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Dedicated to the memory of D. H. Lehmer 

ABSTRACT. Recently, the first author has proposed a new algorithm for solv- 
ing the Diophantine equation x3 + y3 + z3 = k, where k is a given nonzero 
integer. In this paper we present the detailed versions of this algorithm for 
some values of k given below, and we describe how we have optimized and 
run the algorithm on a Cyber 205 vector computer. A vectorized version of 
the Euclidean algorithm was written, which is capable of solving the equa- 
tions wixi _ 1 mod ni, i = 1, 2, ..., at vector speed. Moreover, the basic 
double-precision arithmetic operations (+, - , x ,/) were vectorized. The fol- 
lowing cases were implemented and run: k = 3, 30, 2, 20, 39, and 42. 
For k = 3 a range was searched which includes the cube lxl, lyl, zI < 108; 
this considerably extends an earlier search in the cube xI, yIY, IzI < 216 . No 
solutions were found apart from the known ones (1, 1, 1) and (4, 4, -5) . 
For k = 30, which probably is, with k = 3, the case which has attracted 
most attention in the literature, no solution was found. It is the smallest case 
for which no solution is known and for which one has not been able to find a 
proof that no solution exists. For k = 2 a parametric form solution is known, 
but we also found one which does not belong to this parametric form, viz., 
(1214928, 3480205, -3528875). For k = 20, several new large solutions 
were found in addition to several known ones; this case served as a (partial) 
check of the correctness of our program. Finally, for k = 39 we found the 
first solution: (134476, 117367, -159380) . Hence, this case can be dropped 
from the list of values of k ( k = 30, 33, 39, 42, ... ) for which no solution 
is known (yet). 

1. INTRODUCTION 

Recently [3], the first author has presented a new algorithm to find solutions 
of the Diophantine equation 

(1) x3+y3 +z3=k, 
in which k is a fixed positive integer, and the x, y, z can be any integers, 
positive, negative, or zero. In order to find solutions with IX, x Y, IzI < N, 
this algorithm takes 6k(N log N) steps, where the implied constant depends on 
k. In [3] this algorithm is given explicitly for the case k = 3, but significant 
changes have to be made for other values of k, depending mainly on the class 
number of Q(Vk). 
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For k = 3, the idea of the new algorithm is as follows. If k _ 3 mod 9 
then x y _ z 1_ mod 3. If x, y, and z all have the same sign, then 
x = y = z = 1 . Otherwise, let x and y have the same sign, and z the other; 
then we have Ix + yI > IzI > 1 . Now let n := x + y and solve the equation 
z3 =_ 3 mod n with z and n having different sign and 1 < Izl < In. In [3] 
it is derived by factoring in Q(0i) (which has class number equal to 1) that 
(n, 3) = 1 and that 

n = a 3+ 3b3 + 9c3 - 9abc 

for some integers a, b, c such that 

z = (3c2 - ab)(b2 - ac)-1 mod n 

(with z and n having different sign and (b2 - ac, n) = 1). This gives a unique 
value of z. We can then solve the equations x3 + y3 + z3 = 3 and x + y = n 
to find x and y. This yields 

n+d n-d 
x 2 ' 2 

3 
3 - 

n 
3 

2 with d = v'1i and D=3[4(3) -n2] 

Here, D should be the square of an integer to yield integral x and y. If we 
choose a = -1, b = 0 and c = 1, we get n = 8, z = -5, D = 0 and 
x = y = 4 ((1 1, 1 ) and ( 4, 4, -5 ) are the only known solutions for k = 3 ). 

In [6] and [2] solutions of (1) were computed by means of a straightforward 
algorithm, which for given z and k checks whether any of the possible combi- 
nations of values of x and y in a chosen range satisfies (1). The range chosen 
in [2] (which includes the one chosen in [6]) was: 

0 < x < y < 216, 

0 < N < 216, N =z-x, 

0 < lkl < 999. 

This algorithm takes &(N2) steps, but it finds solutions of (1) for a range of 
values of k. The implied <-constant depends on that range. 

It is easily seen that equation (1) has no solution at all if k ?_ ?4 mod 9. 
There is no known reason for excluding any other values of k, although there 
are still many values of k for which no solution at all is known. Those below 
100 (and X ?4 mod 9) are: 

(2) k= 30, 33, 39, 42, 52, 74, 75, and 84. 

