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ON THE CUSPIDAL SPECTRUM 
OF THE ARITHMETIC HECKE GROUPS 
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ABSTRACT. Let rF(vh) (m = 1, 2, 3) be the three arithmetic Hecke groups, 
generated by the translation z z+ v+/i and the inversion z -+ - I. (r(1) is 
the modular group PSL(2, Z).) The purpose of this article is to present several 
theoretical results on X(v'hi), the weight-zero cuspidal spectrum of IF(v'm), 
which are of interest from a computational perspective, since they have appli- 
cation to the numerical study both of the spectra themselves and the Fourier 
coefficients of the associated Maass wave forms. The first of these is the theo- 
rem that X(1) C X(v'hi) for m = 2 and m = 3. Additional results explicate 
the action of the Hecke operators, for the three groups in question, upon Maass 
wave forms, in particular upon their Fourier coefficients. These results are mo- 
tivated in part by work of Stark-and more recent work of Hejhal and Hejhal 
and Arno-which demonstrates the importance of the Hecke operators for the 
numerical study of the Fourier coefficients of Maass wave forms on ( 1) . 

1. INTRODUCTION 

The spectral theory of discrete groups of linear fractional transformations 
acting on the upper half-plane X (or, what is the same, any half-plane or disc) 
has received much attention since the seminal work of Maass [6, 7] and Selberg 
[10, 11]. Some of this has focused upon numerical calculation of the cuspidal 
spectrum X(1) of the modular group 1(1) [4, 14]. Quite recently, several 
mathematicians have initiated numerical studies of the cuspidal spectra X( /H) 
of the Hecke groups F(A/fh), m = 2 and 3 [3, 14]. (These two groups are 
commensurable with 1(1), the only Hecke groups-aside from 1(1) itself-to 
have this property.) 

The purpose of this article is to present several theoretical results on X(1), 
X(x/2), and X(V1) which have interest from a computational perspective, since 
they can find application to the numerical computation both of the spectra and 
the Fourier coefficients of the associated Maass wave forms. (See ?2 for defini- 
tions.) The first of these results is the observation that the cuspidal spectrum of 
F(1) is contained in that of r(vH), for m = 2 and m = 3. (See ?2, Theorem 
1.) This result shows that the calculations of [14] are flawed. (In ?2, m will 
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have the three values m = 1, 2, 3; elsewhere m has the two values m = 2 
and m= 3.) 

Additional results serve to explicate the action of the Hecke operator-not 
only for 1(1) , but for F(Vl) and F(v'3) as well-upon the Maass wave forms, 
in particular upon their Fourier coefficients (??5-6). This discussion is motivated 
by work of Stark [13] and more recent work of Hejhal [3] and Hejhal and 
Arno [5], which demonstrates clearly the importance of the Hecke operators 
for the numerical study of the Fourier coefficients of the Maass wave forms 
on F((l). Here we emphasize especially the little-known Hecke operators on 
(\/~H), introduced in [1], since these can be applied in the same way to the 

numerical study of the Fourier coefficients of Maass wave forms on F(Vin). 
The existence of the Hecke operators on F(/') (m = 2, 3) is best understood 
as a consequence of the fact (following from a straightforward calculation) that 
a subgroup of index 2 in F(V/H) is conjugate to Fo(m) under the inversion 
z -* -1/ fiiz. The Hecke operators for F(V/H) derive from the well-known 
Hecke operators for Fo(m) . 

2. PRELIMINARIES 

Let 

Sm = O , 
T = (? 

-I 

The three groups we consider here are the arithmetic Hecke groups 

F(1V/i) = (Sm, T), m = 1, 2, 3, 

considered as groups of linear fractional transformations. The relations in 
F(-/-) are T2 = (SmT)a(m) =I, with a(l) = 3, a(2) = 4, a(3) = 6. 

Let m = 1, 2 or 3. A sufficiently smooth function f X 0 defined on the 
upper half-plane X is called a Maass wave form on F(v/'mH), with eigenvalue 
A2, if 

(i) f (z + 'ViR) = f (z) , P- l z) = f (z) ; 

(1) (ii) _ ~y2(fXx + fyy) zAf z= x+iy; 
(iii) f(x + iy) - * 0 exponentially, as y -* +oo. 

We call A an eigenvalue of the hyperbolic Laplace operator A, defined by 

(Af)(z) = -y2(fyy(z) + fyy(z)), z = x + iy. 
The cuspidal spectrum X(V'hi), of F(-'/-), is defined to be the set of those A 
occurring as eigenvalues associated with Maass wave forms on F(V'i). 

If a Maass wave form f satisfies f(-z) = f(z), then f is called even; if 
instead f satisfies f(-z) = -f(z), it is called odd. 

