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ABSTRACT. Consider the sequences {u,} and {v"} generated by u,+1 = 
Pun - qun-I and Vn+1 = Pvn - qvn-I , n > 1 , where uo = 0, ul = 1, vo = 
2, v, = p, with p and q real and nonzero. The Fibonacci sequence and 
the Lucas sequence are special cases of {un} and {vn}, respectively. De- 
fine rn = un+d/un, Rn = vn+d/vn, where d is a positive integer. McCabe 
and Phillips showed that for d = 1, applying one step of Aitken acceleration 
to any appropriate triple of elements of {rn} yields another element of {rn}. 
They also proved for d = 1 that if a step of the Newton-Raphson method or 
the secant method is applied to elements of {rn } in solving the characteristic 
equation x2 - px + q = 0, then the result is an element of {rn }. 

The above results are obtained for d > 1. It is shown that if any of the 
above methods is applied to elements of {Rn}, then the result is an element 
of {rn}. The application of certain higher-order iterative procedures, such as 
Halley's method, to elements of {rn } and {Rn } is also investigated. 

Fibonacci and Lucas numbers appear repeatedly in the works of the father of 
computational number theory, D. H. Lehmer, who contributed also to numerical 
analysis, notably [5]. To his memory is dedicated this extension of results of 
McCabe and Phillips [6] and Jamieson [4] about applying iterative formulas for 
solving nonlinear equations to ratios of generalized Fibonacci numbers. 

1. INTRODUCTION 

Let p and q be real and nonzero. Define the generalized Fibonacci sequence 

(11) UO =0, Ul = 1, Un+1 =PUn qUn-I n > 1, 

and the generalized Lucas sequence 

(1.2) vo = 2, vI = p, Vn+ I=pvn-qvn-, n >1. 

Let d be a natural number. If un 0 0, define the ratio 

(1.3) rn= Un+d/un. 

If vn = 0, define the ratio 

(1.4) Rn Vn+d/Vn. 
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Related to the recurrence relation appearing in (1.1) and (1.2) is the charac- 
teristic equation 

(1.5) x2 - px + q = 0. 

If the equation has two real and unequal roots, then when d = 1, the sequences 
of ratios {r,} and {R,} converge to the root of larger modulus. If there is a 
double root, then the sequences {r, } and {Rn } converge to this root. McCabe 
and Phillips determined the condition for a generalized Fibonacci sequence 
to have no zero members; a necessary condition is that equation (1.5) have 
complex roots ([6, p. 554]). Their analysis can be adapted readily to generalized 
Lucas numbers, by Lemma 3 below. 

If a and fi are the roots of (1.5), then they satisfy ([3, equation (1.4)]) 

(1.6) a?fl=p, afl q, (a _ fl)2 = (a + fl)2 - 4a= p2 - 4q. 

If a= /3, then 

(1.7) 2a =p, a2 = q = (p/2)2, p2 - 4q = 4a2 - 4a2 =O. 

Lemma 1 ([3, equations (2.6), (2.7)]). If a and /1 are the distinct roots of (1.5) 
and n > O, then 

Un = (an -/3n )/(a -/3) and vn = an + An. 

Lemma 2. If a is the double root of (1.5) and n > 0, then un = n(p12)n- 
and vn = 2(pl2)n. 

If d > 1, and the roots of (1.5) are real, then the sequences of ratios {rn = 

Un+dlUn} and {Rn = Vn+dlvn} will converge to the dth power of a root of 
(1.5). In other words, the sequences of ratios {rn} and {Rn} converge to a 
root of 

(1.8) X2-(ad + d)X + (af)d =x2-VdX+q =0, 

by Lemmas 1 and 2 and (1.6) and (1.7). 
Define the Aitken transformation by 

(1.9) A(x, x', x") = (xx"-x'2) /(X-2x' + x"). 

Define the secant transformation S(x, x') for equation (1.8) by 

(110 S(X) -Vdx( +2qd) (X2 X+qd) X+X'-Vd 

and the Newton-Raphson transformation N(x) for equation (1.8) by 

( 1. 1 1 ) N(x) = x-_(X2 - VdX + qd )/(2X -Vd ) = (x2 - qdl )(2x -Vd )- 

McCabe and Phillips proved that, if d = 1 , then 

(i) A(rn-t, rn, rn+t) = r2n if r2n =A 0, 

(ii) S(rn, rm) = rn+m if rn+m = 0, 
(iii) N(rn) = r2n if r2n A 0. 
It is now possible to state the extensions. As long as division by zero is 

avoided, then 
(i) A(rn-t, rn , rn+t) = r2n, A(Rn-t, Rn , Rn+t) = r2n 

(ii) S(rn, rm) = rn+m, S(Rn, Rm) = rn+m, 
(iii) N(rn) = r2n, N(Rn) = r2n , 
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for any natural number d. The idea of considering d > 1 is due to Jamieson 
[4], who applied it only to the ordinary Fibonacci sequence. 