For some values of k infinitely many solutions are known. For example, we 
have 

(9t4)3 + (-9t4 + 3t)3 + (-9t3 + 1)3 = 1 

and 
(6t3 ? i)3 ? (-6t3 + 1)3 ? ( 6t2)3 - 2 

These relations give a solution of (1) for each t E Z. For k = 1 many 
solutions are known which do not satisfy the above parametric form (e.g., 
(64, 94, -103)). For more parametric solutions, see [6, 7, and 5]. 
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It is possible to implement the new algorithm on an arbitrary vector computer. 
In particular, the Euclidean algorithm for the computation of (b2 - ac)- 1 mod n 
can be vectorized using standard Fortran. In this paper we present the results 
of optimizing and running this algorithm on a Cyber 205 vector computer, for 
k = 3, 30, 2, 20, 39, and 42. The cases k = 3 and k = 30 probably 
are the most intensively studied ones (cf. [2, 6, and 8]). For k = 2 the above 
parametric solution is known, but we wanted to check whether other solutions 
exist. For k = 20 the density of adelic points is rather high, and relatively 
many integer points are known. This case was used as a (partial) check of the 
correctness of our program. The smallest value of k > 30 for which no solution 
is known is k = 33. However, the fundamental unit of Q(V3) is enormous, 
and in this case the algorithm becomes very inefficient. Therefore, we selected 
the next two cases k = 39 and k = 42. 

In ?2 we give a precise description of the algorithms for the various chosen 
values of k. Section 3 presents some details of how we have implemented the 
algorithms on the Cyber 205 vector computer and the results obtained. In partic- 
ular, we describe how we have vectorized the computation of (b2 - ac)-l mod n 
(?3.1). The double-precision arithmetic operations which were necessary be- 
cause of the size of the numbers we wanted to handle, were vectorized along 
the lines of [9]. The results of our computations are listed and discussed in 
?3.2. No (new) solutions were found for k = 3, 30, and 42. For k = 2 the 
first solution was found which is not of the parametric form given above. For 
k = 20 eight new solutions were found and, finally, for k = 39 we found one 
solution, so this case can be removed from the list of values of k for which no 
solution is known. 

2. THE ALGORITHMS FOR k = 2, 3, 20, 30, 39, AND 42 

For k = 3 the algorithm is derived and presented in [3]. The other cases 
can be derived in a similar way, but with significant changes caused by the facts 
that prime factors of k may occur in n ( = x + y ), and that Q(NYk-) may not 
have unique factorization. We first present the algorithms for all the values of 
k listed above, except for k = 20: this case is given separately. 

For k =$ 20, the algorithms are organized in such a way that all the solutions 
of (1) are found for which 

(3) l < IzI < Ix+yl < I EIK3, 

where jsl-I > 1 is the fundamental unit of Q(Q'k). This includes the cube 
lxi, LvI, Izi < '1EK3 

The algorithm for k = 2, 3, 30, 39, 42. Let 0 := rk; for the combination 
of values of r, a, b, and c, given in Table 1 (next page): 

1. Let a, b, c run over the integers in the ranges 

lal, OIbI, 021c1 < Kr'13 

for suitably chosen K (depending on the available computing resources). 
2. Let n := (a3+ kb3+ k2c3 - 3kabc)/r, w := b2 ac and v := kc2 - ab 

(r, a, b, and c are such that n is integral). 
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TABLE 1. Values of k, r, a, b, and c 

k r restrictions on a, b, c 

2 1 a+2b+4c_ 1 or 2mod6 
and either 2 t a 

or 21a, 4ta, b-1 mod4 
or4la, b+2c_ 1 mod4 

3 1 a-2 mod 3 

30 1 a-2mod3 
2 a-4mod6 
5 a-10 mod 15 

39 1 a-2mod3 
2 a_ 1 mod3, a+b+c= Omod2 
3 a=_O, b=_2mod3 
6 a=O, b= 1 mod3, a+b+c=0Omod2 
9 a=_O, b=_O, c=_2mod3 
18 a=-O, b=-O, c=-mod3, a+b+c=0Omod2 

42 1 a-1 mod 3 
3 a=-O, b=-2mod3 
9 a=-O, b=O, c=lmod3 

3a. (k = 2, 3, 39, 42) Use the Euclidean algorithm to find w : 
w-1 mod n (provided that w and n are coprime; if not, reject this 
quadruple (r,- a, b, c) ). 

3b. ( k = 30 ) Take n' = n if r t b, and n' = n/r if r I b; use the Euclidean 
algorithm to find T := w-1 mod n' (provided that w and n' are 
coprime; if not, reject this quadruple (r, a, b, c)). 

