
MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 203
JULY 1993, PAGES 235-244

ON SOLVING THE DIOPHANTINE EQUATION
x3 + y3 + z3 = k ON A VECTOR COMPUTER

D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

Dedicated to the memory of D. H. Lehmer

ABSTRACT. Recently, the first author has proposed a new algorithm for solv-
ing the Diophantine equation x3 + y3 + z3 = k, where k is a given nonzero
integer. In this paper we present the detailed versions of this algorithm for
some values of k given below, and we describe how we have optimized and
run the algorithm on a Cyber 205 vector computer. A vectorized version of
the Euclidean algorithm was written, which is capable of solving the equa-
tions wixi _ 1 mod ni, i = 1, 2, ..., at vector speed. Moreover, the basic
double-precision arithmetic operations (+, - , x ,/) were vectorized. The fol-
lowing cases were implemented and run: k = 3, 30, 2, 20, 39, and 42.
For k = 3 a range was searched which includes the cube lxl, lyl, zI < 108;
this considerably extends an earlier search in the cube xI, yIY, IzI < 216 . No
solutions were found apart from the known ones (1, 1, 1) and (4, 4, -5) .
For k = 30, which probably is, with k = 3, the case which has attracted
most attention in the literature, no solution was found. It is the smallest case
for which no solution is known and for which one has not been able to find a
proof that no solution exists. For k = 2 a parametric form solution is known,
but we also found one which does not belong to this parametric form, viz.,
(1214928, 3480205, -3528875). For k = 20, several new large solutions
were found in addition to several known ones; this case served as a (partial)
check of the correctness of our program. Finally, for k = 39 we found the
first solution: (134476, 117367, -159380) . Hence, this case can be dropped
from the list of values of k (k = 30, 33, 39, 42, ...) for which no solution
is known (yet).

1. INTRODUCTION

Recently [3], the first author has presented a new algorithm to find solutions
of the Diophantine equation

(1) x3+y3 +z3=k,
in which k is a fixed positive integer, and the x, y, z can be any integers,
positive, negative, or zero. In order to find solutions with IX, x Y, IzI < N,
this algorithm takes 6k(N log N) steps, where the implied constant depends on
k. In [3] this algorithm is given explicitly for the case k = 3, but significant
changes have to be made for other values of k, depending mainly on the class
number of Q(Vk).

Received by the editor March 24, 1992 and, in revised form, December 14, 1992.
1991 Mathematics Subject Classification. Primary 1 1D25, 1 lY50.
Key words and phrases. Cubic Diophantine equation, vector computer, Euclidean algorithm.

?
1993 American Mathematical Society

0025-5718/93 $1.00 + $.25 per page

235

236 D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

For k = 3, the idea of the new algorithm is as follows. If k _ 3 mod 9
then x y _ z 1_ mod 3. If x, y, and z all have the same sign, then
x = y = z = 1 . Otherwise, let x and y have the same sign, and z the other;
then we have Ix + yI > IzI > 1 . Now let n := x + y and solve the equation
z3 =_ 3 mod n with z and n having different sign and 1 < Izl < In. In [3]
it is derived by factoring in Q(0i) (which has class number equal to 1) that
(n, 3) = 1 and that

n = a 3+ 3b3 + 9c3 - 9abc

for some integers a, b, c such that

z = (3c2 - ab)(b2 - ac)-1 mod n

(with z and n having different sign and (b2 - ac, n) = 1). This gives a unique
value of z. We can then solve the equations x3 + y3 + z3 = 3 and x + y = n
to find x and y. This yields

n+d n-d
x 2 ' 2

3
3 -

n
3

2 with d = v'1i and D=3[4(3) -n2]

Here, D should be the square of an integer to yield integral x and y. If we
choose a = -1, b = 0 and c = 1, we get n = 8, z = -5, D = 0 and
x = y = 4 ((1 1, 1) and (4, 4, -5) are the only known solutions for k = 3).

In [6] and [2] solutions of (1) were computed by means of a straightforward
algorithm, which for given z and k checks whether any of the possible combi-
nations of values of x and y in a chosen range satisfies (1). The range chosen
in [2] (which includes the one chosen in [6]) was:

0 < x < y < 216,

0 < N < 216, N =z-x,

0 < lkl < 999.