The other extension is to apply the Halley transformation H(x), which is a 
third-order refinement of the Newton-Raphson transformation: 

H(rn) = r3n , H(Rn) = R3n 

Note that in the latter case the image is a ratio of generalized Lucas numbers. 
The Newton-Raphson and Halley transformations are two members of a certain 
infinite family of transformations; proofs applicable to the infinite family will 
be given. 

Applying any of these transformations to elements of the sequence {Rn}, 
where (1.5) has a double root a, gives rise to division by zero. In this situation 
Rn = (p/2)d = ad for every n > 1; i.e., Rn is the root of (1.8), by Lemma 
2 and (1.7). In this case the ratios are constant, so the sequence is trivial. In 
the sequel the transformations will be applied to Rn under the assumption that 
(1.5) has distinct roots. 

Section 2 contains a list of elementary relationships about generalized Fi- 
bonacci and Lucas numbers. In ? 3 the Aitken transformation is studied. Section 
4 is devoted to the secant transformation. Section 5 begins with the presenta- 
tion of the Halley transformation. Then an infinite family of transformations, 
which includes those of Newton-Raphson and Halley, is investigated. 

2. PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS NUMBERS 

For n > 0 define V-n = -n + /l-n. Then by (1.6) and Lemma 1, 

(2.1) qnfVln = (afl)nV-n = /An + an = Vn. 

Similarly, if equation (1.5) has distinct roots, define U-n = (a -n-fl-n)/(a -fl). 
Then by (1.6) and Lemma 1 ([3, equation (2.17)]) 

(2.2) qnU-n = (,fl)n U-n = (fln - an)/(a - fi) =-Un 

Formula (2.2) is applicable also if equation (1.5) has a double root, for if U_n is 
defined by -n(p/2)-n-1, then qnU-n = -n(p/2)-n-1(p/2)2n = -n(p/2)n-1 
- Un . 

It is easy to verify that the recurrence relations in (1.1) and (1.2) are valid 
also for negative subscripts. 

Lemma 3 ([3, equation (4.10)]). If n is an integer, then U2n = Unvn 

Lemma 4. If n, m, and e are integers, then 
(a) Un+eUn-e - U2 = _qneU2, 

(b) Un+eUm - Unum+e =-qm UeUn-m 
(C) Un+eUm+e - qe UnUm = UeUn+m+e, 

(d) Un+e -qe Un-e = VnUe, 
(e) Un+e -VeUn = -qe Un-e. 

On the right side of statements (a)-(d) of the following lemma, there appears 
the factor p2 - 4q. If (1.5) has a double root, then p2 - 4q = 0, by (1.7). It 
suffices to show in the case of a double root, accordingly, that the left side of 
each of these statements vanishes. 
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Lemma 5. If n, m, and e are integers, then 
(a) Vn+evn-e -V2 = qn-e (p2 - 4q)U2, 
(b) Vn+evm - Vnvm+e = qm(p2 - 4q)ueun-m, 

(C) Vn+evm+e - qe Vnvm = (p2 - 4q)ueun+m+e, 

(d) Vn+e - qen-e = (p2 - 4q)unue, 

(e) Vn+e - Vevn = -qe Vn-e 

Lemma 6. If n, m, and e are integers, then un+evm - Unvm+e = qmUevn_m. 

Lemma 7 ([3, equation (4.13)]). If n is an integer, then un(v 2 - qn) = U3n. 