4. Compute z _ v * w mod n with z in the range 1 < z < I nI and 
having opposite sign to n. 

5. Compute D = 1[4(k nz) - n2]. If D is not the square of an integer, 
reject this quadruple (r, a, b, c) . 

6. Find the solution (x, y, Z) = (n+ , n-2 ' Z). 

The algorithm for k = 20. 

1. Let a, b, c run over the integers in the ranges 

lal , rMlbl , m50cl < K, 

for suitably chosen K (depending on the available computing re- 
sources). 
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2a. 2ta, 3ta-(b+c): 

n' := a3 + 20b3+ 50c3- 30abc, w := 2b2 ac, v :=10c2 - 2ab. 

2b. 2tb, 3tc-(a+b): 

n' := 2a3+ 5b3 + 10Oc3 - 30abc, w :b2 ac, v :=20c2 - 2ab. 

2c. 2tc, 3ta+b+c: 

n' := 4a3+ 10b3 + 25c3- 30abc, w :=b2 ac, v := 5C2- 2ab. 

3. Use the Euclidean algorithm to find w := w 1 mod n' (provided 
that (w, n') = 1; if not, reject the triple (a, b, c)). 

4a. Compute 

(4) z-v.-w modn'; 

4b1. n :=n', 1< z < In, n, z of oppositesign. 
4b2. n 4n', 1 < zI < n , n, z of opposite sign; there will be four 

solutions of (4); we require further that z + n -2 mod 6. 
5. and 6. Similar to steps 5 and 6 of the previous algorithm. 

3. IMPLEMENTATION ON THE CYBER 205 

We have implemented the algorithms of ?2 in terms of long vectors, in order 
to reach optimal performance on the Cyber 205 vector computer. 

A vector version of the Euclidean algorithm (needed in Step 3) was formu- 
lated which has input vectors n and w with components ni and wi , respectively, 
and which computes a vector u with components ui such that wiui _ 1 mod ni. 
This is described in ?3.1. 

In Step 4 of the algorithm the product v UT becomes too large for the (48 
bits-) integer capacity of the Cyber 205. Therefore, we have written a vectorized 
double-precision version of the modular multiplication, which returns an integer 
result vector. 

For the arithmetic operations involved in Steps 5 and 6 we also have written 
vectorized double-precision routines on the Cyber 205 (namely, for vector addi- 
tion, subtraction, multiplication, and division, and conversion from integer to 
double precision and vice versa). These routines are based on ideas of Schlicht- 
ing for double-precision BLAS (Basic Linear Algebra Subroutines) on the Cyber 
205 [9], to which we refer for details. It should be noticed that Schlichting had 
to use the standard Fortran convention for storage of double-precision floating- 
point numbers, i.e., the upper and lower part of a double-precision number are 
stored in consecutive array locations. This has the disadvantage of yielding a 
stride two in vector operations on the double-precision numbers. In order to 
avoid these strides in our implementation, we have stored the upper and lower 
parts in two separate arrays. 

In ?3.2 we present the results of running our algorithms. 
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3.1. Solving the equation wx- 1 mod n . For given w and n, the scalar 
equation wx- 1 mod n, where gcd(w, n) = 1 and 1 < w < n, can be 
solved as follows. Consider the regular continued fraction (abbreviated: c.f.) 
expansion of the rational number w/n. If c/d is the penultimate convergent 
of this c.f., then we have wd - nc = ? 1, so that wd =_? mod n . Here, 
the proper sign depends on the parity of the number of convergents of the c.f. 
of wln. So we need to compute the denominators of the convergents of the 
c.f. of w/n . To that end we just follow the Euclidean algorithm for computing 
gcd(w, n), and we update the denominator of the convergent at each step (with 
the denominators from the previous two steps). The resulting algorithm looks 
as follows. 

Scalar algorithm to compute u = w 1 mod n. 

sign= 1;dO=O;dl = 1 
a =w; b= n 

10 q = Lb/aJ; r = b - q x a 

if r = 0 then 

c now a contains gcd(w, n) 
if a = 1 then 

u =sign xdl 
else 

u =0 

endif 
return 

endif 
h = q x dl + dO; dO = dl; dl =h 
b = a; a = r; sign = -sign 

goto 10 

For the vectorization of this algorithm, we store the pairs (w1, ni) (i = 

1, ... , 1, where in our program we take I = 10,000) into the vectors w and 
n. All the scalar variables of the algorithm, except sign, are turned now into 
vectors of length 1. Since not all ui 's will be completed in the same number of 
Euclidean algorithm steps, we introduce a bit vector mask (the components of 
which can only be 'O' or '1') for 'compressing out' completed (wi, ni)-pairs. To 
keep track of the original locations, we maintain an index vector ind, initially 
[1: 1], and compress this simultaneously with w and n. The vector algorithm 
will terminate as soon as the length of the compressed vectors becomes zero. 

