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WHICH INTEGERS ARE REPRESENTABLE AS THE PRODUCT 
OF THE SUM OF THREE INTEGERS 

WITH THE SUM OF THEIR RECIPROCALS? 

ANDREW BREMNER, RICHARD K. GUY, AND RICHARD J. NOWAKOWSKI 

In memory of Dick Lehmer, with thanks for the Western Number Theory conferences, and for 
launching at least one of us on a career in number theory. 

ABSTRACT. For example, the integer 564 is so representable by the three inte- 
gers 

122 44200 5010002877 81163 51171 17995 2136135134 91867, 

-3460 69586 84255 04865 64589 22621 88752 08971 30654 24460 and 

74807 19101 53025 27837 94583 60171 46464 94820 59055 28060. 

1. INTRODUCTION 

Melvyn J. Knight has asked which integers n can be represented as 

(1) n= (x+y+z) (1n+ 1++ 

where x, y, z are integers, perhaps positive ones. Rewrite (1) as 

(2) (x+y+z)(yz+zx+xy) = nxyz. 

If (x, y, z) is a solution, so is any permutation. So is (kx, ky, kz) for any k . 
By putting k = -1 we see that at most one of x, y, z need be negative. Also, 
it suffices to find rational solutions, and to retrieve primitive integer solutions, 
with gcd(x, y, z) = 1, by an appropriate choice of rational k. If (x, y, z) 
is a solution, so is (1/x, l/y, 1/z). Indeed, (2) is quadratic in x, y and z, 
and solutions occur in reciprocal pairs: 

n -10 -4 0 1 9 10 11 14 15 
(-1, 4, 12) (-1, 3, 6) (-1, 2, 2) (1, 1, 2) (1, 2, 3) (3, 10, 15) (1, 2, 6) 

(-1, 1, any) (1, 1, 1) 
(-12, 3, 1) (-6, 2, 1) (-2, 1, 1) (2, 2, 1) (6, 3, 2) (10, 3, 2) (6, 3, 1) 

The right side of (1) may be written as 

9+ (y Z)2 + (z _X)2 + (X _y)2 
yz zx Xy 
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so that if x, y, z are all positive, no integer less than 9 can be represented, 
and 9 only with x = y = z. 

2. A FAMILY OF ELLIPTIC CURVES 

Write (2) as 

(3) x2(y + z) + x(y2 + (3 - n)yz + Z2) + yz(y + Z) =0, 

so that 

_y2 + (n - 3)yz - z2 - A 
(4) x 2(y+z) 

where 

(5) 2 - y4- 2(n - 1)y3z + (n2 - 6n + 3)y2z2 - 2(n - 1)yz3 + Z4. 

By standard arguments (see, e.g., Mordell [4, p. 77-78]), (5) is birationally 
equivalent to the elliptic curve 

(6) T2 = a(a2 + (n 2- 6n - 3)a + 16n), 

and this allows us to write down maps between (3) and (6) as follows: 

(7) a = -4(yz + zx + xy)/z2, T = 2(a - 4n)y/z - (n - l)a 

and 
X , y -T-(n- ) 

(8) wz 2(4n - a) 
The solutions to Knight's problem for any particular value of n, if there are 

any, will correspond to rational points on (6). By the Mordell-Weil theorem 
these form a group comprising a finite torsion group and a finitely generated 
infinite group with r generators, where r defines the rank of the curve. Geo- 
metrically, the curve (6) has two components, an "egg" for values a < 0, and 
an infinite branch when a > 0. 

We characterize representations in which x, y, z are all positive. From (7), 
a < 0. If n < 0, then, from (1) or (2), at least one of x, y, z must be 
negative. If n > 0, then, from (8), x, y, z will all be positive just if (a < 0 
and) (n - 1)2a2 > T2, i.e., 

(n - 1)2a2 > a(a2 + (n2 - 6n - 3)a + 16n). 

Divideby a (<0): 

(n - 1)2a < a2 + (n2 - 6n - 3)a + 16n, 

(a - (2n + 2))2 > (2n - 2)2, 

which is always true if n > 0 and a < 0. 

