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SQUARES IN QUADRATIC PROGRESSION 

R. G. E. PINCH 

ABSTRACT. The sequence of consecutive integer squares has constant second 
difference 2. We list every such sequence of squares containing a term less than 
10002. 

0. INTRODUCTION 

We call a sequence a quadratic progression if the second difference is constant. 
The sequence of consecutive integer squares is certainly a quadratic progression 
with second difference equal to 2. A number of families of nontrivial four- 
term integer square progressions with second difference 2 are known (Buell [2]) 
but no such five-term quadratic progression of integer squares is known. Leech 
asked whether there is such a sequence starting at 0 and we answer this in the 
negative by listing all four-term progressions with an element less than 1000 
and showing that none includes 0. We also find that none of these progressions 
can be extended to a fifth square term. 

1. QUADRATIC PROGRESSIONS WITH GIVEN SECOND TERM 

Suppose that 

x 2 d2 y2-2d2-X2+2 

(11) z2=3d2- 2X2?+6 

is a four-term progression with constant second difference 2. We regard the 
second term d2 as given. Then we have 

y2 +x2= 2d2+2, 
(1.2) 

z2+2X2= 3d2+6 

with obvious solutions +x = d + 1 corresponding to the trivial quadratic pro- 
gression of consecutive squares. For given d, it is easy to tabulate the finite 
set of solutions x to each of the individual equations in this pair of equations. 
The results for d < 999 are included in Table 1. 
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TABLE 1. Table of solutions 

t x y z t x y z 

6 23 32 39 570 7879 11128 13623 

16 87 122 149 584 2257 3138 3821 

39 32 23 6 601 4832 6807 8326 

39 70 91 108 651 580 499 402 

51 148 203 246 651 778 887 984 

59 228 317 386 849 718 557 324 

59 630 889 1088 856 1537 1998 2371 

79 242 333 404 883 25566 36145 44264 

83 516 725 886 862 1713 2264 2705 

108 91 70 39 886 725 516 83 

108 157 194 225 916 26605 37614 46063 

108 707 994 1215 984 887 778 651 

108 6643 9394 11505 984 1145 1286 1413 

147 302 401 480 1088 889 630 59 

149 122 87 16 1215 994 707 108 

177 878 1229 1500 1226 1017 752 311 

225 194 157 108 1247 1048 801 430 

225 296 353 402 1411 1180 891 442 

240 839 1162 1413 1413 1162 839 240 

246 203 148 51 1413 1286 1145 984 

287 11838 16739 20500 1500 1229 878 177 

311 752 1017 1226 2371 1998 1537 856 

324 557 718 849 2561 2112 1537 514 

334 3693 5212 6379 2705 2264 1713 862 

386 317 228 59 2853 2348 1699 510 

386 6237 8812 10789 3821 3138 2257 584 

402 353 296 225 6150 5029 3572 477 

402 499 580 651 6379 5212 3693 334 

404 333 242 79 8326 6807 4832 601 

419 11020 15579 19078 10789 8812 6237 386 

430 801 1048 1247 11505 9394 6643 108 

442 891 1180 1411 13623 11128 7879 570 

477 3572 5029 6150 19078 15579 11020 419 

480 401 302 147 20500 16739 11838 287 

510 1699 2348 2853 44264 36145 25566 883 

514 1537 2112 2561 46063 37614 26605 916 



SQUARES IN QUADRATIC PROGRESSION 843 

2. QUADRATIC PROGRESSIONS WITH GIVEN FIRST TERM 

Suppose that 

(2.1) c2, x2 y2=2x2_c2?2, z2=3x2-2C2+6 

is a four-term quadratic progression with constant second difference 2. We 
regard the first term c2 as given. Then we have a pair of simultaneous Pellian 
equations 

(2.2) y2- 2x2 = 2 - C2, z2- 3x2 = 6 - 2C2 

with obvious solutions +x = c + 1 corresponding to the trivial quadratic pro- 
gression of consecutive squares. For given c, each Pellian equation has infinitely 
many solutions x. We shall show that in practice a simple search can be used 
to identify small common solutions, and that Baker's methoct of linear forms in 
logarithms can be used to determine whether or not the set of solutions found 
in this way is complete. 

We illustrate the method on the case c = 39, which exhibits all the features 
of interest. We have 

y2- 2x2 = -1519, z2 _3x2 = -3036. 

The first equation is solved by working in the field Q(Vl), which has class 
number 1 and fundamental unit 1 + VI. We have 

for some integer n and i = 1, 2 or 3, where I = 3 + 2vX2 is the fundamental 
totally positive unit and 31 = 7 + 28Xv', 62 = 23 + 32XVI, 33 = 37 + 38XVI. 
The possible values of ?x therefore fall into three binary recurrence sequences 
A(i) , each with recurrence relation 

An+1 = 6An-An-I 

which has the minimal equation for I as auxiliary polynomial, and initial values 
A(') = 28, A(') = 98; A (2) 32, A(2) = 142; A(3) = 38, A(3) = 188, 
respectively. 