In the vectorized algorithm given below the statement mask = (r $ 0) 
means that mask(i)=1 if r(i) $O and mask(i)=O if r(i)=O. The statement 
compress(a, b, c), where b is a bit vector, means that only those elements of 
the vector a are stored in (consecutive locations of) c for which the correspond- 
ing elements of b are 1. The statement scatter(a, d, e) means that the elements 
of a are stored in a location of e, the index of which is determined by the value 
of the corresponding element of d. (For simplicity, we assume here that all the 
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gcd's of corresponding components of the input vectors n and w are 1. In our 
program we use a second bit vector to handle gcd's > I.) 

Vector algorithm to compute u = w-1 mod n. 

ind = [: 1] 
sign = 1; dO = 0; dO = 0 
a = w; b = n 

lOq= Lb/aJ;r=b-qxa 
c generate the bit vector mask 

mask = (r $ 0) 

c store those components of dl for which the corresponding components 
of r are 0, 

c into the proper place in u 
compress(ind, mask, order) 
compress(dl, mask, t) 
if (sign= -1) t= -t 
scatter(t, order, u) 

c compress ind, q, r, a, dO, and dl for next step 
compress(ind, mask, ind) 
compress(q, mask, q) 
compress(r, mask, r) 
compress(a, mask, a) 
compress(dO, mask, dO) 
compress(dl, mask, dl) 
if (length(ind) = 0) return 
h = q x dl + dO; dO = dl; dl = h 

b = a; a = r; sign = -sign 

goto 10 

It should be noted that most of the vector movements in the two lines before 
the "goto 10"-line can be accomplished by operating on pointers to the vectors 
rather than on the vectors themselves (on the Cyber 205, these pointers are 
called descriptors). 

3.2. Results. We have run our program for solving (1) for the values of k 
given in ?2, for various values of K. The results are listed in Table 2 (next 
page). This table also gives, for k = 2, 3, 30, 39, 42, the size of the largest 
(x, y, z)-cube which is contained in the range of searched (a, b, c)-values. 
This number equals the bound 2 Ic IK3 (truncated to three decimal places) which 
is given below (3) in ?2. The fundamental units e were taken from [1, Table 
2 on p. 270]. Unfortunately, the case k = 20 is slightly different, and we have 
not attempted to derive such an upper bound in this case. However, when we 
inspect the size of the solutions found for k = 20, it seems that the largest 
cube covered in this case is comparable with the largest cubes covered in the 
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TABLE 2. New solutions of (1) 

k E(6/= Uk_) K lxI, IYI, lIZ < X Y Z 

2 0 - 1 1000 1.29 x 108 1214928 3480205 -3528875 

3 02 - 2 1500 1.35 x 108 none 

20 1!62 + 0 + 1 1000 3049 8427 -8558 

99637 607191 -608084 
136912 264145 -275877 

-305081 -523091 555618 
-378203 -555737 608880 

-2006066 -3431087 3645939 
-3633722 -9161277 9348001 
15670213 40439559 -41209136 

-89598233 -374850480 376549093 

30 _302 + 90 + 1 2000 1.64 x 106 none 

39 202 - 23 1000 3.15 x 105 134476 117367 -159380 

42 1262 - 420 + 1 1000 1.57 x none 

cases k = 2 and k = 3. We only present the new solutions found and not those 
which were already given in [6 and 2] (with one exception: the smallest solution 
we list for k = 20 was not explicitly given in [2], but in an accompanying table 
which was deposited in the UMT-file of Mathematics of Computation). 

The total amount of CPU-time for the computation of Table 2 was about 30 
hours. To give an impression of the speed of our program: the job for k = 30, 
r = 1, K = 2000, consumed 3934 seconds CPU-time on the Cyber 205, 65% 
of which was spent on the solution of the equation wx 1 mod n' (step 3b of 
the algorithm given in ?2). The total number of (a, b, c)-triples treated in this 
job was about 7.12 x 108. 

All new solutions were found several times, for different combinations of a, 
b, and c. Of course, this corresponds to using different associates in Q(Ck) . 
For example, the solution for k = 20: (x, y, z) = (136912, 264145, -275877) 
was found three times, viz., for (a, b, c) = (-47, 8, 18), (53, -129, 81), 
and (443, 170, 121). For k = 2, the solution (x, y, z) = (1214928, 3480205, 
-3528875) was found for (a, b, c) = (165, -12, 16) and for five other 
(a, b, c)-triples. 

