the case of an irreducible modulus m and in ?5 
for the case of combined generators with two or three components. In all cases, 
we assume (among other things) that a and m are polynomials in K and that 
the generator has (full) period 2P - 1, where p is the degree of m. Section 6 
(in the Supplements section at the end of this issue) gives numerical examples 
illustrating the practical implications of our results. 

2. LATTICES 

Following Mahler [6], we define a non-Archimedean valuation in K by 

lxl 0nif 
x=0, 

lxi { 2 if x $0 and x is given by (1) with an 
$ 0. 

This makes K a locally compact field. Let k denote a positive integer. The vec- 
tor space Kk is then normed by IIXII = maxl<i<k Ixil, where X= (xl, X. , 
and it is also locally compact. 

We now consider, in K, the subring of polynomials A = 1F2[z] and A- 
submodules of Kk. We call one such submodule a lattice if it is discrete in 
Kk . We will not assume, as is usually done, that a lattice has maximal rank over 
A. One may then define its rank as the dimension of the K-vector subspace 
it generates. We note that, because of local compactness, linear independence 
in a lattice is the same over A as over K. We will make use of the following 
result (see the proof of Lemma 1 of [7]). 

Theorem 1. Let X1, .I.., Xh be points in a lattice L C Kk of rank h with the 
following properties: 

(i) X1 is a shortest nonzero vector in L; 
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(ii) for i = 2, ... , h, Xi is a shortest vector among the set of vectors X in 
L such that X1, ..., Xi-,, X are linearly independent over A. 

Then X,..., Xhform a basis of L over A. O 

Since any cube Cr = {X I IIXII < 2r}, r e 2, contains but a finite number of 
points in a given lattice L, it follows that a system as in Theorem 1 always exists. 
This system is a reduced basis for L (in the sense of Minkowski). The numbers 
ai = IIXi > 0 are then uniquely determined by the lattice and are called its 
successive minima. Lenstra [4] gives details on how to compute these numbers 
(and a reduced basis) efficiently when the lattice is integral (i.e., contained in 
Ak) . 

One can view L n Cr as a vector space over 1F2, with cardinality 2d, where 
d is its finite dimension over F12. In the next theorem, we show that the 
number 2d of lattice points in the cube Cr is determined by r and the lattice's 
successive minima. Let si = log2 ai (an integer). For t e IR, let t+ denote 
max(t, 0). 

Theorem 2. One has 

h 

(3) d = Z(r - si)+. 
i=1 

Proof. Let X1, ... , Xh be as in Theorem 1. For each integer j > 0, let hj= 
max{i < h I si < j} be the number of points Xi contained in Cj+1 and, for 
1 < i < hj, let Xi(j) - z-sLXi. Then, iiXij)'II = 2'. We will now prove that the 

system W = {Xi(}) I j < r, 1 < i < hj} is a basis for L n Cr over F2 . From 
that, equation (3) easily follows. 

We show first that for each j > s1, the system X() ...Xj) is linearly 
independent over IF2 modulo Cj. Let us prove that property by induction 
on j. For j = s1, one has hj = max{i < h I si = si = j} and the vectors 

X(j) X(j) are in fact X1, ... , Xh which are linearly independent by con- 

struction. Now, let j > s, + 1 and assume that X(- 1, ... ,J-) are linearly 
independent over IF2 modulo Cj- I. Let X E Cj be a linear combination over 

F2 of X(j) * Xj) . If j=si for some i, let I = min{i I si = j}. This lin- 

ear combination cannot involve any of X(), ... j) (that is, Xl, ...,Xh,), 

since X would be linearly independent of X1, ... , Xl11 (and shorter than 
Xl) contradicting the minimality property of Xl. If j $& si for all i, then 

hj = hjl . Therefore, in both cases, the linear combination can involve only 

XX(j). For these we have X(j) = zX(j-) and, since multiplication 

by z is a linear (over 1F2) automorphism of Kk mapping Cj_1 onto Cj, it 

follows that they are linearly independent over IF2 modulo Cj and our linear 

combination must be trivial. This completes the induction. 