Necessary and sufficient conditions for a 
positive representation are n > 0, a < 0. 

If there is a rational point on the egg, then there are such points on the infinite 
branch; i.e., if there is a representation with positive integers, then there will 
also be representations with x, y, z not all of the same sign. But the converse 
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is not true. It is possible to have an infinite number of rational points on the 
infinite branch and none on the egg. The smallest such example is n = 29, 
which has (x, y, z) = (5, -26, 195) and an infinity of other solutions, but 
none of them positive. 

If P is on the egg, then just the odd multiples of P give positive solutions. 
E.g., for n = 11 the point P(- 11, 55) corresponds to the solution (x, y, z) = 
(3, 1, 2). The point 2P(l , 55) gives the nonpositive solution (7, -5, 140), 
while 3P gives (22243, 8177, 8874). The next smallest positive solution is 
given by 5P: 

(596917970819, 264668812593, 765759090202). 
The only values of n less than 1000 with positive representations are pre- 

cisely those shown in bold type in Table 1 in ?8. The integer n = 997 has no pos- 
itive representation even though it corresponds to a curve of rank three (the solu- 
tions (30, -8455, 38418), (390, -1219, 572010) and (85, -187068, 271740) 
are independent). 

3. SOME SINGULAR CASES 

The discriminant of (6) is 

(9) (n2 - 6n - 3)2 - 64n = (n - 1)3(n - 9), 

and it follows that (6) is singular only for n = 0, 1 and 9. 
n = 0: T2 = U2(a - 3), a - 3 = u2, where ,u is rational, (a, T) 

(,t2 + 3, +y(yu2 + 3)) and equation (8) gives 

x y y(it2 + 3) +,u2 + 3 1 +j 
z -2(u2 + 3) -2 

x:y y: z = I +y ,: I -y ,: -2. 

For example, any three integers whose sum is zero. 
n = I1: T2 = a(a - 4)2, (v, T) =(,y2 ?,u(,2 -_)) 

x,y _ F/ 
z 2' 

x: y: z = -, : ,u: 2. 

For example, any three integers of which two sum to zero. 
n = 9: r2 = T ( + 12)2, (a, r) = (4,u2, ?8,(Cu2 + 3)), 

xI y _ ?8,(u2 + 3) - 32,2 _ -,u - 1)(u - 3), ,u(, + 1)(u + 3) 
z 2(36 - 4,2) ,2 - 9 

x: y: z = -,u( - 1)(u - 3): ,u(u + 1)(,u + 3) :,2 - 9. 

Rational values of ,u give integer solutions, with at least one of x, y, z nega- 
tive. For example, (2, 30, -5) and ( 1 5, 1, -6) are given by ,= ?2, ?5, ?3i 

?9, i 3, i3. But to get the obvious (and unique positive) solution x = y = z 5 

we have to put , = v "3. 

4. THE TORSION GROUP 

We assume that the curve is nonsingular, i.e., n + 0, 1 or 9. The point 
(0, 0) is always of order two. When n < 0, this point is on the egg, and when 
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n > 0, it is on the infinite branch. There can be other rational points of order 
two only when (9) is a perfect square, i.e., for the three excluded values, and 
for n = 10. The points of inflexion, (4, +4(n - 1)), are rational and of order 
three. The points (4n, ?4n(n - 1)) are of order six. In the general case the 
tangents to the curve from the sole point of order two are not rational, so that 
there are no rational points of order four. The tangents to the curve from the 
point of inflexion (4, 4n - 4) have slopes Iu given by (,u + 2)2 = (n - 1)2 and 
(I- 2)2 = (n - l)(n - 9). The first pair are those of the tangent at the point of 
inflexion itself, with slope n - 3, and the tangent at the point (4n, -4n(n - 1)) 
of order six, with slope - (n + 1). The other two slopes are rational only in 
the excluded cases, and for n = 10. In all cases except n = 10, therefore, the 
torsion group is Z/6Z. 

n = 10: T2 = (a + 5)(a + 32) displays four more points of order six, 
namely (-8, +24) and (-20, ?60), and the torsion group is isomorphic to 
Z/2Z x Z/6Z. The solutions (2, 1, 2) and (2, 1, 1) of (1) given by these 
additional torsion points are essentially unique since in fact this curve has rank 
zero and accordingly has no rational points of infinite order. Only for n = 10 
do we obtain a rank-zero curve affording solutions to (1). 

