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THE STRUCTURE OF THE 
PROJECTIVE INDECOMPOSABLE MODULES 

OF THE SUZUKI GROUP Sz(8) IN CHARACTERISTIC 2 

GERHARD J. A. SCHNEIDER 

ABSTRACT. This paper describes the socle series of the projective indecompos- 
able modules and of tensor products of simple modules for the simple group 
Sz(8) in characteristic 2. The results have been obtained by computational 
means and the various steps are described. The main algorithm was modified 
to allow for parallel execution on a network of workstations. This made possible 
the effective handling of modules of degree 4030. 

In this note we want to describe how to determine the Loewy series of 
the projective indecomposable modules of the smallest Suzuki group of order 
29120 = 26 * 5 * 7 * 13 in characteristic 2. The computer will be the main 
tool used to achieve this goal, in particular, the CAYLEY system (see [1]) will 
be applied with the author's implementation of various representation-theoretic 
algorithms. These algorithms have been explained in detail in [6, 7]. This shows 
how the computer helps to gain insight into examples that seem to be difficult 
to analyze by purely theoretical means, once the required methods are available 
and implemented. The notation used in this paper is standard (see [6, 4] for 
further information). 

For convenience, we include both the ordinary and 2-modular character table 
of this group in the appendix (see the Supplement section at the end of this 
issue). The tables are taken from [3, 5]. The group Sz(8) has eight modular 
characters. Seven lie in the principal block and are denoted by I, 4a, 4b, 4c, 
16a, 16b, and 16,. The module 64 lies in a block of defect 0. 

With the help of the information in the character tables the computation of 
the decomposition and Cartan matrix is a standard task, and the results are 
included in the appendix as well. 

Since the computer is used to do most of the work, the representations have 
to be constructed explicitly. The four-dimensional representations are easy to 
obtain, as they are described in the ATLAS. The field GF(8) is the smallest field 
over which all representations can be realized. The 64-dimensional represen- 
tation can be constructed from the permutation representation of Sz(8) on 65 
letters (which is provided as part of the CAYLEY library facility), and thus it can 
be realized over GF(2). While the naming of the four-dimensional modules 
may be arbitrary, some care has to be used in distinguishing the 16-dimensional 
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modules in order to have a naming convention consistent with the ATLAS. How- 
ever, as the 16-dimensional representations may be obtained as tensor products, 
we can use the following proposition to overcome this difficulty. 

Proposition 1. There holds 4a (0 4b =: 16b , 4a (0 4c =: 16a, and 4b (0 4c = 16c. 

Once the modules are known, we can easily determine their vertices and 
sources, using the standard CAYLEY procedures explained in [6]. In fact, the 
computer quickly realizes that all seven modules have a simple socle I when 
restricted to a Sylow-2 subgroup and to any subgroup of order 32; this proves 
the following proposition: 

Proposition 2. All seven modules in the principal block have a Sylow-2 subgroup 
P as a vertex. They remain indecomposable when restricted to a Sylow-2 sub- 
group. When restricted to P, the four-dimensional simple modules become uni- 
serial, whereas the socle series of the 16-dimensional modules reads 

I 
II 

III 
III' 
III 
I I 
I 

Let N denote the normalizer of a Sylow-2 subgroup in Sz(8); it is the sta- 
bilizer of a point in the permutation representation on 65 letters. It has order 
448 = 26 *7 and seven one-dimensional irreducible modules in the principal 
block. They are denoted by la, lb, lc, b d, le, lf, and IN and are obtained 
as successive tensor products of la with itself. 

Proposition 3. The simple modules of Sz(8) become their own Green correspon- 
dents when restricted to N and have the following socle series: 

4a tN 4b tN 4c tN 
if Ic le 

Id lb la 

Ic le if 

la Id lb 

16a tN 16b tN 16c 1N 
Id lb la 
I b I 1a I 1d 

la le le Id Iff lb Ic Ic 

la IC Id If lb Ic Id le la lble If 

If lb lb la la lc Id Id le 

I e I f I C 

Ic le if 
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64 1n 
I 

Ic le If 

la la lb lb Id Id 

la lb Ic Id le If"" 

la lb IC IC IC Id le le le If If If 

la la la lb lb lb Ic Id Id Id le If 

la lb.ic Id le If"" 

IC IC le le If If 

la lb Id 

I 

Since 64 tN is the projective cover of the trivial module for N, the socle 
series of the other projective modules for N can easily be derived, using tensor 
products. 