We are now ready to show that q is a basis, i.e., that it is linearly indepen- 

dent and that every vector of L n Cr can be expressed as a linear combination 

of vectors of q. Let X e L. From Theorem 1, X can be expressed uniquely 
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as a linear combination of X1, ..., Xh, with coefficients in A, that is 

h h 

(4) X = =ZZcn 1=ZZ&ijX'), X=E E Cin Z Xi = ijX 
i=I n>O i=1 j>s1 

where each Cin = eis,+n is in ]F2 and there are finitely many nonzero Cin'S. 
Since the Cin's are unique, the ein's are also unique. If X = 0, then each Cin 
must be zero because the Xi's are independent over A. As a consequence, if 
X = 0, each eij must be zero, which implies that q is linearly independent 
over F2- 

It remains to show that, if X E Cr, eij $ 0 implies j < r. Let / = 

max{j I ij & 01}. One has I > sl, because sl < S2 < *.* < Sk and the sum in 
(4) is extended over j > si. Suppose that 1 > r, and let 

h h I-1 

X = Eilx(l) = X - E E 1ijxf(j). 
1=1 1=1 i=s1 

Since X E Cr C Cl and X(j) E Cl for each j < 1, one has X E Cl . In other 

words, X = 0 modulo Cl. Since X() ...,X() are linearly independent 
modulo Cl, this implies eil = 0 for each i, which contradicts the definition of 
1. Therefore, 1 < r and the conclusion follows. O 

3. THE QUESTION OF k-DISTRIBUTION 

For the remainder of the paper, we assume given a, m E K satisfying the 
following assumptions: 

(Al) a,meA; 
(A2) The group (A/(m))x of invertible elements of the quotient ring A/(m) 

is cyclic and a is a generator for it; 
(A3) m has no factor of the first degree. O 

We consider all k-tuples of successive nontruncated terms of (2): 

Ri = (frac(ai/m), ... , frac(ai+k- I/M)) i= O, 1, .... 

and the A-submodule of Kk defined by 

L=ARo+Ak. 

From (A1), L is a lattice that contains all the Ri's. We call it the lattice 
associated with the pseudorandom sequence defined by a and m . The mapping 
x --* frac(xRO), x E A, where frac is applied componentwise, induces an 
isomorphism 

(5) A/(m) L n Co 

and, if S is the subset of L n C0 that corresponds to (A/(m)) X, it follows 
from (A2) that the sequence {Ri, i = 0, 1, ... } runs cyclically through all 
points of S and that each point is visited exactly once per period. 
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For each integer I > 0, let El = trunc1 (Co), where trunc1 is applied compo- 
nentwise. The operator trunc1 then defines a linear transformation over F2, 

(6) truncj: Lfn CO El. 

We now define a frequency function fi: El - N U {O} by 

f,(X) = card{R E S I trunc,(R) = X}. 

The set El corresponds to a partition of the hypercube [0, 1)k into 2lk cubic 
cells of the same size; we note that, if X E El and R E S, the condition 
trunc,(R) = X means that the point in Rk corresponding to R lies (strictly, 
because of (A3)) inside the cube Hik=I [xi, xi + 2-1), where xi is the real number 
corresponding to the ith coordinate of X; fi(X) is then the number of such 
points R E S falling into this cube. For each integer n, let 

(pi(n) = card{X E El I fi(X) = n}, 
which represents the number of cells that contain exactly n points. We will be 
concerned in the next sections with the problem of computing (o1(n) efficiently 
for every nonnegative integer n. 

4. SIMPLE GENERATORS 

We first consider the case where the polynomial m is irreducible. In that 
case, the pseudorandom sequence is called simple. Let p be the degree of m. 
From (5) we see that S = L n Co \ {O} . Also, the kernel of the mapping (6) is 
L n C-1 and, if we denote its image by L(), we obtain for X E El, 

0 O if X E El \ Ll), 
f (X) = <card(L n C-1) if X E L(l) \ {0} 

card(L nC-1)- Iif X=0. 

Now, card(L n C-1) = 2d, where d is given in Theorem 2 with r = -l and 
h = k. Then, from (6) and (5), dimF2 (L(l)) = dimF2 (L n CO) - d = p - d. Since 
dimF2(El) = ki, there are 2kl - 2p-d points in El \ L(l) and 2P-d points in 
L(l). This is summarized in Table 1, which gives the value of (ol(n) for all 
values of n for which it could be nonzero. 

