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ZAREMBA’S CONJECTURE AND SUMS
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Dedicated to the memory of D. H. Lehmer

ABSTRACT. Zaremba conjectured that given any integer m > 1, there exists an
integer a < m with a relatively prime to m such that the simple continued
fraction [0, ¢y, ..., ¢] for a/m has ¢; < B for i=1,2,...,r, where B
is a small absolute constant (say B = 5). Zaremba was only able to prove an
estimate of the form ¢; < Clogm for an absolute constant C . His first proof
only applied to the case where m is a prime; later he gave a very much more
complicated proof for the case of composite m . Building upon some earlier
work which implies Zaremba’s estimate in the case of prime m, the present
paper gives a much simpler proof of the corresponding estimate for composite
m.

1. INTRODUCTION
Apparently, Zaremba [5, pp. 69 and 76] was the first to state the following:

Conjecture. Given any integer m > 1, there is a constant B such that for some
integer a < m with a relatively prime to m the simple continued fraction
[0,¢1,...,¢] for a/m has c; <B for i=1,2,...,r.

This conjecture is still unproved, though numerical evidence suggests that
B = 5 would suffice. The best result known replaces the inequality in the
conjecture by ¢; < Clogm for some constant C; this was first proved by
Zaremba [5, Theorem 4.6 with s = 2, p. 74] for prime values of m . Later,
Zaremba [6] gave a very much more complicated proof for composite values of
m.
As a byproduct of a more general investigation, I proved in an earlier pa-
per [1, p. 154] that the inequality in the conjecture can be replaced by c¢; <
4(m/p(m))*logm, where ¢(m) is Euler’s function. Of course, this implies
¢; < Clogm if m is prime, but only gives ¢; < Clogm(loglogm)? in general.
In the present paper, I show how the argument of [1] can be refined to eliminate
the loglog factors. The result is

Theorem 1. Given any integer m > 1, there is an integer a < m with a relatively
prime to m such that the simple continued fraction [0, ¢, ..., ¢/] for a/m has
¢;<3logm for i=1,2,...,r.
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The proof is much simpler than the proof of the corresponding result in
Zaremba [6]. I am grateful to Harald Niederreiter for suggesting that it would
be worthwhile to publish this simpler proof.

2. PROOF OF THEOREM 1

Let ||x]| denote the distance from x to the nearest integer. We shall actually
prove the following sharpening of the case n = 2 of the theorem in [1].

Theorem 2. Given any integer m > 8, there exist integers a,, a, relatively
prime to m such that

2
[1lkai/m| > 3mlogm)="  for each k, 1 <k < m.
i=1
As in [1], it is easy to deduce Theorem 1 from Theorem 2: We may assume
a; =1 and a; = a in Theorem 2, since we may replace a; by ba; (i=1, 2),
where ba; = 1 mod m. Thus, Theorem 2 implies that for any m > 8 there
exists an integer a < m with a relatively prime to m such that

(1) k|lka/m| > (3logm)~! foreach k, 1<k < m.
If [0,c, ..., ¢] is the simple continued fraction for a/m with convergents
pi/ai (0 <i<r),then we have g;llgia/m| < 1/c;y) for i=0,1,...,r—1.

Therefore, (1) implies Theorem 1. (For m < 8 it is easy to verify Theorem 1
by calculation.)

We begin the proof of Theorem 2 with some definitions taken from [I1,
p. 155]. Given any integer m > 1 and positive integers a;, a;, we let L
denote a positive real number which we shall specify later. We say that the pair
a, , a; is exceptional (with respect to m and L) if

2
) [Tlkai/m|| > L' foreach k, 1 <k < m.

i=1

Obviously, the pair a;, a, can be exceptional only if each a; is relatively
prime to m. If for some k, 1 < k < m, the inequality in (2) is false,
then we say that k excludes the pair a,, ay. We shall estimate the integer
J =J(k) = J(k,m,L) = number of pairs a,, a, with each q; relatively
prime to m which are excluded by k and which satisfy 1 < a; < a; < m/2.
The requirement that a; and a, be different is convenient later on.

We first estimate J(k, m, L) in the case where the greatest common divisor
(k, m) is 1. Such a k excludes the pair a;, a, if and only if 1 excludes the
pair ka,, ka, ; therefore.

(3) J(k)=J(1) whenever (k, m)=1.
We shall prove
(4) J(1) < q)—(zm—L—)z(log(mz/L) + loglog m).

In order to do this, we need to define the following sums D(x, r, m) of the
divisor function d(n) (= the number of positive integer divisors of the positive
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integer n) over arithmetic progressions with difference m :

D(x,r,m)y= > d(n).
n<x
n=r mod m

A pair a;, a, with a; <m/2 (i=1, 2) is excluded by k=1 if
(5) aja; < m?/L.

The number of ways of writing any positive integer n < m?/L as aya, is
just d(n), and the factors are both relatively prime to m if and only if » is
relatively prime to m. Hence, the number of pairs a;, a, satisfying (5) and
the additional conditions (a;, m)=1 (i=1,2) and 1 <a; < a; <m/2 does
not exceed

1 1 &
2 <ZZ/Ld(”)=§ Z D(m*/L,r, m)

=1
(n, m)=1 (r/m)=1

(the factor of % comes from the fact that d(n) counts each factorization n =
aa, with distinct a; and a, twice; this is where our assumption that a; and
a, are distinct is convenient). Thus, we have proved

1

5 i D(m?/L,r, m).

r=1
(r,m)=1

(6) J(1,m, L)<

In order to estimate the sum in (6), we need some results of D. H. Lehmer
[4] concerning the sums H(x, r, m) defined by

H(x,r,m)= Z 1/n.

n<x
n=r mod m

Lehmer [4, p. 126] proved the existence of the generalized Euler constants
y(r, m) defined for any integers » and m > 0 by

(7) y(r, m) = xlim (H(x,r, m)—m 'logx).
— 00
Clearly, Euler’s constant y is y(0, 1), and y(r, m) is a periodic function of r
with period m .
Lemma 1. For any integers r, m with m >0 and 0 <r < m, we have
O<H(x,r,m)—m 'logx —y(r, m) < 1/x

forall x >m.