The determination of the restricted modules as well as their socle series is a 
straightforward application of the CAYLEY function RESTRICT in combination 
with the CAYLEY procedures given in [7]; user intervention is not required. 

The process of inducing simple modules from N to Sz(8) is just as easy as 
the restriction. We obtain 

Proposition 4. The modules for Sz(8) that are obtained by inducting simple N- 
modules have the following socle series: 

la tSz(8) lb TSz(8) Ic TSz(8) Id tSz(8) le TSz(8) If TSz(8) 

4a 4c i6a 4b i6b i6c 
I I 4a I 4b 4c 

4c 4b I 4a I I 
I I 4b I 4c 4a 

4b 4a I 4c I I 
i6b i6a 4a i6c 4b 4c 

4b 4a I 4c I I 
I I 4c I 4a 4b 

4c 4b 1 6c 4a i6a i6b 

I I 4c I 4a 4b 

4a 4c I 4b I I 
I I 4a I 4b 4c 

4c 4b I 4a I I 
i6c i6b 4b i6a 4c 4a 

The structure of the tensor products of the simple Sz(8)-modules may also be 
of interest. The determination of the series is yet another automated application 
of the CAYLEY procedures given in [7]. 

Proposition 5. There holds 4a (? 4b (? 4c = 64, thus 4a (? 16c = 64, 4b (0 16c = 64, 
and 4c (0 6b = 64. The modules that are obtained as tensor products of the four- 
dimensional modules with themselves have the socle series: 
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4a 4a 4b 4b 4c 4c 
I I I 

4b 4c 4a 
I I I 

4c 4a 
I I I 

4b 4c 4a 

I I I 

The socle series of the remaining tensor products are listed in Table 1 (in the 
Supplement section). 

The projective modules are also fairly easy to construct. Let Hs denote the 
projective cover of the simple module S of Sz(8). The proof of the following 
facts is a simple application of the Nakayama relations in combination with 
Proposition 1 and 5. 

Proposition 6. We have 

4a 64= H16c, 16a0 16b 
=i116c, 

16C 64= H4a e 64 64 
4b 064 = J16aa 16a 0 16c = F16b, 16a 064 = 4b 64 @ 64, 

4c 64 = J 16b= 16b 16c=F16a l6b 64 =fl4c 64 ( 64, 

64 0 64 = flI @ 2 J 16a @ 2 J 16b @ 2 16e @ 9. 64. 

Proof. Let [M, N] denote dim HomGF(8) Sz(8) (M, N). Now, 

[64 0 64, 64] = [4a 0 16c 0 64, 4a 0 16c] = [4a 0 16c 0 4a, 640 16c] 
- [4a 0 64, F4a ~( 64 64] = [64, "Ia 04a D4a 0 64 (1 4a ( 64] 

= [64, fl4a (0 4a] = [64 0& 4a, 4a = [JlI6c, Jl4a 9. 

The other statements can be proved in a similar way. 5 

Since the projective covers of the 16-dimensional simple modules are of small 
degree 256, we can directly apply the methods in [7] to these modules and obtain 

Theorem 7. The projective covers of the simple 16-dimensional modules of Sz(8) 
have socle series as listed in Table 2 (in the Supplement section). 

Once the modules are constructed, the computation can be carried out in the 
CAYLEY system, without any user intervention, merely by calling the appropriate 
procedures. 