Tezuka [12] calls the pseudorandom sequence k-distributed with resolution 
1 when the case n = 0 does not occur, i.e., when 

(7) lk = p - d. 

In the trivial case 1 = 0, we have El = {O} and d = p, so that (7) holds. As 
1 increases through successive integers, r = -l correspondingly decreases and 

TABLE 1. Values of (ol(n) that could be nonzero 

jn (ol (n) l 
2d 2P-d - 
2d_ - 1 

0 2lk - 2P-d 
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by Theorem 2, (7) remains valid if and only if r > log crk (note that log (1k < 0 
since Ak c L) . This gives another proof of the following result of Tezuka [12, 
Theorem 1]: 

Corollary 1. A simple pseudorandom sequence in K defined by a and (irre- 
ducible) m is k-distributed with resolution 1 if and only if log ak < -1. 0 

5. COMBINED GENERATORS WITH J SIMPLE COMPONENTS 

5.1. General formulae. We consider now the case where m is a product of J 
irreducible factors, m = ml ...mj, where for each j, pj > 2 is the degree of 
mj and P = Pi +*** +PJ is the degree of m. Assumptions (A1)-(A3) then 
hold, provided that for each pair i $ j, GCD(2Pi - 1, 2Pi - 1) = 1. For 
j = 1, ... , J, let Lj be the lattice in Kk associated with the LS2 sequence 
defined by (a, mi) . 

By the Chinese Remainder theorem, we have a ring isomorphism 

(8) A/(ml) x x A/(mj) A/(m). 

Through (5), this becomes 

(9) LnCo=(LInCO)e . ED(LjnCO) 

(direct sum of vector spaces over 1F2). For each j, define Vj = Lj n Co. 
For each subset T of {1, ..., J}, define mT = HjETmM, VT =DjET V, 
WT = VTn C1l, and dT = dim(WT). If P = {1, ..., J}, we also write 
VT and WT as V and W respectively. (Note that all objects and quantities 
defined above depend implicitly on k and 1.) Each dT can be computed using 
(3) in Theorem 2, with r = -1, h = k, and L = LT, where LT is the lattice 
associated with the LS2 sequence defined by (a, mp) . Then, 

(10) S=V\ U VT. 
ITI=J- 1 

For each X E El \ L(), one has fi(X) = 0. Those X E L(l) correspond by 
(6) to the cosets W' of W in V. For any given coset W', we define the sig- 
nature of W' (also the signature of X) as the set D(W') = { C {1, ... . J} I 
WI n Vg $ 0}. Observe that for each W', card(W') = card(W) - 2d and 
when W' intersects Vq, card( W' n VT) = card( W n V) = card( W) - 2d4 . A 
nonempty family 'D of subsets of { 1, ... , J} such that 'PE D and ' c ' 
imply T' E F, will be called a maximalfamily. Reciprocally, a nonempty fam- 
ily F of subsets of {1, ... , J} such that TP, 'P2 e F implies TP ? '2 and 
'2 ? TP , will be called a minimalfamily. Let Q and A denote the classes of all 
maximal and minimal families, respectively. A set P belonging to a maximal 
family (D is called a minimal element of 'D if no proper subset of P belongs 
to (D. The set of minimal elements of (D will be called the generator of F, 
and denoted by T(I). Since T (F) contains only minimal elements, it is clearly 
a minimal family, that is, T(cD) e A. The next lemma shows that the mapping 
T : Q )- A is one-to-one and onto, and also that Q contains all signatures. 