The relationships between the permutations and reciprocals of a solution 
(x, y, z) and the points on the curve (6) are exhibited in the following table, 
where x = lcm(x, y, z)/x, etc. 

XYZ (f07, To)[see (7)] x7y (C0, TO) + (0, 0), i.e., (16n/a0, -16nTO/UO2) 

Y X Z (a10, -To) y X (io, -To)+ (O, 0), i.e., (16n/ao, 16nTO/ao2) 

y Z X (g"o , To) + (4, - 4(n - 1)) y7 zx (Oro, To) + (4n, 4n(n - 1)) 
ZyX (CO, -To) + (4, 4(n - 1)) z7yx (Co, -to) + (4n, -4n(n - 1)) 
ZXy (Co, To) + (4, 4(n - 1)) zixy (Oo, To) + (4n, -4n(n - 1)) 
xz y (Uo, -TO) + (4, - 4(n - 1 )) x- (c y a0 -To) + (4n, 4n (n - 1 )) 

5. CALCULATING THE RANK 

To find the rank of (6), we first note (see, e.g., Silverman [5, p. 74]) that there 
are isogenies of degree two between (6) and 

(10) T2 = S(S2 - 2(n2 - 6n - 3)S + (n - 1)3(n - 9)). 

The isogenies are 

(11) (S,T)=( ?2(1- 6)T) 

and 

(12) (a, T)= ( TS2, (1-(n 1n9))- ) T 

The discriminant of (10) is 64n, so that the quadratic factor splits just if n 
is a perfect square. Put n = 2 

(13) T2 = S(S-(v-1)3(v + 3))(S-(zv + 1)3(V-3)). 

The curve (10) has, in general, a torsion subgroup isomorphic to Z/6Z. The 
torsion points are oc, (0, 0), two points of inflexion ((n - 1)2, '?4(n - 1)2) of 
order three, and two points ((n - 1)(n - 9), ?4(n - 1)(n - 9)) of order six. 
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In the special case when n = v2 is a square, the torsion subgroup is isomor- 
phic to Z/2Z x Z/6Z. There are two additional points ((v + 1)3(v T 3), 0) 
of order two, and four more points of order six, namely (SO, ?4vSo) where 
SO = (V2 - 1)(v + 1)(v + 3). 

To calculate the rank of (6) for particular values of n, we follow Birch and 
Swinnerton-Dyer [1], as exposed by Cassels, Ellison and Pfister [3]: compare 
also Bremner [2]. 

Any rational number may be written in the form a = 6a2/b2, where 6, a, b 
are integers, a is squarefree, a, b are nonnegative, and a I b (a is prime to 
b). Substitute in (6) and note that z is of shape 6ac/b3, where c is an integer 
and 
(14) (5c2 = 52a4 + (5(n2 - 6n - 3)a2b2 + 16nb4, 

so that 6116nb4. We may assume that ( 1 b. For if pk6 and plb, then p2 
divides the right, and hence the left, of (14): now a is squarefree, so pjc2, p3 
divides the left of (14), p31k2a4, pla, contrary to a I b. 

The existence of a rational point on (6) therefore implies 

(15) (12n. 
[In fact we shall soon see that n odd implies ( odd, so that (1n.] 

If PI, ..., Pk are the distinct prime factors of n, then 

with each ci = 0 or 1, and there are 2k+I candidates for (. From the un- 
derlying algebra, it is known that those ( for which there are solutions form 
a multiplicative 2-group; however, this is straightforward to verify directly as 
follows. 