Proof. This follows easily from the proof of the existence of the limit in (7), as
given by Lehmer [4, p. 126]. O

In order to state our next two lemmas, it is convenient to define the arith-
metical functions v(n) and w(n) by

v(n) = — X:u(d)d‘l logd

d|n
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(here, u(d) is the Mobius function and the sum is taken over all positive integer
divisors d of n) and

w(n) = nv(n)/p(n) =Y _(logp)/( — 1)

pln
(here, the sum is taken over all prime divisors p of n).

Lemma 2. For every positive integer m,

S v, m) = p(mym™'(y +w(m)).
r=1
(r,m)=1

Proof. This is equation (16) of Lehmer [4, p. 132]. O

Lemma 3. For every integer m > 8,

y+w(m) < (m/op(m))loglogm.
Proof. Theorem 5 of Davenport [2, p. 294] states

limsupv(m)/loglogm = %,
m—o0

which implies the lemma for all large m. Some simple calculations (using
y =.577...) gives the inequality as stated. O

Our final lemma gives an upper bound on the sum D(x, r, m) when r is
relatively prime to m .

Lemma 4. For any integers r, m with r relatively prime to m and m > 8, we
have
D(x,r,m) < p(m)ym~2xlogx + 2xm~'loglog m.

Proof. We adapt the standard proof of Dirichlet’s theorem on summing d(n)
for n < x. The sum D(x, r, m) is the number of lattice points (x, v) with
uv = r mod m lying below the curve uv = x in the first quadrant of the u, v
plane. By using the symmetry in the line u = v, if we define T = [x!/2], then
we have

T
(8) D(x,r,m) <2 Fi(x),

i=1
where F;(x) denotes the number of integers v such that iv = r mod m and
iv < x; we have strict inequality here since we are double counting the lattice
points in the square of side T formed by portions of the u- and v-axes. (For a
more elaborate version of this argument, which leads to a O-estimate analogous
to the one for the usual Dirichlet divisor problem, see Satz 2 of Kopetzky [3].
The simple inequality of Lemma 4 suffices for our purposes, since the more
detailed argument does not affect the main term.) If r is relatively prime to
m, then iv = r mod m is solvable if and only if i is also relatively prime
to m, and in that case there is exactly one solution v mod m . It follows that
Fi(x) =0 unless i is relatively prime to m and that

(9) F,(x) < x(im)~' for (i, m) = 1.
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Now (9) implies

m

T
> F(x)<(x/m) Y. H(T,r,m).

Finally, Lemmas 1, 2, and 3 give the inequality in Lemma 4. O

It follows from (3), (6) and Lemma 4 that
(10)  J(k,m, L) < to(m)*L=" log(m*L™") + mp(m)L~" loglogm
holds for all k with k relatively prime to m. By the argument in [1, pp.
156-157], the inequality in (10) is still true if k£ is not relatively prime to m
(indeed, in that case we can even insert a factor of 8/9 on the right-hand side
of (10)).

We can now complete the proof of Theorem 2 (and so of Theorem 1) as in
[1, p. 157]: Clearly, (2) holds if and only if the inequality in (2) is true for each

k < m/2. The total number of pairs a;, a, with each a; relatively prime to
mand 1 <a;<a<m/2 is

(¢(f;)/2> > o(m)?/8.

By (10) and the definition of J(k, m, L), an exceptional pair a;, a, certainly
exists if

(11) 9(m)?/8 > im(Lp(m)>L~"log(m?L~") + mp(m)L~"loglog m).

Computation (using the well-known fact that limsup m(¢(m)loglogm)~! =
e’ = 1.781...) shows that (11) is true for m > 8 if L > 3mlogm . This
completes the proof of Theorem 2.

3. GENERALIZATIONS

It was pointed out in [1, pp. 154-155] that something like Theorem 2 can be
proved in the case of » integers. The main result of [1] was

Theorem 3. Given any integers d>4n and n>1, there exist integers ay,...,a,
relatively prime to m such that

n
(12) H lka;/m| > 4" (p(m)/m)"(mlog"" m)=" foreachk, 1<k < m.
i=1
In view of the connection of Theorems 1 and 2 above, this can be regarded as
an n-dimensional generalization of a weakened form of Zaremba’s conjecture.
In[1, p. 155], I proposed the following general conjecture; Zaremba’s conjecture
is the case n=12.

Conjecture. For each n > 2, the lower bound in (12) can be replaced by
c(n)(mlog" 2 m)=1.

The proof of Theorem 2 above removed the factors ¢(m)/m in the case
n = 2 of (12). One might hope to achieve the same result for arbitrary n
by generalizing the proof of Theorem 2; this would require working with the
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generalized divisor functions d,(¢) = the number of ways of writing the positive
integer ¢ as a product of n positive integer factors.

To conclude, I repeat another speculation from [1, p. 155]: It is possible that
the lower bound in (12) could be replaced by c¢(n)m~! for n =3, or even for
all n > 2. A small amount of computer testing of this for n = 3 was reported
in [1, p. 155]. Further computer experiments might be worthwhile.
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