We solve the second equation similarly in Q(V3), which has class number 1 
and fundamental unit 2 + X. We have 

?z + xXF = fliem 

for some integer m and j = 1 or 2, where e = 2 + vX is the fundamental 
totally positive unit and fl, = 6 + 32X/_, /32 = 36 + 38v3. The possible 
values of ?x therefore fall into two binary recurrence sequences B(i), each 
with recurrence relation 

Bm+l = 4Bm - Bm-, 

which has the minimal equation for e as auxiliary polynomial, and initial values 
B'1) = 32, B(1) = 70; B(2) = 38, B(2) = 112, respectively. 

The solutions x to the original pair of equations are therefore the common 
values between the sequences A(') and BmJ). Computing the values of the 
sequences with m, n from -10 to +10, we find that A(') = B(- ) = 70, 

A -2) = B -1) = 32, A 3) = B_2) -38, and A(3) = B(2) = 40. We shall show that 
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these are in fact the only occurrences of common values between the sequences 
A(i) and B(i). 

We show first that there is no term in common between the pairs of sequences 
A(') and B2), between A(2) and B2), or between A(3) and B(') . We do so by 
considering the (finite) sets of values of A(M) and B(2) modulo 41, A(2) and 
B(2) modulo 408, A(3) and BM') modulo 315, and observing that in each case 
the sets of A-values and B-values are disjoint. 

We now show that the only values in common between the pairs of sequences 
A(M) and B(M); between A(2) and B('); and between A(3) and B(2) are the 
values given above. By Theorem 2.6 of [3] any solution to y + xVX = 61 ,n 
z + xX = flem, must have m, n less than exp(63. 11). We apply Algorithm 
3.1 of [3] to the sequences A(M) and B(M) with List K the set of primes up to 
953 and List L the primes less than 241 and find that if A() = B() then 
n _ -1 mod N and m 1_ mod M for moduli N, M with logN > 79.05 
and logM > 100.00, which shows that in fact we must have n = -1 and 
m = 1 as required. A similar analysis holds for the pair of sequences A(2) and 
B(1 . 

To show that the sequences A(3) and B(2) have only the two values 38 
and 40 in common, we split A(3) up into two subsequences C(l) and C(2) 
of alternate terms, having the recurrence relations Cn+l = 34Cn - Cn-I with 
initial values C(l) = A(3) = 38, C(l) = A 3) = 1090; C(2) = A(3) = 40, 0 0 ~~~1 2 0- 

C(2) = A(3) = 188. Again computing the values of C(i) for i between -10 
and +10, we find that the only common values are C(l) = B(2) = 38 and 
C(2) = B(2) = 40. We now apply Algorithm 3.1 of [3] to each pair of sequences 
in turn as before to show that these are indeed the unique common values. 

Theorem 1. The only nontrivial four-term quadratic progressions of integer 
squares with a term less than 10002 are those given by Table 1 or their reversal. 
Proof. Since reversing a quadratic progression with constant second difference 
2 gives another such, it is sufficient to consider those for which the first or the 
second term is less than 1000. Those for which the second term is less than 1000 
are dealt with by the remarks of ? 1. The calculation illustrated above for the 
case c = 39 is simple to automate and was programmed in Algol-68C. In each 
case where sequences appeared to have no common term, it was possible to show 
this by taking values to a modulus at most 965. In each case where sequences 
had a term in common, the bound on the exponents m and n was less than 
exp(63. 11), and the algorithm was applied with List K being the primes up 
to 953 and List L the primes up to 241. Each application of the algorithm 
produced moduli in excess of the bound, showing that each pair of sequences 
with apparently only one term in common did indeed have only that term as 
a common value. The whole table was computed and verified completely on a 
Sun 3/60 workstation, in about eleven hours of CPU time. C1 

5. OTHER SECOND DIFFERENCES 

Similar results can be obtained for any fixed constant second difference 3. 
We replace (1.2) by 

y2+ 2 =2d 2+, z2+2X2= 3d2+?3, 
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and (2.2) by 

(2.2) y2 - 2x2 = 3 - c2, z 2- 3x2 = 3 - 2c2, 

and it is clear that the same techniques apply. 
The problem of finding squares in quadratic progression with constant but 

unrestricted second difference is equivalent to finding a quadratic polynomial 
with consecutive square values. This problem was considered by Allison [1], 
who obtains the sequence 532, 1732, 2172, 2332, 2272, 1972, 1272 of seven 
distinct squares with constant second difference -9960. He shows that there 
are infinitely many quadratic polynomials taking eight consecutive square values 
symmetric about the turning point if this falls midway between integers, the first 
giving the progression 

172, 532, 672, 732, 732, 672, 532, 172 

with constant second difference -840. In [4] it is shown that there are no such 
polynomials if the turning point is at an integer. In each of these "symmetric" 
cases the argument reduces to analyzing the group of rational points on an 
elliptic curve given by simultaneous Pell equations. 
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