Lemma 1. If (D is a signature, then (D e Q. Also, T : Q -* A is one-to-one and 
onto. 
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Proof Let 'D = D(W') be a signature and assume P E (D. Then W' n Vp T 0 
and, if P c T', VT is a subset of VT, and W' n vT, $z. Therefore D E Q. 
Now, let F e A and let ( be the family of all subsets of {1, ... , J} that 
contain (or are equal to) some element of F. Then, (D E n and -(ID) = F, 
which proves that - is onto. If I, is another maximal family with z(DI ) = F, 
then ( C I,, because F c I,, so that by the definition of ( and since 
(Di E Q, every set of ( must be in DI. Also, since r(DIi) = F, all sets of 
(I \ F have proper subsets in F, which implies that (Ii C (D. Therefore, one 
must have (I = (D, which means that - is one-to-one. El 

Let X E L(l), and let W' be the coset that is mapped to X. We then have, 
from (10) and using a standard inclusion-exclusion argument, 

J 

fi(X) = card(W' n S) = Z(-1)' E card(W' n V) 
i=O jTP=J-i 

(1 1) = E (-l)JHlPI2d+. 
TE'D(W') 

For each ( E Q , let co denote the number of cosets of W (in V) with 
signature (D. In view of (1 1), it will be sufficient to determine these numbers. 
We will use intermediate quantities 

(12) Cr = card (( (vT+ W) /W) r E A 

The quantity Cr is the number of cosets W' with signature ( D - I(F), that 
is, with the property that W' n Vp T 0 if and only if P E O. They are related 
to the co's by the equations 

(13) E cD=Cr, FeA. 
{oIrFC0} 

Observe that the sum in (13) is over all maximal families ( that contain 
-I (IF). The quantities Cr will be determined, partly by Theorem 3, and com- 

pletely in cases J = 2 or 3. In such cases, one can also compute the ceD's using 
(13) because of the following lemma. 

Lemma 2. The linear system (13) admits a unique solution cD, F E Q?, for any 
given set of values for the Cr 's. 
Proof. Since Q and A have the same cardinality by Lemma 1, it is sufficient to 
show that all co's are 0 if all Cr's are 0. Suppose Cr = 0 for each F E A. For 
each maximal family (D, let so denote the number of maximal families that 
contain O. We proceed by induction on so. If so = 1 then, for F = T(D), 
the sum in (13) has only one term, namely cD, which must be zero. Now, let 
s > 1 and assume that cD = 0 whenever s(D < s. Let ( be a maximal family 
such that so = s. For any maximal family (' that contains ( strictly, one 
must have sD < so = s, and therefore cD = 0. Then, co is the only possible 
nonzero term that remains in the sum in (13) for F= i (). Since that sum is 
zero, cD must be zero. This completes the induction. En 
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For each F E A, we define 

(14) y(F) = dim (O(VT + W) -dim(W), 
Tr' 

so that 

(15) Cr = 2y(r). 

Theorem 3. Let F E A and To = Ur T . If the canonical mapping 

(16) V0- f l(Vq,0/(VT +WiO)) 
TEr 

is onto, then 

(17) y(F) = (pT0 - dTO)(1 - IFl) + (pPT - dT). 
TEr 

This will be the case if IFl = 1 or 2. If the mapping is not onto, "=" must be 
replaced by " > " in (17). 

Proof. The canonical mapping (16) has kernel nTEr(VT + WT0). But the di- 
mension of VT0 must be equal to the dimension of the kernel plus the dimension 
of the image. That is, if the mapping is onto, 

pT0 = dim( VT0) = dim (O(v + WvT To)) + E dim(VT0/( VT + WT0 )). 

Observe that 

dim(VT0/(VT + WT0)) = dim(VT0) - (dim(VT) + dim(WT0) - dim(VT n WT0)) 
= PTo - dTo- PT + dT 

and that the canonical mapping 

(18) n (VT+WToi)/wT0o' n (v+ W)/W 
TEr Ter 

is an isomorphism. Then, 

dim (O(vT + W)/W) = dim n ((vT + wT)/ wTo 

= dim n (O v + Wo)) - dim(WT0) 

=pq' -PdT O - Z(PTpo - dTo - PT + dT) 

= (1 - FI)(pqP0 - dTO) + Z(PT - dv). 
TEv 

If the mapping is not onto, the second equality in this proof must be replaced 
by < and the next to last equality above must be replaced by > . 
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If IFI = 1, say F = {vP}, then (16) becomes VT -- VT/(VT + WT), which is 
clearly onto. Suppose that IFl = 2, namely F = {T1, P2} * Let fv = (02, v ) E 