This algorithm takes &(N2) steps, but it finds solutions of (1) for a range of
values of k. The implied <-constant depends on that range.

It is easily seen that equation (1) has no solution at all if k ?_ ?4 mod 9.
There is no known reason for excluding any other values of k, although there
are still many values of k for which no solution at all is known. Those below
100 (and X ?4 mod 9) are:

(2) k= 30, 33, 39, 42, 52, 74, 75, and 84.

For some values of k infinitely many solutions are known. For example, we
have

(9t4)3 + (-9t4 + 3t)3 + (-9t3 + 1)3 = 1

and
(6t3 ? i)3 ? (-6t3 + 1)3 ? (6t2)3 - 2

These relations give a solution of (1) for each t E Z. For k = 1 many
solutions are known which do not satisfy the above parametric form (e.g.,
(64, 94, -103)). For more parametric solutions, see [6, 7, and 5].

SOLVING THE DIOPHANTINE EQUATION X3 + y3 + Z3 = k ON A VECTOR COMPUTER 237

It is possible to implement the new algorithm on an arbitrary vector computer.
In particular, the Euclidean algorithm for the computation of (b2 - ac)- 1 mod n
can be vectorized using standard Fortran. In this paper we present the results
of optimizing and running this algorithm on a Cyber 205 vector computer, for
k = 3, 30, 2, 20, 39, and 42. The cases k = 3 and k = 30 probably
are the most intensively studied ones (cf. [2, 6, and 8]). For k = 2 the above
parametric solution is known, but we wanted to check whether other solutions
exist. For k = 20 the density of adelic points is rather high, and relatively
many integer points are known. This case was used as a (partial) check of the
correctness of our program. The smallest value of k > 30 for which no solution
is known is k = 33. However, the fundamental unit of Q(V3) is enormous,
and in this case the algorithm becomes very inefficient. Therefore, we selected
the next two cases k = 39 and k = 42.

In ?2 we give a precise description of the algorithms for the various chosen
values of k. Section 3 presents some details of how we have implemented the
algorithms on the Cyber 205 vector computer and the results obtained. In partic-
ular, we describe how we have vectorized the computation of (b2 - ac)-l mod n
(?3.1). The double-precision arithmetic operations which were necessary be-
cause of the size of the numbers we wanted to handle, were vectorized along
the lines of [9]. The results of our computations are listed and discussed in
?3.2. No (new) solutions were found for k = 3, 30, and 42. For k = 2 the
first solution was found which is not of the parametric form given above. For
k = 20 eight new solutions were found and, finally, for k = 39 we found one
solution, so this case can be removed from the list of values of k for which no
solution is known.

2. THE ALGORITHMS FOR k = 2, 3, 20, 30, 39, AND 42

For k = 3 the algorithm is derived and presented in [3]. The other cases
can be derived in a similar way, but with significant changes caused by the facts
that prime factors of k may occur in n (= x + y), and that Q(NYk-) may not
have unique factorization. We first present the algorithms for all the values of
k listed above, except for k = 20: this case is given separately.

For k =$ 20, the algorithms are organized in such a way that all the solutions
of (1) are found for which

(3) l < IzI < Ix+yl < I EIK3,

where jsl-I > 1 is the fundamental unit of Q(Q'k). This includes the cube
lxi, LvI, Izi < '1EK3

The algorithm for k = 2, 3, 30, 39, 42. Let 0 := rk; for the combination
of values of r, a, b, and c, given in Table 1 (next page):

1. Let a, b, c run over the integers in the ranges

lal, OIbI, 021c1 < Kr'13

for suitably chosen K (depending on the available computing resources).
2. Let n := (a3+ kb3+ k2c3 - 3kabc)/r, w := b2 ac and v := kc2 - ab

(r, a, b, and c are such that n is integral).

238 D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

TABLE 1. Values of k, r, a, b, and c

k r restrictions on a, b, c

2 1 a+2b+4c_ 1 or 2mod6
and either 2 t a

or 21a, 4ta, b-1 mod4
or4la, b+2c_ 1 mod4

3 1 a-2 mod 3

30 1 a-2mod3
2 a-4mod6
5 a-10 mod 15

39 1 a-2mod3
2 a_ 1 mod3, a+b+c= Omod2
3 a=_O, b=_2mod3
6 a=O, b= 1 mod3, a+b+c=0Omod2
9 a=_O, b=_O, c=_2mod3
18 a=-O, b=-O, c=-mod3, a+b+c=0Omod2

42 1 a-1 mod 3
3 a=-O, b=-2mod3
9 a=-O, b=O, c=lmod3

3a. (k = 2, 3, 39, 42) Use the Euclidean algorithm to find w :
w-1 mod n (provided that w and n are coprime; if not, reject this
quadruple (r,- a, b, c)).