Lemma 1. (a) If ((a, b, c) is a solution of (14) for n = nI n 2 with n1 squarefree, 
and ( = 6162 with n1 = 5lei, n2 = (5262, then there is also a solution with ( 
replaced by c162 = n/(52 and (a, b, c) replaced by (4c2b, a, 4c2c). 

(b) If (1 (a,, bi, cl) and 62(a2, b2, C2) are solutions of (14) and (1 = gd1, 
(2 = gd2 with di I d2, then (5(a, b, c) is also a solution, where ( = d1d2, and 

a : b = a1b,c2 - a2b2c1 : d1a2b2 - d2a2b2. 

The corresponding treatment of (10) is to write S = AA2/B2, T = AAC/B3 
with A, A, B, C integers, A squarefree, A and B nonnegative and A I B, 
so that 
(16) AC2 = A2A4 - 2A(n2 - 6n - 3)A2B2 + (n - 1)3(n - 9)B4 

= [AA2 _ (n2 - 6n - 3)B2]2 - 64nB4. 

Note that, from the first form, A divides the squarefree part of (n - 1) (n -9), 
and that if n > 9, A is positive (else the left side would be negative and the 
right side positive). From the second form, A is also positive if n is negative. 

Those A for which there are solutions also form a 2-group; the lemma cor- 
responding to Lemma 1 is as follows. 

Lemma 2. (a) If A(A, B, C) is a solution of (16) with (n - 1)(n - 9) = N,N22 
N1 squarefree, A = A1A2, N1 = A1E1, N2 = A2E2, then 

A2EI((n - 1)E2B, A, (n - 1)E2C) 
is also a solution. 
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(b) If A1(Al, Bi, CI) and A2(A2, B2, C2) are solutions of (16) and A1 = 
GD1, A2 = GD2 with DI I D2, then A(A, B, C) is also a solution, where 
A=D1D2 and 

A: B = A1BIC2- A2B2C1: D1A 2B 2- D2A2B 2. 

There is always the solution ( = 1, (a, b, c) = (1, 0, 1), corresponding to 
the point at infinity on (6), and, if n - n1 n2 with n, squarefree, the solution 
a = n1, (a, b, c) = (0, 1, 4n2), corresponding to the origin (0, 0) on (6). The 
latter gives a distinct value of ( just if n is not a perfect square. So the order 
of the 6-group is at least 21 , except in the perfect square case, when it may 
be only 20. Then, however, we shall see that the order of the corresponding 
A-group is at least 22 . 

There are always the solutions A = 1, (A, B, C) = (1, 0, 1) and A = ml, 
(A, B, C) = (0, 1, (n - 1)m2), where (n - 1)(n - 9) = mlm2, corresponding 
to the point at infinity and the origin on the curve (10). So the order of the A- 
group is at least 21 . When n = v2 is a perfect square, there are the two further 
solutions A = vi, (A, B, C) = ((v - 1)v2, 1, 0) and A = V3, (A, B, C) = 
((V + I)v4, 1, 0), where (v - 1)(v + 3) = vlv 2, (v + 1)(v - 3) = V3v42 . In this 
instance the order of the A-group is at least 22 . 

In all cases, if the orders of the (- and A-groups are 2y and 2", then the 
rank r is given by 

(17) r= y+F-2. 

6. LOCAL OBSTRUCTIONS 

The local restrictions on ( are completely described by Lemmas 3, 4 and 5, 
which respectively list all exclusions arising from p = 2, p = 3 and p > 5. 

Lemma 3. (a) If 2evenlln, i.e., if 2 exactly divides n to an even power, then 
(5 O mod 2. 

If n is odd, write n = 1 + 2vnI with n1 odd and v > . 
(b) If n- lmod2, i.e., v > 1, then a Omod2. 
(c)If n_ lmod4, i.e., v>2, then (53mod4. 
(d)Ifn_ lmod8, i.e., v>3, and 2evenI(nI9),then(55mod8. 
(e)If n-lmod16, i.e., v>4, then $5 mod8. 