3. THE AITKEN TRANSFORMATION 

Theorem 1. Let n > t > 0 be integers, and assume that division by zero does 
not occur. Then (A) A(rn-t, rn, rn+t) = r2n; (B) if equation (1.5) has distinct 
roots, then A(Rn-t, Rn, Rn+t) = r2n. 
Proof. We prove only part (A). The proof of part (B) is similar. By (1.3) and 
(1.9), 

A(rn-t, rn, rn+t) - n-2r + r? 
rn-t - 2rn + rn+t 

(un-t+d?/unft)(un+t+d/un+t) - (un+dl/un)2 
Un-t+d/unt - 2un+dl/un + Un+t+dl/un+t 

n-t+du+t+dU unltunl+tunl?d 

Unl[un-t+dunun+t - 2un+dun-tun+t + un+t+dUn-tUn] 

(un-t+dun+t+d -U+d)u? -(un-tun+t -u 2)u2d 

Unl[(Un-t+dUn - Un+dUn-t)Un+t - (Un+dun+t -Un+t+dUn)Un-tl] 

-qn-t+du2u2 + qn-tU2Un2+ -q n-t+d 
d 

un ud(qn-ututn+t - qnutun-t) 

by Lemmas 4(a) and 4(b), 

ut(un+d - n) UtUdU2n+d 

Un Ud(Un+t -qtun-t) UnfUdVn Ut 

by Lemmas 4(c) and 4(d), 

= U2n+d/U2n = r2n 

by Lemma 3 and then (1.3). El 

4. THE SECANT TRANSFORMATION 

Theorem 2. Let n and m be positive integers, and assume that division by zero 
does not occur. Then (A) S(rn, rm) = rn+m; (B) if equation (1.5) has distinct 
roots, then S(Rn, Rm) = rn+m. 

Proof. We prove only part (B). The proof of part (A) is similar. By (1.4) and 
(1.10), 

SRnRm - qd (Vn+d/Vn)(Vm+d/Vtn) - qd 
Sd(Rn, Rm) = 

Rn + Rm - Vd - Vn+dlVn + Vtn+d/ltn - Vd 
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Vn+dVm+d -qdVnm (p2 - 4q)udun+m+d 

Vn+dVm + Vn(Vm+d - VdVm) Vn+dVm - qdVnVm-d 

by Lemmas 5(c) and 5(e), 

(p2 - 4q)Udun+m+d Un+m+d - 

(p2 - 4q) Ud Un+m Un+m rn+m, 

by Lemma 5(c) and then (1.3). El 

5. THE NEWTON-RAPHSON AND HALLEY TRANSFORMATIONS 

The Halley transformation for the equation f(x) = 0 is given by ([1, p. 
131]) 

H(x) = x - f(x)/[f'(x) - f(x)f"(x)/2f'(x)]. 

Applying the Halley transformation to equation (1.8) yields 

X2- vdjx + qd 
H(x) x - 

(2x - Vd) - (X2 - VdX + qd)/(2x - Vd) 
(5.1) X3 -3qdX +Vdqd 

3x2 - 3VdX + V-qd 

An infinite family of transformations, which includes those of Newton- 
Raphson and Halley, will now be investigated. To this end, define the ho- 
mogeneous polynomials in y and z by 

(5.2) Udqf Th,f,d(Y, Z) = k- (U)khk f 

Lemma 8. For i = 0, 1, 2, ...,h define 

E(i) = u'qit ~ ( _~'(Ut)k uh;k Udkf-it. dq c (: k t) 

Then E(i) is independent of i. 
Proof. It suffices to show that if 0 < i < h - 1, then E(i) = E(i + 1). By 
definition, (j) = 0 if k < 0 or k > j. Thus 

E(i) = Udqit: [( k ) + 
(hk 1) ( tud)kutk Udk-fit, 

h it (hI-i- - )(u)kuh-i-k 

+d qit(fj ( -Uk t)jd-f-t 

-uq Udq k )(-U Ut,d (Ut+dUdkUU1 UlUdk?d.f11) 

k=O 
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=ui+1q(i+l)t ( )(_Ut)kUh;-i-1kUdf+1t 
d? ( k t) 

d-f(+) 
k=O 

by Lemma 4(b), 

=E(i+ 1). El 

Theorem 3. If Ud 5 0, then Th,f,d(ut, Ut+d) = Uht+f. 

Proof. By Lemma 8, 

uhq-fTh,f,d(ut, Ut+d) = -E(O) =-E(h) = -uhqhtU-hq. 

By (2.2), 
Th, f,d(Ut, Ut+d) = Uht+f E 

Lemma 9. For 0 < i < h i even, define 

F(i) = ui tq t 
i (h i ) ( _Vt) -kv udkfit- 

k=O 

For O < s < h, s odd, define 

G(s) = -Us qst z hk )(vt )kVhs-kvd Gs=-dq E (k )-t t+d Vdk-f-st- 
k=O 

Then F(i) = G(i + 1) if i < h, and G(i + 1) =(p2 - 4q)F(i + 2) if i < h - 1. 