3b. (k = 30) Take n' = n if r t b, and n' = n/r if r I b; use the Euclidean
algorithm to find T := w-1 mod n' (provided that w and n' are
coprime; if not, reject this quadruple (r, a, b, c)).

4. Compute z _ v * w mod n with z in the range 1 < z < I nI and
having opposite sign to n.

5. Compute D = 1[4(k nz) - n2]. If D is not the square of an integer,
reject this quadruple (r, a, b, c) .

6. Find the solution (x, y, Z) = (n+ , n-2 ' Z).

The algorithm for k = 20.

1. Let a, b, c run over the integers in the ranges

lal , rMlbl , m50cl < K,

for suitably chosen K (depending on the available computing re-
sources).

SOLVING THE DIOPHANTINE EQUATION X3 + y3+ Z3= k ON A VECTOR COMPUTER 239

2a. 2ta, 3ta-(b+c):

n' := a3 + 20b3+ 50c3- 30abc, w := 2b2 ac, v :=10c2 - 2ab.

2b. 2tb, 3tc-(a+b):

n' := 2a3+ 5b3 + 10Oc3 - 30abc, w :b2 ac, v :=20c2 - 2ab.

2c. 2tc, 3ta+b+c:

n' := 4a3+ 10b3 + 25c3- 30abc, w :=b2 ac, v := 5C2- 2ab.

3. Use the Euclidean algorithm to find w := w 1 mod n' (provided
that (w, n') = 1; if not, reject the triple (a, b, c)).

4a. Compute

(4) z-v.-w modn';

4b1. n :=n', 1< z < In, n, z of oppositesign.
4b2. n 4n', 1 < zI < n , n, z of opposite sign; there will be four

solutions of (4); we require further that z + n -2 mod 6.
5. and 6. Similar to steps 5 and 6 of the previous algorithm.

3. IMPLEMENTATION ON THE CYBER 205

We have implemented the algorithms of ?2 in terms of long vectors, in order
to reach optimal performance on the Cyber 205 vector computer.

A vector version of the Euclidean algorithm (needed in Step 3) was formu-
lated which has input vectors n and w with components ni and wi , respectively,
and which computes a vector u with components ui such that wiui _ 1 mod ni.
This is described in ?3.1.

In Step 4 of the algorithm the product v UT becomes too large for the (48
bits-) integer capacity of the Cyber 205. Therefore, we have written a vectorized
double-precision version of the modular multiplication, which returns an integer
result vector.

For the arithmetic operations involved in Steps 5 and 6 we also have written
vectorized double-precision routines on the Cyber 205 (namely, for vector addi-
tion, subtraction, multiplication, and division, and conversion from integer to
double precision and vice versa). These routines are based on ideas of Schlicht-
ing for double-precision BLAS (Basic Linear Algebra Subroutines) on the Cyber
205 [9], to which we refer for details. It should be noticed that Schlichting had
to use the standard Fortran convention for storage of double-precision floating-
point numbers, i.e., the upper and lower part of a double-precision number are
stored in consecutive array locations. This has the disadvantage of yielding a
stride two in vector operations on the double-precision numbers. In order to
avoid these strides in our implementation, we have stored the upper and lower
parts in two separate arrays.

In ?3.2 we present the results of running our algorithms.

240 D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

3.1. Solving the equation wx- 1 mod n . For given w and n, the scalar
equation wx- 1 mod n, where gcd(w, n) = 1 and 1 < w < n, can be
solved as follows. Consider the regular continued fraction (abbreviated: c.f.)
expansion of the rational number w/n. If c/d is the penultimate convergent
of this c.f., then we have wd - nc = ? 1, so that wd =_? mod n . Here,
the proper sign depends on the parity of the number of convergents of the c.f.
of wln. So we need to compute the denominators of the convergents of the
c.f. of w/n . To that end we just follow the Euclidean algorithm for computing
gcd(w, n), and we update the denominator of the convergent at each step (with
the denominators from the previous two steps). The resulting algorithm looks
as follows.