Stated positively, in cases (a) and (b) ( is odd, in case (c) =_ 1 mod 4 and 
in cases (d) and (e) =_ 1 mod 8. 

Lemma 4. (a) If n _ I mod 3, then a 5 2 mod 3. 
(b) If 3H1n, then ($ 2mod3 and ( 52nmod9. 
(c)If n 18mod27, then $ 0mod3. 
(d) If n-9 mod27, then a 5 2 mod3 and ( 5 3 mod 9. 
(e) If n 3 36mod81, then ( 5 6mod9. 
(f) If n-90mod243, then a $ 6mod9. 
(g) If n = 3vn1, v > 3 and n I mod3, then ( 6 2mod3 and 

a 5 6mod9. 

Lemma 5. If there is a prime p > 5 and 
(a) peven II n and p _ 5 mod 6, then a 0modp . 
(b) p I (n - 1), then the Legendre symbol (d Ip) :& - 1. 
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(c) p I (n - 9) and p 1_ mod 6, then (6 Ip) :$ - 1 . 
(d) poddll(n -9) and p _5mod6, then (65lp) $ -1. 

The local restrictions on A are completely described by Lemmas 6, 7 and 8, 
which respectively list all exclusions arising from p = 2, p = 3 and p > 5. 

Lemma 6. (a) If 2H1(n - 1), i.e., if 2 exactly divides n - 1, then A f Omod2. 
(b) If 411 (n - 1), then A 0-O mod 2. 
(c) If n _ 9 mod 32 and 2oddHl (n - 9), then A 0 O mod 2. 
(d) If 2H1 (n - 1), then A - 3 mod 4. 
(e) If 21n, then A 3mod4. 
(f) If2oddlln, then A 5mod8. 

Since Al(n - 1)(n - 9), which is odd if n is even, we may summarize this 
lemma as follows. If n is even, then A 1_ mod 4; moreover, if k > 0 and 
n 22k+lmod22k+2, then A_ lmod8. If n _ 3mod4, then A = lmod4; 
and if n 5mod8, or if n _ 22k+5 + 9mod22k+6,then A is odd. 

Lemma 7. (a) If 311n, then A - 2 mod 3. 
(b) If n 6 63mod81, then A 2mod 3. 
(c) If n 9 mod 81 and n - 9 = 3vnl with n_ 2 mod 3, then A 2 mod 3. 
(d)If33In, then A 2mod3. 
(e) If3H1n, then A nmod9. 
(f) If n 18mod 27, then A Omod 3. 
(g) If n-63 mod 81, then A 6 mod 9. 
(h) If n 9mod81 and n-9 = 3vnI with n- 2mod 3, then A f 6mod 9. 
(i) If 33In, then A - 3mod9. 
(j) If 331n and n = 3vnI with n1 _2mod3, then A 0 6mod9. 

Lemma 8. If there is a prime p > 5 and 
(a) p In and p _1 mod 6, then the Legendre symbol (Alp) :$ - 1. 
(b) poddIIn and p_ 5mod6, then (Alp) $ -1. 
(c) pevenII(n - 9) and p--5 mod 6, then A 0 O modp. 

The proofs of the lemmas are omitted. The details present no inherent diffi- 
culty and may safely be left to the reader. Alternatively, full details have been 
written up and are available from the authors if so desired. 

7. DESCENT ARGUMENTS 

For a given value of n and of 5 or A, although there is no local obstruction 
to a global solution of (14) or (16), a fairly extensive search may not reveal a 
solution. In such cases it is possible to carry out a descent argument, perhaps 
leading to a proof of impossibility. In any event, this allows a much more 
efficient search, which in turn may lead to the discovery of a solution. 