Remark. If a Maass wave form on F(V/H) with associated eigenvalue A were 
neither even nor odd, then we could form the nontrivial functions 

fe(z) = f(z) + f(-Z), fo(z) = f(z) -f(-z), 
both of which are again Maass wave forms with eigenvalue A. Here, fe is 
even and fo is odd, so that fe and fo are linearly independent. This would 
contradict the widely-held belief that the space of Maass wave forms associated 
with a fixed eigenvalue A has dimension one. 
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Let e (Vf`H) denote the subset of Z(/mi) consisting of eigenvalues associated 
with even Maass wave forms. Similarly, X0 (-JThi) is the set of eigenvalues arising 
from odd Maass wave forms. Then by the remark above, 

X(WMH) = e(V"H) U lo(Vrmi). 

We prove a slightly strengthened version of the result ennunciated in the intro- 
duction. 

Theorem 1. There holds Xe(1) C Xe(V7H) and X0(l) c Io(\fHi), for m = 2 
and m = 3. 

3. THE DIRECT OPERATOR 

The proof of Theorem 1 depends only upon a straightforward application of 
the operator Dm defined by 

(2) cDm[f(z)] f(z/V7H) + f(V'_z). 

Hecke [2] observed that if f is invariant with respect to F(l), then 4Dmf is 
invariant with respect to IF(Vmi). (Hejhal [3] points out that Rausenberger [8] 
noticed this fifty years earlier.) In fact, much more is true concerning 0Im; 
these further properties of 4Dm are essential to the proof of Theorem 1, which 
follows-almost directly-from them. They are stated in 

Proposition 2. If f is a Maass waveform on 1I(1) with eigenvalue A i then (DImf 
is a Maass wave form on 17(Q/i) with eigenvalue A. If f is even (odd), then 
FDmf is even (odd). 

The proof of this amounts to nothing more than the obvious verifications. 
To complete the proof of Theorem 1, then, it suffices to prove 

Lemma 3. If f satisfies condition (1) (iii) and Dmf 0_ , then f- 0. 

Proof. .Imf 0 implies that f(z) = -f(mz) for z in Z . By iteration, it 
follows that, for each z in X , f(z) = (_ l)k f (mkz) , with k a positive integer. 
Letting k -* +oo and using condition (1) (iii), we conclude that f(z) = 0 for 
each z in X. This completes the proof of Lemma 3, hence of Theorem 1. 0 

4. THE INVERSE OPERATOR 

Analogous to (Dm is the operator Pm , first defined in [1]. This is given by 

(3) Tm[Y[(Z)] = q(# z) + E (%i!) 
1=0 

A calculation shows that if (0 is invariant with respect to I(VmH) , then Tm (0 

is invariant with respect to F(1) . As with the map FDm, we have the stronger 

Proposition 4. If p is a Maass wave form on F(\/mi) with eigenvalue A, then 
either T1m? is a Maass wave form on 1(l) with eigenvalue A, or Tm (0 0. 
Moreover, Tm p is even if p is even, odd if p is odd. 

Again, the proof is a direct verification. In this case, however, there is no 
analogue of Lemma 3: it is possible that p 0 , but Tm - 0. (The analogue 
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of Lemma 3 would imply that ?(1) = ?(vXl) = X(V/3), but Hejhal's calculation 
of the low end of each of these spectra rules out this possibility [3].) 

5. FOURIER EXPANSIONS AND HECKE OPERATORS 

A Maass wave form f on F(1) with eigenvalue A has the expansion 

(4) f(z) = ZanW(Inly)e27tinx z = x + iy; 
n7-0 

here, W(y) = y1/2Kir(27ry), with r defined by the conditions A = 1 +r2, r > 0, 
and Kir is the K-Bessel function [6, 9]. Clearly, f is even if and only if 
a-, = a, in (4); a-, = -an is the condition for f to be odd. For a Maass 
wave form (0 on F(/if) the expansion is 

(5) (9(z) = ZO W (ti)) e27rinx/\/@ 

Again, (0 is even or odd according as c-n = an or c-n = -an, respectively. 
Applying (Dm to (4), we find that 02f 0 is equivalent to 

an + a2n = O, a2n+ = 0, for all n , 

and F3 f-O to 

an + a3n = 0, a3n+l = a3n+2 = O, for all n. 

From these equations it follows directly that (Dmf f 0 implies f- 0, in either 
case. This provides a modified version of Lemma 3. 

The (weight-0) Hecke operators for 1(l) are defined by 

(6) T(p)f(z)= = f(pz)+ f( P )} , p aprime. 
p ~b=O p' 

Much less familiar are the Hecke operators for F(V2-) and F(03), introduced 
in [1]. For p a prime (and again in weight 0), these are given by 

T(m, p)>p(z) =! { (pz) + , ()} p $4 m, 

m b=? b( m )+= ( m +)} 
p =m. 