Scalar algorithm to compute u = w 1 mod n.

sign= 1;dO=O;dl = 1
a =w; b= n

10 q = Lb/aJ; r = b - q x a

if r = 0 then

c now a contains gcd(w, n)
if a = 1 then

u =sign xdl
else

u =0

endif
return

endif
h = q x dl + dO; dO = dl; dl =h
b = a; a = r; sign = -sign

goto 10

For the vectorization of this algorithm, we store the pairs (w1, ni) (i =

1, ... , 1, where in our program we take I = 10,000) into the vectors w and
n. All the scalar variables of the algorithm, except sign, are turned now into
vectors of length 1. Since not all ui 's will be completed in the same number of
Euclidean algorithm steps, we introduce a bit vector mask (the components of
which can only be 'O' or '1') for 'compressing out' completed (wi, ni)-pairs. To
keep track of the original locations, we maintain an index vector ind, initially
[1: 1], and compress this simultaneously with w and n. The vector algorithm
will terminate as soon as the length of the compressed vectors becomes zero.

In the vectorized algorithm given below the statement mask = (r $ 0)
means that mask(i)=1 if r(i) $O and mask(i)=O if r(i)=O. The statement
compress(a, b, c), where b is a bit vector, means that only those elements of
the vector a are stored in (consecutive locations of) c for which the correspond-
ing elements of b are 1. The statement scatter(a, d, e) means that the elements
of a are stored in a location of e, the index of which is determined by the value
of the corresponding element of d. (For simplicity, we assume here that all the

SOLVING THE DIOPHANTINE EQUATION x3 +y3 + z3 = k ON A VECTOR COMPUTER 241

gcd's of corresponding components of the input vectors n and w are 1. In our
program we use a second bit vector to handle gcd's > I.)

Vector algorithm to compute u = w-1 mod n.

ind = [: 1]
sign = 1; dO = 0; dO = 0
a = w; b = n

lOq= Lb/aJ;r=b-qxa
c generate the bit vector mask

mask = (r $ 0)

c store those components of dl for which the corresponding components
of r are 0,

c into the proper place in u
compress(ind, mask, order)
compress(dl, mask, t)
if (sign= -1) t= -t
scatter(t, order, u)

c compress ind, q, r, a, dO, and dl for next step
compress(ind, mask, ind)
compress(q, mask, q)
compress(r, mask, r)
compress(a, mask, a)
compress(dO, mask, dO)
compress(dl, mask, dl)
if (length(ind) = 0) return
h = q x dl + dO; dO = dl; dl = h

b = a; a = r; sign = -sign

goto 10

It should be noted that most of the vector movements in the two lines before
the "goto 10"-line can be accomplished by operating on pointers to the vectors
rather than on the vectors themselves (on the Cyber 205, these pointers are
called descriptors).

3.2. Results. We have run our program for solving (1) for the values of k
given in ?2, for various values of K. The results are listed in Table 2 (next
page). This table also gives, for k = 2, 3, 30, 39, 42, the size of the largest
(x, y, z)-cube which is contained in the range of searched (a, b, c)-values.
This number equals the bound 2 Ic IK3 (truncated to three decimal places) which
is given below (3) in ?2. The fundamental units e were taken from [1, Table
2 on p. 270]. Unfortunately, the case k = 20 is slightly different, and we have
not attempted to derive such an upper bound in this case. However, when we
inspect the size of the solutions found for k = 20, it seems that the largest
cube covered in this case is comparable with the largest cubes covered in the

242 D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

TABLE 2. New solutions of (1)

k E(6/= Uk_) K lxI, IYI, lIZ < X Y Z

2 0 - 1 1000 1.29 x 108 1214928 3480205 -3528875

3 02 - 2 1500 1.35 x 108 none

20 1!62 + 0 + 1 1000 3049 8427 -8558

99637 607191 -608084
136912 264145 -275877

-305081 -523091 555618
-378203 -555737 608880

-2006066 -3431087 3645939
-3633722 -9161277 9348001
15670213 40439559 -41209136

-89598233 -374850480 376549093

30 _302 + 90 + 1 2000 1.64 x 106 none

39 202 - 23 1000 3.15 x 105 134476 117367 -159380

42 1262 - 420 + 1 1000 1.57 x none

cases k = 2 and k = 3. We only present the new solutions found and not those
which were already given in [6 and 2] (with one exception: the smallest solution
we list for k = 20 was not explicitly given in [2], but in an accompanying table
which was deposited in the UMT-file of Mathematics of Computation).