If the curve (14) is everywhere locally solvable, then so is the associated 
quadric 

(18) c2 = 6a 2 + (n2 - 6n - 3)alp + (16n/5)fl2, 

and, by the Hasse principle, there is a global solution ao, bo, cO E Z with 

(19) c2 = 5a 2+ (n2- 6n - 3)aobo + (16n/5)b . 
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Equations (14) and (19) may be combined and factored to transform the prob- 
lem into finding integer solutions of the equations 

(20) ha2 = aow2- 2cowv + (6ao + (n2 - 6n - 3)bo)v2, 

(21) hb2 = bo(w2 -_ v2), 

where h is a squarefree divisor of (n - 1 )(n - 9)bo. The corresponding value 
of c will be given by 

(22) hc = cow2 - (2(aO + (n2 - 6n - 3)bo)wv + 6coV2. 

If either (20) or (21) is locally unsolvable for all choices of h, then there are 
no solutions globally, and so no solutions to the original equation. 

For a given h it is possible to characterize explicitly those primes p such 
that (20), (21) are simultaneously locally solvable; but we do not list the relevant 
conditions here. 

If (20), (21) are locally solvable for all primes p, then certainly there will be 
values h, Ih, v1, w1 such that 

(23) hf2 = bo(w2 _- v2), 

and it can be shown that other solutions of (21) have 

v: w = -vIp2 + 2w1pq + v1q2: 6Wwp2 + 2e5v1pq + w1q2 

for integers p, q . So search over p and q for ratios v: w that give an integer 
value for a in (20). 

The arguments for the 2-isogenous curve (10) are parallel: the equations 
corresponding to (19) to (23) being 

(24) C0= AAO - (n2 - 6n - 3)(2AoBo) + A BO 

(25) HA2 = AOW2 - 2COWV + (AAo - 2(n2 - 6n - 3)Bo)V2, 

(26) HB2 = Bo(W2 _ -V2) 

(27) HC = CoW2 - (AAo - (n2 - 6n - 3)Bo)(2WV) +ACOV2, 

(28) HB I = Bo(JW12 I 

and one searches with integers P and Q for ratios 
V: W =AV1P2 + 2WIPQ + VIQ2: AW1P2 + 2AVIPQ + WIQ2 

that give an integer value for A in (25). 

Example 1. n = 290, a = -145. Equation (19) has a solution (ao, bo, co) = 
(352, 7, 13600), and h divides (n - 1)(n - 9)bo = 172.281.7. For none of 
the values h = 1, 7, 17, 119, 281, 1967, 4777, 33439 are the equations (20) 
and (21) locally solvable, so there are no solutions in this case. 

Example 2. n = 682, ( = -2, (ao, bo, co) = (1120, 1, 2268), and h = 
458313, p = 47, q = 1041 give v = 228930916, w = 661668551, a = 
196340884, b = 1088099, c = 134423972854224864, a solution unlikely to 
be found by direct search. So 682 can be represented by 
x = 398726340949893591206 = 2.11.13.17.5563.300331.49085221, 

y = 10087757787715867501830 = 232.5.7.19.631.27209489.49085221, 

z = 16043733508910320395 = 32.5.7.13.19.41.631.26539.300331, 
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with sum 
10502527862174671413431 = 112 .17.31.41.5563.26539v27209489 

and lcm 
2.32 .5.7.11.13c17 c19c41 .631c5563c26539c49085221 

*68175137c27209489. 

It can, therefore, also be represented by 
x = 111810428245355640885 = 32 .5.7.19.41.631.26539.27209489, 
y= 4419392680958269157 = 11c13c19c41.5563c26539c300331, 

z = 2778764862277948002778 = 2 . 11 c 17 c 5563 c 27209489 c 49085221, 
with sum 

2894994683204261912820 = 22 .32 .5.7 13. 19c631 .300331 c49085221. 