We now proceed to analyze the projective covers of the four-dimensional 
simple modules. Although the dimension of 16 0 64 is still within reach of 
our methods, the computation can be speeded up by first removing the two 
summands of dimension 64. This is best done by applying the MEATAXE. Since 
the MEATAXE is a random method, there is no guarantee that it will return a 
64-dimensional simple module as a submodule or factor module when applied 
to 16 0 64. However, the CAYLEY implementation also returns the base change 
that the MEATAXE applies. Therefore, one can apply this process iteratively, 
until the desired modules are found, and then determine their preimages in the 
original module. Thus, the modules r,4a E fl4b l and F14c can be constructed. 

The proof of the following theorem may then be left to the computer. 
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Theorem 8. The projective covers of the simple four-dimensional modules of 
Sz(8) have socle series as listed in Table 3 (in the Supplement section). 

The remaining projective module, the projective cover 1f, of the trivial mod- 
ule, presents some challenge. Not only is its degree 1984 too large for a direct 
application of the CAYLEY routines, but its construction involves a module of 
dimension 4096. Therefore, we will use the extended methods described in [7]. 
This means that we shall compute socle series of subquotients of the module 
until the series for the whole module is found. Rather than using the MEATAXE 
to compute some initial series of submodules, a good filtration of the module 
can be found by observing 

1IN tSZ(8)- INt SZ(8) (?64-FIf (ED 2 * `116a G 24 *`ll6a D 2 * i1l6c (D 10 * 64. 
Using the socle series from Proposition 3 for the module 64 tN= rIIN, we can 
choose a basis for the induced module such that the filtration given by 

soc1 (rIN) tSz(8) <SOC2 (rIN) tSZ(8) < ?.. < soc9(flIN) TSZ(8)< soclo(FIIN) tSZ(8) 

can immediately be read off the representing matrices. Then we may compute 
the socle series of each of the quotients of these submodules. This yields an 
even finer filtration of the induced module with the property that each chief 
factor is indeed semisimple. We call this series a layer series of our module. 

Without loosing information we can reduce the degree of the induced module 
by only inducing the heart of rIN- Q(IN)/IN, as we then obtain the heart of 
ll, plus projective modules: 

Q(IN)/IN tSZ(8)- Q(I)/I ($ 2 ll6a (D 2 d Jll6b (D 2 * .I`6c ($ 8 64. 

The eight composition factors 64 are relatively easy to remove, as they are all 
in the nonprincipal block. We denote the remaining module by M; it is of 
dimension 3518. This module will be used for the actual computation. 

Observe that we know most of the composition factors of M, as the number 
of composition factors isomorphic to the simple module S in a given layer of 
HI is equal to the number of trivial composition factors in the same layer of 
the projective Sz(8)-module Hls, by [4, Lemma 1.9.10]. It now happens that all 
composition factors isomorphic to a given S in a given socle layer of M are 
either all from Q(I)/I or from the projective modules. 

The following table describes the distribution of the composition factors of 
M as it is known at the beginning. The number of composition factors in socle 
layer i are listed in column i of the table. The number of factors coming from 
the projective modules are printed in italics. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

I 0 ? 6 ? 6 ? 12 ? 6 ? 12 ? 18 ? 
4a 1 2 3 2 5 4 7 4 7 6 9 6 9 6 
4b 1 2 3 2 5 4 7 4 7 6 9 6 9 6 
4c 1 2 3 2 5 4 7 4 7 6 9 6 9 6 
16a 2 1 0 1 0 2 0 1 4 2 2 3 0 3 
16b 2 1 0 1 0 2 0 1 4 2 2 3 0 3 
16c 2 1 0 1 0 2 0 1 4 2 2 3 0 3 
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15 16 17 18 19 20 21 22 23 24 25 26 27 

I 18 ? 12 ? 6 ? 12 ? 6 ? 6 0 0 
4a 9 6 7 6 7 4 4 4 3 2 1 2 0 
4b 9 6 7 6 7 4 4 4 3 2 1 2 0 
4c 9 6 7 6 7 4 4 4 3 2 1 2 0 

16a 0 2 2 1 4 2 0 1 0 1 0 0 2 

16b 0 2 2 1 4 2 0 1 0 1 0 0 2 

16c 0 2 2 1 4 2 0 1 0 1 0 0 2 

Only the positions with a question mark have to be computed. Although this 

provides no shortcut to the main computation, we can use the information from 

this table as termination criteria for the following working algorithm: 
- Compute a layer series of M, using the filtration that can be derived from 

the socle series of Q(IN)/IN tSz(8) . 