In order to see how fast the length of the vectors in the algorithm for the 
computation of w -I mod n tends to zero, we have counted the number of steps 
of this algorithm for k = 3, K = 255 (which is representative for all our 
experiments) so that lal < 255, lbl < 176, and Icl < 122. Since a 2 mod 3, 
the number of (a, b, c)-triples to be handled is 

[(2 x 255 + 1)/31 x (2 x 176 + 1) x (2 x 122 + 1) = 14,788,935. 

Among these, there is no case with n = 0, there are 851 cases with w mod n = 0 
(most of these have w = 0), and there are 1,671 cases with w mod n = 1, 
so that w-I mod n = 1. For the remaining 14,786,413 cases, the continued 
fraction algorithm found 10,390,393 cases with gcd = 1 (70.3%) and 4,396,020 
cases (29.7%) with gcd > 1 . In about 63% of the 10,392,064 cases for which 
w-I mod n could be computed, we found D < 0 in step 5 of our algorithm. In 
only six cases, D was the square of an integer, yielding the solution (x, y, z) = 
(4, 4, -5) six times. Table 3 gives the distribution of the numbers of steps in 
the continued fraction algorithm to find the gcd, including percentages, and 
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TABLE 3. Number of cases with i steps in the 
continued fraction expansions, for i = 1, ..., 20 

i #(i) percentage cum. percentage 
1 16985 0.1 0.1 
2 54291 0.4 0.5 
3 190366 1.3 1.8 
4 442659 3.0 4.8 
5 831022 5.6 10.4 
6 1412828 9.6 19.9 
7 1924764 13.0 33.0 
8 2302600 15.6 48.5 
9 2336986 15.8 64.3 

10 2023481 13.7 78.0 
11 1496212 10.1 88.1 
12 934761 6.3 94.5 
13 494258 3.3 97.8 
14 216375 1.5 99.3 
15 78800 0.5 99.8 
16 23285 0.2 100.0 
17 5541 0.0 100.0 
18 1018 0.0 100.0 
19 163 0.0 100.0 
20 18 0.0 100.0 

cumulative percentages. The average number of steps is 8.59. If ci is the 
cumulative percentage entry in the row numbered i, then the vector length 
after i steps of the algorithm is given by 100 * (100 - ci) (the original length 
is 10,000). 

We would like to compare our results with the theoretical results which are 
known about the number of steps needed in the Euclidean algorithm [4, ??4.5.2 
and 4.5.3]. 

If w and n are random numbers, the probability that they are relatively 
prime is 6/7r2 (~ 0.608) [4, ?4.5.2, Theorem C]. However, since a =- 2 mod 3, 
we have n _ 2 mod 3, so gcd(w, n) cannot be a multiple of 3. Following [4, 
?4.5.2, Exercise 13], we find that, given two random positive integers which do 
not have a common divisor 3, the probability that they are relatively prime is 
27/(47r2) 0.684. This agrees better with the fraction of 0.703 of the total 
number of pairs (w, n) we found to be relatively prime. The difference may 
be explained by the fact that of course the numbers w and n are not random. 
Moreover, we have observed that certain primes like 7, 13, 19, 31 turn out not 
to occur as gcd-values in our experiments. This is easily proved for a given 
prime p by checking all the possible residue classes mod p for w and n. 

Now we turn to the number of steps in the Euclidean algorithm. The values 
which can be assumed by w = b2 - ac and n = a3 + 3b3 + 9c3 - 9abc for 
lal < K, lbl < K/O, and Icl < K/02 (K = 255, 0 = ), are approximately 
_(K/0)2 < w < 2(K/0)2 and -4K3 < n < 4K3. Hence, n is generally much 
larger than w, so we start by reducing n mod w in order to get numbers 
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which are generally of the same size (and we add 1 to the number of steps in 
our analysis). For w 2(K/0)2 (~ 62521 ) the maximum number of steps is 
bounded by [4, Summary of ?4.5.3] 1 + [4.8 loglo w - 0.321 < 24, which agrees 
with the number 20 observed in our computations. 

An upper bound for the average number of steps is [loc. cit.] 1+ 1.9405 loglow. 
For w = 2(K/0)2 this yields 10.3. We can expect that lwl lies in the interval 
[1, (K/0)2) with a probability which is larger (at least by a factor of 2) than the 
probability that w lies in the interval ((K/0)2, 2(K/0)2). In fact, we observed 
that about 92.5% of the values of w are < (K/0)2 . 

The actual average number of steps 8.6 we found corresponds to w - 4 (K/0)2, 
which is heuristically consistent with the quadratic form of the formula for w . 
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