VTOi/(VT, + WVO) x VTOi/(VT2 + WTO). Since VTO = VTi + VqI2, there is a v2 E 
VT2 n V2, and similarly for v1 . Then, v = vI + v2 E VTO is mapped to v . So, 
the mapping (16) is again onto. En 

Below, we give specific tables for the cases J = 2 and J = 3. For J = 2 all 
the cD's can be computed easily from Theorem 3. For J = 3, Theorem 3 gives 
us one equation for each set F E A, except for one, for which the mapping 
(16) is not onto. We obtain this last equation and show how all the co's can 
be computed by considering a special lattice, different from the LT's, and its 
successive minima. Below, D denotes the signature of X. 

5.2. Two simple components. For J = 2, we have card(Q) = 5 as shown in 
Table 2. We number these signatures from 1 to 5 and, to simplify the notation, 
we will replace each signature 'D by its corresponding number when used as a 
subscript of c. In this case, Theorem 3 gives us an equation for each set F, as 
shown in Table 3. 

TABLE 2. Possible signatures and frequencies for generators 
with two components 

In I D fi(X) 
1 {{1,2}} 2d 
2 {{1,2},{1}} 2d _ di 

3 {{1, 2},{2}} 2d_ 2d2 
4 {{1,2},{1},{2}} 2d_ 2d, - 2d2 

5 {{1,2},{1 },{2},1 } 2d 2d, - 2d2 + I 

TABLE 3. Equations given by Theorem 3, for J = 2 

[F I equation 
{{1,2}} c1 + C2 + C3 + C4 + C5 = 2P-d 

{{1}} C2 + C4 + C5 = 2p-d, 
{{2}} C3 + C4 + C5 = 2P2d2 

{{1},{2}} C4 + C5 2d-d, -d2 

{} C5= 1 

Solving the equations of Table 3, one obtains 

C5 = 1, 

C4 -2d-d, -d2-_ 

C3 = 2P2 -d2 -2d-d, -d2 

C2= 2P, 2, 

C -= Pd + d-dl-d2-2pi-di _ 2p-d2 cl= 2p- + 2 - -2 

These results are summarized in Table 4, where the first column gives all 
possible values of n for which (o1(n) is not always zero. The integers d, d, 
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TABLE 4. Values of q,(n) that could be nonzero, for J = 2 

[n _ __1(n) __ 

2 d 2P-d + 2d-di-d2 - 2P -di -2P2-d2 

2d - 2d, 2P -di - 2d-d -d2 

2d - 2d2 2P2 -d2- 2d-di -d2 

2d - 2d, - 2d2 2d-dl -d2- 

2d - 2d, -2d2 + 1 

0 21k - 2P-d 

and d2 are obtained from Theorem 2 applied to L, LI , and L2, respectively, 
with r = -1. (Note that the fourth entry of the first column in Table 4 might 
be equal to -1 , but that then the corresponding entry in the second column is 
zero.) To have the points "well distributed" among the cells, one would like to 
have first the smallest possible d, then the smallest d1 and d2. The best case 
is d = p - lk and d1 = d2 = O, which could occur only when lk < p. 

5.3. Three simple components. For J = 3, we have card(Q) = 19 as shown in 
Table 5. Again, we number these signatures from 1 to 19 and use these numbers 
as subscripts of c. 

For all those minimal families F whose cardinality is 1 or 2, Theorem 3 yields 
Cr directly. For F = {{ 1, 2}, {1, 3}, {2, 3}}, it can be verified that the map- 
ping (16) is onto, so that Theorem 3 applies. Indeed, let 'v = (3, V2, 'VI) E 

(V/(V12 + W)) x (V/(V13 + W)) x (V/(V23 + W)) . Since V = V12 + V3, there 
is a V3 E V3 n V3, and similarly for v2 and v1 . Then, V = V1 + V2 + V3 E V 
is mapped to v5 by (16). There remains the case F = {{1}, {2}, {3}}, which 