- Choose subquotients of M of reasonable size that contain only complete 
layers and start with odd-numbered layers of M. Compute their socle series 

and apply the resulting base change to M to get a new layer series for M. 
- If the number of nontrivial composition factors in each layer is correct, and 

if the number of trivial modules in the odd-numbered layers is correct, then we 

have computed the complete socle series of M. 

The actual computation involved the determination of the series of half the 

induced module, i.e., SOc5 (IINV)/ soc (uIN) tSz(8), a module of dimension 2015. 

Since the result seems somewhat surprising, we give the details. 

Proposition 9. We have 

SOCS(JIIN)/ SOC1 (FIN) tSz(8)- M2 @ ril6a ( 1`16b ( 1`16c @ 4 64. 

M2 has dimension 1759 and its socle series reads: 

4a 4b 4c 
III 

4a 4b 4c 4a 4b 4c 
111111 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
4a I 4I II I b 16a 16b 16c 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
III II IIII III 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
III II IIII III 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
IIIIIIIIIIII 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
III II IIII I 1III 16a 16b 16c 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 4a 4b 4c 
1I IIIIIII 16a 16b 16c 

4a 4b 4c 4a 4b 4c 4a 4b 4c 
III 16a 16b 16c 

4a 4b 4c 
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The computation can easily be parallelized and run on a network of work- 
stations with a shared file system, as the socle series of various subquotients 
of M can be determined simultaneously. The workloads as well as different 
speeds and available user memory of the various machines have to be taken 
into account when setting up the jobs. These factors can be compensated by 
running subquotients of different sizes on the individual machines. Successful 
termination of a job on a machine is marked by a control file. Although this is 
a rather crude way of synchronizing parallel jobs, it worked well under the local 
conditions. 

The result of the computations with 1f, can be summarized as follows: 

Theorem 10. The projective cover fIs of the trivial module of Sz(8) has socle 
series as listed in Table 4 (in the Supplement section). The number of composition 
factors isomorphic to I in each socle layer can also be described by the following 
table: 

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 

I 1 0 3 0 9 0 13 0 18 0 18 0 18 0 

15 16 17 18 19 20 21 22 23 24 25 26 27 

I 21 0 19 0 18 0 9 0 9 0 3 0 1 

For convenience, we include the number of extensions between modules of 
Sz(8) in characteristic 2 (see also [8]). The following table has 

dimGF(8) ExtGF(8) Sz(8) (Si X Sj) 

in position (i, j), for any two simple Sz(8)-modules Si, Sj: 

I 4a 4b 4c 16a 16b 16c 64 
I 0 1 1 1 0 0 0 0 

4a 1 0 0 0 1 0 0 0 

4b 1 0 0 0 0 1 0 0 

4c 1 0 0 0 0 0 1 0 
16a 0 1 0 0 0 0 0 0 

16b 0 0 1 0 0 0 0 0 

16c 0 0 0 1 0 0 0 0 
64 0 0 0 0 0 0 0 0 

A final word should be said about the reliability of the results, as they have 
been achieved almost solely by means of a computer. Such an approach could 
give rise to additional nonmathematical errors, like programming bugs or com- 
piler problems. However, the mathematical context that effectively controls the 
implementation of our algorithms is quite rigid: only eight different modules 
may show up in our computations and, as explained, the results can be cross- 
checked for consistency. Thus, any bug in the program will almost certainly 
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yield a result that no longer conforms to the general mathematical context of 
the problem, like modules of dimension 0, etc. Since the results computed are 
consistent, this gives additional reassurance of the correctness of the theorems 
stated, although this argument is of course no proof. 

The CPU requirements differed greatly for the various computations. While 
a lunch break was enough to do the series for 1116, the series for 114 was 
computed over a weekend. The preparation and actual runs for the module 
HI (including the work on the module of dimension 4030) spread over several 
weeks. 
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