Example 3. n = 83, a = -1. The solution (ao, bo, co) = (132, 1, 908) of 
equation (19) admits the possibilities h = 1, 37, 41 and 1517 in equations 
(20), (21), each of which leads to a locally solvable pair of quadrics. However, 
an extended search failed to find any rational points for any of the values of 
h. Computation of the L-series LE(s) associated with the elliptic curve E 
of this example shows that LEM(1) $ 0 whence the conjectures of Birch and 
Swinnerton-Dyer imply that the rank of E is zero (actually, given results of 
Kolyvagin, all we need is that our curve be modular), so that there are no 
nontrivial rational solutions of (1) for n = 83. We undertook a further descent 
on each pair of equations corresponding to the four values of h, involving a 
considerable amount of numerical detail. The arguments do indeed show that 
for none of the values of h do the curves (20), (21) possess rational points. 
Thus there are no solutions of (14) for n = 83, a = -1. It then follows (cf. 
Lemma 1) that (14) does not have solutions for n = 83, (5 = -83. It remains 
to discuss 3 = 37 or 41, but we have not carried out a further descent in these 
instances. 

Example 4. n = 212, A = 29. (Ao, Bo, CO) = (1329, 1, 952), H =-53, 

(P, Q) = (223, 983), (W, V) = (6875172, 1286777), 
(A, B, C) = (25632749, 118963, 3423494950408888), 

x = -108330247204631183866777136086499984804751255, 
y = 226158369568634413878822342329578954739317052, 
z = 556924334185535574920737272977470281885268, 

x+y+ z = 3.5.7.11.13.17.37.41.53.61.277.643.2833 
.9151 A21193 A13376239A72243533. 

As we have seen, solutions obtained via values of A cannot have all of x, y 
and z positive. 

8. RESULTS 

By computation on the curves (6) and (13) we searched for solutions of (1) 
over the range - 1000 < n < 1000. In all cases the methods of ? 5 give an upper 
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bound for the rank, and in many cases allow its explicit determination. In any 
event, the Selmer conjecture predicts the rank parity. As a check, and in or- 
der to obtain the value of the rank with reasonable assurance, we assumed that 
our elliptic curves are modular, i.e., that they satisfy the Taniyama-Weil conjec- 
ture, and worked with their corresponding L-series, LE (S) . Taking on faith the 
conjectures of Birch and Swinnerton-Dyer, then the evaluation of LE (1) and 
LE (1) together with the explicit numerical solutions found by computer search 
allowed us to deduce the exact value of the rank within the range under consid- 
eration. PARI-GP was used for this computation; for details of the underlying 
theory and series summation, see, e.g., Zagier and Kramarz [6]. 

Results are given in Table 1, where each entry is the rank (modulo the con- 
jectures of Birch and Swinnerton-Dyer). An asterisk denotes a singular value of 
n and a blank denotes rank zero. Boldface type is used for those n for which 
there is a positive representation. Note that there exist representations for the 
singular values of n, and also for n = 10, despite its curve being of rank zero. 

We have compiled a table of solutions (x, y, z) of (1). For each n we give 
r independent solutions (where r is the rank of the curve), except in about 
5% of the cases, where solutions have still to be found. We confidently expect 
that this table gives the "smallest" possible solutions in each instance. The 
measure of the size of a point on an elliptic curve is given by its height, and our 
search process finds solutions in increasing order of height. In rank-one cases 
the conjectures of Birch and Swinnerton-Dyer allow us to estimate 

height of a generator x the order of m, 
where m is the Tate-Shafarevich group. Since the search process finds all solu- 
tions of small height, we can confidently predict the (perfect square) order of m 