The total amount of CPU-time for the computation of Table 2 was about 30
hours. To give an impression of the speed of our program: the job for k = 30,
r = 1, K = 2000, consumed 3934 seconds CPU-time on the Cyber 205, 65%
of which was spent on the solution of the equation wx 1 mod n' (step 3b of
the algorithm given in ?2). The total number of (a, b, c)-triples treated in this
job was about 7.12 x 108.

All new solutions were found several times, for different combinations of a,
b, and c. Of course, this corresponds to using different associates in Q(Ck) .
For example, the solution for k = 20: (x, y, z) = (136912, 264145, -275877)
was found three times, viz., for (a, b, c) = (-47, 8, 18), (53, -129, 81),
and (443, 170, 121). For k = 2, the solution (x, y, z) = (1214928, 3480205,
-3528875) was found for (a, b, c) = (165, -12, 16) and for five other
(a, b, c)-triples.

In order to see how fast the length of the vectors in the algorithm for the
computation of w -I mod n tends to zero, we have counted the number of steps
of this algorithm for k = 3, K = 255 (which is representative for all our
experiments) so that lal < 255, lbl < 176, and Icl < 122. Since a 2 mod 3,
the number of (a, b, c)-triples to be handled is

[(2 x 255 + 1)/31 x (2 x 176 + 1) x (2 x 122 + 1) = 14,788,935.

Among these, there is no case with n = 0, there are 851 cases with w mod n = 0
(most of these have w = 0), and there are 1,671 cases with w mod n = 1,
so that w-I mod n = 1. For the remaining 14,786,413 cases, the continued
fraction algorithm found 10,390,393 cases with gcd = 1 (70.3%) and 4,396,020
cases (29.7%) with gcd > 1 . In about 63% of the 10,392,064 cases for which
w-I mod n could be computed, we found D < 0 in step 5 of our algorithm. In
only six cases, D was the square of an integer, yielding the solution (x, y, z) =
(4, 4, -5) six times. Table 3 gives the distribution of the numbers of steps in
the continued fraction algorithm to find the gcd, including percentages, and

SOLVING THE DIOPHANTINE EQUATION x3 + y3 + Z3 = k ON A VECTOR COMPUTER 243

TABLE 3. Number of cases with i steps in the
continued fraction expansions, for i = 1, ..., 20

i #(i) percentage cum. percentage
1 16985 0.1 0.1
2 54291 0.4 0.5
3 190366 1.3 1.8
4 442659 3.0 4.8
5 831022 5.6 10.4
6 1412828 9.6 19.9
7 1924764 13.0 33.0
8 2302600 15.6 48.5
9 2336986 15.8 64.3

10 2023481 13.7 78.0
11 1496212 10.1 88.1
12 934761 6.3 94.5
13 494258 3.3 97.8
14 216375 1.5 99.3
15 78800 0.5 99.8
16 23285 0.2 100.0
17 5541 0.0 100.0
18 1018 0.0 100.0
19 163 0.0 100.0
20 18 0.0 100.0

cumulative percentages. The average number of steps is 8.59. If ci is the
cumulative percentage entry in the row numbered i, then the vector length
after i steps of the algorithm is given by 100 * (100 - ci) (the original length
is 10,000).

We would like to compare our results with the theoretical results which are
known about the number of steps needed in the Euclidean algorithm [4, ??4.5.2
and 4.5.3].

If w and n are random numbers, the probability that they are relatively
prime is 6/7r2 (~ 0.608) [4, ?4.5.2, Theorem C]. However, since a =- 2 mod 3,
we have n _ 2 mod 3, so gcd(w, n) cannot be a multiple of 3. Following [4,
?4.5.2, Exercise 13], we find that, given two random positive integers which do
not have a common divisor 3, the probability that they are relatively prime is
27/(47r2) 0.684. This agrees better with the fraction of 0.703 of the total
number of pairs (w, n) we found to be relatively prime. The difference may
be explained by the fact that of course the numbers w and n are not random.
Moreover, we have observed that certain primes like 7, 13, 19, 31 turn out not
to occur as gcd-values in our experiments. This is easily proved for a given
prime p by checking all the possible residue classes mod p for w and n.