Proof. We have 

F(i) = ui qit [(h k ) + (k )J (-Vt)kvhikUdk-f-it 
k=O 

= udqit h (h z 1)( vt)k+dvV-k-1(vt+dUdkfit - VtUdk+d f-it) 
k=O 

_ - ui+ Iq(i+l)t (h i )(-vt )kvh-ik Vdk(i+i) t 

k=O 

by Lemma 6, 

= G(i+ 1). 

Continuing, 

G(i ?1) = +lq(+,hiI [(h-i-2) (h-i-2)1 (vkvh-,-k-I 

G(i + -u,+ I (l+ )t _V )kV-2 (hkhi,k-k vvI k=O 

= u 1+ q ( + )t (p__4Vt, ( )kVh_-i-)kvh-2Z-k- 

d E (h k )vtvd (Vt+dVdk=fO(l)t 
- VtVdk+df(l)t) 

k=O 

= 4q) ~h-if2 (h 2 

k=O 
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by Lemma 5(b), 
= (p2 - 4q)F(i + 2). El 

Theorem 4. Assume Ud 5 0. If h is even, then 

Th,f,d(Vt, Vt+d) = (p2 4q)h/2uht+f 

If h is odd, then 

Th, f ,d(Vt, Vt+d) = (p2 - 4q)(h 1)/2VVht+f. 

Proof. Apply Lemma 9 [h/2] times: 
If h is even, then 

uhq fTh,f,d(Vt, Vt+d) =-F(0) = (p2- 4q)F(2) = -(p2 - 4q)2F(4) 
- (p2 - 4q)h/2F(h) = -uhqht (p2 - 4q )h/12U-f 

By (2.2), Th,f,d(Vt, Vt+d) = (p2 4q)h/2uUht+f 
If h is odd, then 

uhq fTh,f,d(Vt, Vt+d) =-F(O) = -(p2- 4q)F(2) 

_(p2 - 4q) (h-l)12F(h - 1) 

-(p2 - 4q)(h_ 1)/2G(h) = (p2 - 4q)(h-1)/2uh q -hvht-f 

By (2.1), Th,f,d(Vt, Vt+d) = (p2 - 4q)(h-1)12vht+f El 

Define 
h [h z h-k 

_ k=O_'-_Y/ 
gh(Z/Y) - h )( k 

k=(\k) ~-Z) 
d 

Multiply the numerator and the denominator of the fraction by u-h (-y)h 

-u-hqd E ( _)(y)kzh-ku ThUddd(y z) 

(5.3) gh(z/y) = 
~u~h h (h (_y)k h-kuk Th,o,d(Y, Z)Y 

The immediate consequences of Theorems 3 and 4 are: 

Theorem 5. (a) Assume that Ud 54 0 and Uht 5 0. Then gh(ut+d/ut) = Uht+d/Uht. 
(b) Assume that Ud 5 0, Vt = 0, and Vht A 0. Then 

{ Uht+d/Uht h even, 
gh (Vt+d/lVt) =x Vht+d/Vht, h odd. 

Theorem 6. If n is a positive integer, and division by zero does not occur, then 

N(rn) = N(Rn) = r2n. 

Proof. In view of Theorem 5, it suffices to show that g2(z/y) = N(z/y), where 
N(x) is given by equation (1.1 1). By (5.3), 

-qd(z2ud + y2Ud) z2Ud-q dy2Ud 

-(-2yZud 
+ 

y2U2d) 2yzud 
- 

y2udVd 
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by (2.2) and Lemma 3, 

_(Z/y)2 - qd_ 
- 2z/y - V= N(z/y). El 

Theorem 7. If n is a positive integer, and division by zero does not occur, then 
H(rn) = r3n and H(Rn) = R3n. 

Proof. In view of Theorem 5, it suffices to show that g3(Z/y) = H(z/y), where 
H(x) is given by equation (5.1). By (5.3), 

-qg3Z3 - (z3d + 3y2 zud - Y U2d) 

-(-3yz2ud + 3y2zu2d - Y3U3d) 

Z3 Ud - 3y2zqd Ud + y3qd udvd 

3yz2ud - 3y2 ZUdVd + y3Ud (Vd- q 

by (2.2), Lemma 3, and Lemma 7, 

3(z/y)3 - 3qd(z/y) + _qd V 
~~~~ =~~~H (z/ly). El 

Remark. Theorem 3, with f = 0 and d = 1, resembles a formula given by H. 
Siebeck, cited in [2, p. 394]. 

I wish to acknowledge helpful suggestions from my colleagues Professors H. 
Furstenberg and S. Shnider. 
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