TABLE 2. Solutions for positive rank in the range 1 < n < 100 

n x y z n x y z 
11 1 2 3 63 5 119 170 
14 2 3 10 64 1 -40 104 
15 1 2 6 67 17 -105 1428 
18 2 3 15 69 5989 -747565 1155990 
26 1 6 14 70 70 551 3654 
29 5 -26 195 71 11 -116 957 
30 10 77 165 73 4 -19 380 
31 3 -11 132 74 5 22 270 
34 1 6 21 287 -32480 53505 
35 3 10 65 75 10153 -58656 957719 
37 7 -22 385 76 18 -238 1683 
38 90 391 2210 82 119 475 7106 
42 561 6450 13889 84 2 -78 247 
43 39 -984 2665 85 23 -95 2622 
44 777 -40810 74518 86 21 -37 4144 
48 70633 -3329130 6685382 90 1386 35226 81473 
52 29 -45 4176 92 203 -8778 27550 
53 85 -141 11186 93 124285 -32337349 43783194 
54 55 595 2002 94 1005720 -44186077 139210005 
55 1 14 35 95 138 357 8855 
57 14 -174 1015 96 11289 -611168 1696583 
59 2 15 85 98 1221 2950 79550 
62 5075 128050 160602 100 5 -56 595 
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by calculating the height of our known solution P; this provides a check that 
P is a generator. For example, if n = -568, then the height of a generator 
x the order of m 115.2. If jmu > 9, then a generator would have height 
at most 12.8 and our search tells us that there are no such points. Since the 
height of our known solution P is 28.8, it follows that lim( = 4 and P is a 
generator. We have also checked one or two examples of rank two (necessitating 
the evaluation of L" (1)) to verify that we have found a system of generators. 

The full table with solutions over the range -1000 < n < 1000 is available 
on request. 

The following are rank statistics for - 1000 < n < 1000: 

Range rank 0 rank 1 rank 2 rank 3 Total 
-1000 < n < 0 416 476 101 7 1000 
0 < n < 1000 440 494 62 2 998 

Total 856(42.8%) 970(48.5%) 163(8.2%) 9(0.5%) 1998 

Negative values of n appear to give slightly higher ranks than positive ones 
do, but this may be due to the existence of sequences of parametric solutions, 
which, although of asymptotic density zero, account for 86 cases of positive 
rank in the interval - 1000 < n < 0. Indeed, five of the seven rank-3 examples 
in this interval (n = -356, -724, -732, -844 and -956) are included in the 
following examples: 

(a)n= n (k2 - 5) (k > 3): 

(x, y, z) = (k + 1, k - 1, -k(k2 - 1)/2). 

(b) n= -(k2 + 3) (k > 3): 

(x, y, z) = ((k3 + 3k2 + 4k + 4)/2, (k3 - 3k2 + 4k - 4)/2, -k(k4 + 3k2 + 4)/4). 

(c) n=-(k-l)(k+2) (k>3): 

(x, y, z) = (1, k, -k(k+ 1)). 

Pursuit of these sequences has revealed a rank-4 example, n = -9796, for 
which a set of independent solutions is afforded by (8, a, b) = (2449, 106 , 1) 
and (A, A, B) = (9805, 97, 1), (190217, 14, 1), (990305, 12, 1). 

There are numerous other parametric solutions, though mostly of exponential 
type. Perhaps the most pleasing are 

(d) n = V4k + 8: 

(X, y, Z) = (U2k-1 , U2k+ l, U2k- IV2k U2k+ 1) 

(e) n =U2k. 

(X, y, Z) = (-U2k-1, U2k+1 , U2k-lU2kU2k+1) 

where Uk, Vk are the Fibonacci and Lucas numbers, satisfying Wk+1 = Wk + 

Wk-l, Ul = U2 = V , V2 = 3. 

9. CONCLUSION 

As a comment on the appositeness of Melvyn Knight's problem, we glance 
briefly at the corresponding problems with two or four variables. If 

(x+y) -+- =n, 
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then x2 + (2 - n)xy + y2 = 0 has an integer solution only if (2 - n)2- 4 is a 
square, i.e., only if n = 0 or 4 (when x = y) . If 

(x+y + z+w) I( + ?+ 
I 

+ ) =n, 

then there are infinitely many representations of every n, e.g., 

(x, y, z, w) = (m2 + m + 1, m(m + 1)(n - 1), (m + 1)(n - 1), -m(n - 1)) 

for any integer m. The least n with a positive representation is 16, and 
it seems likely that for n > 16 there is always such a representation, e.g., 
16(1, 1, 1, 1); 17(2, 3, 3, 4); 18(1, 1, 2, 2); 19(8, 9, 18, 21); 20(1, 3, 3, 3). 
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