Now we turn to the number of steps in the Euclidean algorithm. The values
which can be assumed by w = b2 - ac and n = a3 + 3b3 + 9c3 - 9abc for
lal < K, lbl < K/O, and Icl < K/02 (K = 255, 0 =), are approximately
_(K/0)2 < w < 2(K/0)2 and -4K3 < n < 4K3. Hence, n is generally much
larger than w, so we start by reducing n mod w in order to get numbers

244 D. R. HEATH-BROWN, W. M. LIOEN, AND H. J. J. TE RIELE

which are generally of the same size (and we add 1 to the number of steps in
our analysis). For w 2(K/0)2 (~ 62521) the maximum number of steps is
bounded by [4, Summary of ?4.5.3] 1 + [4.8 loglo w - 0.321 < 24, which agrees
with the number 20 observed in our computations.

An upper bound for the average number of steps is [loc. cit.] 1+ 1.9405 loglow.
For w = 2(K/0)2 this yields 10.3. We can expect that lwl lies in the interval
[1, (K/0)2) with a probability which is larger (at least by a factor of 2) than the
probability that w lies in the interval ((K/0)2, 2(K/0)2). In fact, we observed
that about 92.5% of the values of w are < (K/0)2 .

The actual average number of steps 8.6 we found corresponds to w - 4 (K/0)2,
which is heuristically consistent with the quadratic form of the formula for w .

ACKNOWLEDGMENTS

We are grateful to the referee for his criticism, which helped to improve this
paper. We acknowledge the provision of computer time on the Cyber 205 by
the former Dutch Working Group on the Use of Supercomputers (the present
Dutch National Computing Facilities Foundation). The second author wishes to
thank Dik Winter in particular for his very informative discussions on double-
precision arithmetic.

BIBLIOGRAPHY

1. J. W. S. Cassels, The rational solutions of the Diophantine equation y2 - X3 - D, Acta
Math. 82 (1950), 243-273.

2. V. L. Gardiner, R. B. Lazarus, and P. R. Stein, Solutions of the Diophantine equation
x3 + y3 = z3- d, Math. Comp. 18 (1964), 408-413.

3. D. R. Heath-Brown, Searching for solutions of x3 +y3 + z3 = k , Sem. Theorie des Nombres,
Paris 1989-1990 (D. Sinnou, ed.), Birkhauser, Boston, 1992, pp. 71-76.

4. Donald E. Knuth, The art of computer programming, Vol. 2, Seminumerical algorithms,
Addison-Wesley, Reading, MA, 1981.

5. D. H. Lehmer, On the Diophantine equation x3 + y3 + z3 = 1 , J. London Math. Soc. 31
(1956), 275-280.

6. J. C. P. Miller and M. F. C. Woollett, Solutions of the Diophantine equation x3+y3+z3 = k
J. London Math. Soc. 30 (1955), 101-1 10.

7. L. J. Mordell, On an infinity of integer solutions of ax3 + ay3 + bz3 = bc3, J. London
Math. Soc. 30 (1955), 111-113.

8. M. Scarowsky and A. Boyarsky, A note on the Diophantine equation xn + yf + zn = 3,
Math. Comp. 42 (1984), 235-237.

9. J. J. F. M. Schlichting, Double precision BLAS, Algorithms and Applications on Vector
and Parallel Computers (H. J. J. te Riele, Th. J. Dekker, and H. A. van der Vorst, eds.),
North-Holland, Amsterdam, 1987, pp. 229-249.

(Heath-Brown) MAGDALEN COLLEGE, OXFORD, OX 1 4AU, ENGLAND

(Lioen and te Riele) CENTRE FOR MATHEMATICS AND COMPUTER SCIENCE (CWI), KRUISLAAN

413, 1098 SJ AMSTERDAM, THE NETHERLANDS

E-mail address, W. M. Lioen: walter@cwi.nl
E-mail address, H. J. J. te Riele: herman@cwi.nl