TABLE 5. Possible signatures and frequencies for generators 
with three components 

|n | fi (x) 
1 {{1 2, 3}} 2d 

2 {{1 2 3}, {1,1 }} 2d - 2dl2 

3 {{1, 2, 3} {1, 3}} 2d - 2dl3 
4 {{1, 2, 3}, {2, 3}} 2d - 2d23 
5 {{1, 2, 3}, {1, 2} {1, 3}} 2d -2dl2 -2dl3 

6 {{1, 2, 3}, {1, 2}, {2, 3}} 2d - 2dl2 -2d23 

7 {{1, 2, 3}, {1, 3}, {2, 3}} 2d - 2dl 3 -2d23 

8 {{1, 2, 3}, {I, 2}, {1, 3}, {2, 3}} 2d -2dl2 -2dl3 -2d23 

9 {{1, 2, 3}, {1, 2}, {1, 3}, {1}} 2d -2dl2 -2dl3 +?2d 
10 {{1, 2, 3}, {I, 2}, {2, 3}, {2}} 2d - 2dl2 -2d23 + 2d2 
11 {{1, 2, 3}, {1, 3}, {2, 3}, {3}} 2d - 2dl3 -2d23 + 2d3 
12 {{1, 2, 3} {1, 2}, {1, 3}, {2, 3}, {1}} 2d -2dl2 -2dl3 -2d23 +?2d 
13 {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {2}} 2d - 2d12 -2dl3 -2d23 + 2d2 
14 {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {3}} 2d - 2dl2 -2dl3 -2d23 + 2d3 

15 {{1, 2, 3} , {1 , 2} , {I, 3} , {2, 31 , {I} , {2}} 2d - 2dl2 -2dl3 -2d23 + 2d? + 2d2 

16 {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {3}} 2d -2dl2 -2dl3 -2d23 +?2d +2d3 
17 {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {2}, {3}} 2d - 2dl2 -2d13 -2d23 + 2d2 + 2d3 

18 {{1, 2, 3}, {1, 2}, {I, 3}, {2, 3}, {I}, {2}, {3}} 2d - 2dl2 -2d3 -2d23 + 2?d + 2d2 + 2?d3 
19 {{1l, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, 2d 2d12 -2d13 -2d23 + 2d1 + 2d2 + 2d3 - 1 
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TABLE 6. Equations given by Theorem 3 for J = 3 

I I equation 
{{1, 2, 3}} Cl + C2 + + C19 2P-d 

{{1, 2}} C2 +C5 +C6 +C8 +C9 +CIO +C12 + * C19 =2P12-d2 
{{1, 3}} c3 +c5 +C7 +-C8 +C9 +Cl +C12 + * C19 2pl3 d13 

{{2, 3}} C4 +C6 +C7 +C8 +CIO +ClI +C12 + * C19 2P23-d23 
{{ 1, 2}, { 1, 3} } C5 + C8 + C9 + C12 + * ?+ C19 = 2p +d-dl -d13 
{{ 1, 2}, {2, 3} } C6 + C8 + CIO + C12 + + C19 2P2+d-dl2-d23 

{{1, 3}, {2, 3}} C7 + C8 + ClI + C12 + + C19 = 2p3+d-dl3-d23 

{{1, 2}, {1, 3}, {2, 3}} C8 + C12+ * + C19 22d-dl2-dl3-d23 
{{2, 3}, {I}} C12 + C15 + C16 + C18 + C19 = 2d-dl-d23 
{{1, 3}, {2}} C13 + C15 + C17 + C18 + C19 2d-d2-dl3 

{{ 1, 2}, {3} } C14 + C16 + C17 + C18 + C19 = 2d-d3-dl2 
{{1}} c9 +C12 +C15 +C16 +C18 +C19 =2p - dl 
{{2}} CIO + C13 +C15 + C17 +C18 + -C19 2P2-d2 

{{3}} ClI + c14 + C16 + C17 + C18 + C19 = 2P3 d3 

{{1}, {2}} 2 C5 + C18 + C19 =2d2-d--d2 

{{1 }, 131 C16 + C18 + C19 = 2d3-dI-d3 
{{2}, {3}} C17 + C18 + C19 =2d23-d2-d3 
{{1}, {2}, {3}} C18 + -C9 2D 
{+} C19 = 1 

is more difficult and is taken care of by Lemma 3 below. These results are 
summarized in Table 6. From the equations of Table 6, the ci's (i.e., the values 
of (o(n)) can be computed easily. 