As is well known, the T(p) preserve modular invariance (see, for example, 
[12, pp. 98-101]). Furthermore, a straightforward calculation with the hyper- 
bolic Laplace operator shows that if f is a Maass wave form on F( 1) with 
eigenvalue A, then so is T(p)f. Similarly, the Hecke operators T(m, p) pre- 
serve invariance with respect to the group F(Vm-) [1]. Again, if (p is a Maass 
wave form on F(V\/) with eigenvalue A, then so is T(m, p)(o. 

We summarize the action of the Hecke operators on the Fourier expansions. 
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Suppose f is a Maass wave form on F(l), given by (4). Then 

T(p)f(z) = bn W(nlyI)e2tinx, Z x + iy, 
nw$0 

where, for each prime p, 

(8) bn = anp + panlp p 
here, as usual, anlp = 0 unless pIn . If (z) is a Maass wave form on F(in), 
given by (5), then 

T(m, p)(p (z) = n W (In l) e27unxlvm z rx+iy, 

where 
(9) f anp + i an/p7 for prime p : m, 

anm + man/m + On- )an, for p = m; 

here, 
I if mln, 

n if mtn. 

Necessary and sufficient conditions for f to be a Hecke eigenform on F(1) 
are obtainable directly from (8). Similarly, (9) gives necessary and sufficient 
conditions for (p to be a Hecke eigenform on F(/in). 

We raise a question suggested by the remarks at the end of ?4: under what 
conditions does a given nontrivial Maass wave form on F( in) lie in the kernel 
of Pm ? Invoking the expansion (5), we find that 

(10) (Ym (P)(Z) = Z(On + Mamn) W( in ly)e27,inx. 

In analogy to our observation concerning 'Dm f, the identity 4m (p 0 O is equiv- 
alent to an + mamn = 0, for all n. If 'm(p is a "Hecke eigenform" on F(l), 
i.e., an eigenfunction of all the Hecke operators on F(1) (always the case if, as 
conjectured, the space of Maass wave forms associated with a fixed eigenvalue 
has dimension 1), then 'Pm pO 0 if and only if the coefficient in the term n = 1 
of (10) is zero, that is, a, + mam = 0. 

Applying the same idea to (p itself, we may normalize fo so that a I = 1 
(Assuming that p =_ 0 is a Hecke eigenform on F( in) implies a1 I: 0.) Then, 
(p 0 given by (5) satisfies 'm(p _q 0 if and only if 

Clearly, ( 11) can serve as a crude check on any scheme for computing the coeffi- 
cients an in (5), since for those Maass wave forms (p X 0 on F( in) associated 
with eigenvalues not in ( 1), mPm =p 0 and ( 11) holds of necessity. 

6. CONNECTIONS AMONG THE OPERATORS 

As a public service, I here list the results of a number of tedious calculations, 
omitting the calculations themselves. In each instance f is a function of period 
1, and (p is a function of period in. In particular, the formulae apply to 
Maass wave forms f, on F(1), and p, on F(in) . 
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We have: 

(12) (Pm o (Dm) f = (m + I)f + mT(m)f; 
(13) ((Dm o 'm) (p = 2(p + mT(m, m)(p; 

(a) (FDm o T(p)) f = (T(m, p) o FDm)f, p a prime ? m, 

(14) (b) ((m o T(m)) f + IDmf= (T(m, m) O'm)f; m 

(a) (m o T(m, p)) p= (T(p) o Tm), p a prime : m, 

(15) (b) (Tm o T(m, m)) (p =(T(m) o Pm)> + m Imf m 

From (14) and (15) we infer: 
(i) if f is a Hecke eigenform (H.e.f.) on F(l), then FDmf is H.e.f. on 

17(,\/m); 
(ii) (o H.e.f. on F(\/hi) implies Jmf is H.e.f. on F(l). 

Furthermore, since D?m has a trivial kernel, it follows that if FDmf is H.e.f. 
on FQvr(>h), then f is H.e.f. on F(1). By way of contrast, because Pm has 
a nontrivial kernel, we cannot infer that (0 is H.e.f. on F(\/'mi) from the 
assumption that 'Pm(o is H.e.f. on F(1). 

7. CONCLUDING REMARKS 

As with the Hecke operators on F(l), the Hecke operators on F(Vrn) need 
not be restricted to prime index; they can, in fact be defined for each / E Z+ . 
Since all T(m, 1) are expressible as polynomials in the T(m, p) (1 E Z+, p a 
prime), (o is an eigenfunction for all T(m, 1) if it is an eigenfunction for the 
T(m, p). The definition of T(m, 1) can be extended to weights other than 0 
[1]. 
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