We now explain how to deal with F = {{ 1}, {2}, {3}}, i.e., how to compute 
D = dim(((VI + W) n (V2 + W) n (V3 + W))/W). For this case, the mapping 
(16) is not onto in general and D cannot be determined by only the ps's 
and dD's. We give examples of that at the end of the Appendix. Consider the 
lattice L' = L12 x L13 x L23 c K3k and the mapping i?: K3k 1 4 K k defined by 
I,(VI, V2 , v3) = VI + V2 + v3. LetL = L' n ker(i,) = {v E L' I i(v) = 0}, the 
kernel of i1 restricted to L'. This L is a lattice in K3k and we have: 

Lemma3. D=dim(LlnC1)-di-d2-d3. 

Proof. Let W = W12 + W13 + W23 and d = dim(W). From Lemma 6 in the 
Appendix (in the Supplement section), one has 

(19) D=dl2+dl3+d23-d1 -d2-d3-d. 

But since i1(W12 x W13 x W23) = W, one has 

dim(L n CQ1) = dim(ker(i1) n (W12 X W13 X W23)) 

(20) = dim( W12 x W13 x W23) - dim(W) 

=dI2 + d13 + d23 - d- 

Merging (19) and (20) completes the proof. E 

We can now compute D using Theorem 2 by determining L's successive 
minima. For this, we must construct a basis for L, which can then be reduced 
by Lenstra's algorithm [4]. 

We first find a set of vectors that generate L. An element of L' can be 
written as v = (vI + v2, vI +V3 5 v2' + v3') with vI, vV E LI, v2, vV' E L2, and 
V, V E L3 . Such a v belongs to L if and only if 

(21) vI + VI + V2 + V2" + v3 + v3' = 0. 



760 RAYMOND COUTURE, PIERRE L'ECUYER, AND SHU TEZUKA 

We will now work in L modulo Ak, i.e., in the quotient group LIAk. In 
that group, L is the direct sum of LI, L2, and L3. This comes from 
(9) and noticing that the mapping "frac" induces a projection L -+ L n Co 
with kernel Ak (and the same for LI, L2 and L3). So, from (21) we ob- 
tain vI + v' = V2 + V2 -V' + V3/ = 0 modulo Ak, and v can be written 
as (VI + V2, -V1 + V3, -V2 - V3) = (V1, -VI, O) + (V2, 0, -V2) + (O, v3, -V3) 
(each term E L) plus something in A3k which must also be in L. So, a 
generating system for L is obtained as the union of a basis for A3k n ker(qi), 
{ (v1, -vI , 0)}, {(v2, 0, -v2)}, and {(O, v3, -v3)} , where vI, v2 and V3 run 
through a basis of LI, L2, and L3, respectively. Finally, a basis for A3k n 
ker(i1) is given by {ei - ei+k, ei - ei+2k 1 i = 1, ..., k}, where ei E A3k is the 
vector with all components 0 with the exception of the ith one, which is the 
polynomial equal to 1. 

It now remains to transform this generating system into a basis for L. This 
is similar to the corresponding problem for lattices in Rn , but now, integral 
linear combination means a linear combination with coefficients in A. So, let 
XI ... , Xn denote a generating system, each vector having been multiplied by 
the modulus m so that all coordinates now belong to A. If some of these 
Xi's have a nonzero first coordinate, one may construct, by the usual process 
of finding a gcd, a linear combination of them, say X, with the property that 
the first coordinate of X divides (in A) the first coordinate of each Xi. One 
can then, by adding an integral multiple of X to the Xi's, modify them so that 
their first coordinate is 0. We now have a new generating system formed by the 
modified Xi's, together with X. In case all Xi's had zero first coordinate from 
the start, we just do nothing at this step. Then, we repeat the process for the 
second coordinate of the Xi's, etc., each time obtaining possibly a new X. At 
each step, the Xi's, together with all the obtained X's, still form a generating 
system for L. Once the process is terminated for all coordinates, all the Xi's 
are zero and we can forget them. The basis is then the set of X's divided by 
the modulus m. 
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