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ABSTRACT. There are 105212 Carmichael numbers up to 1015: we describe the 
calculations. The numbers were generated by a back-tracking search for possi- 
ble prime factorizations, and the computations checked by searching selected 
ranges of integers directly using a sieving technique, together with a "large-prime 
variation". 

0. INTRODUCTION 

A Carmichael number N is a composite number N with the property that for 
every x prime to N we have xN-1 1 mod N. It follows that a Carmichael 
number N must be squarefree, with at least three prime factors, and that p - 1 I 
N - 1 for every prime p dividing N: conversely, any such N must be a 
Carmichael number. 

For background on Carmichael numbers we refer to Ribenboim [24 and 25]. 
Previous tables of Carmichael numbers were computed by Pomerance, Selfridge, 
and Wagstaff [23], Jaeschke [ 1 3], Guillaume [ 1 1], Keller [ 14], and Guthmann 
[12]. Yorinaga [28] also obtained many Carmichael numbers. 

We have shown that there are 105212 Carmichael numbers up to 1015, all 
with at most nine prime factors. Let C (X) denote the number of Carmichael 
numbers less than X; let C (d, X) denote the number with exactly d prime 
factors. Table 1 gives the values of C (X) and C (d, X) for d < 9 and X in 
powers of 10 up to 1015. 

We have used the same methods to calculate the smallest Carmichael numbers 
with d prime factors for d up to 20. The results are given in Table 2. 

It has recently been shown by Alford, Granville and Pomerance [ 1 ] that there 
are infinitely many Carmichael numbers: indeed C (X) > X2/7 for sufficiently 
large X. Their proof is described by Granville [10]. 

1. SOME PROPERTIES OF CARMICHAEL NUMBERS 

In this section we gather together various elementary properties of Carmichael 
numbers. We assume throughout that N is a Carmichael number with exactly 
d prime factors, say, PI, ..., Pd in increasing order. 

Received by the editor May 12, 1992 and, in revised form, October 8, 1992 and January 5, 
1993. 

1991 Mathematics Subject Classification. Primary 1 I Y99; Secondary 1 I A5 1, 1 lYl 1. 

( 1993 American Mathematical Society 
0025-5718/93 $1.00 + $.25 per page 

381 



382 R. G. E. PINCH 

Proposition 1. Let N be a Carmichael number less than X. 

(1) Let r < d and put P = p,. Then Pr+I < (X/P)l/(d-r) and Pr+? iS 
prime to Pi - 1 for all i < r. 

(2) Put P = Hil1 pi and L = lcm{pl - I, Pd-l} - I. Then PPd I 
mod L and Pd - 1 divides P- I. 

(3) Each pi satisfies pi < 'N < VY 

Proof. Parts (1) and (2) follow at once from the fact that pi - 1 divides N - 1 
for each i. For part (3), consider the largest prime factor Pd. From (2), 
N = PPd and Pd - 1 P - I, so that Pd < P. But now pd < PPd =N. E 

d -2~~~~~~~~ 
Proposition 2. Let P = HI d-2pi . There are integers 2 < D < P < C such that, 
putting A = CD - p2, we have 

(1) Pd- I = (P- 1)(P+D)?1 A 

(2) Pd (P - 1)(P + C) + A +1 

(3) P2 < CD < p2 (Pd-2+ 
kPd-2 +1, 

Proof. For convenience we put q = Pd-I and r = Pd. We have r - 1 Pq - 1 
and q - 1i Pr - 1, say 

Pq-lI Pr-i1 
D= - and C= 

r-1I q-l1 

Since q < r we have D < P < C, and since Pq : r we have D I l,that is, 
D > 2. Substituting for r, we have 

P (P - + 1)-1 = C(q -1), 

and so 
CD(q - 1) =p2q - P+PD - D. 

Putting A = CD - p2, we have 

A(q - 1) = (CD _ p2)(q - 1) = p2 - P + PD - D = (P - 1)(P + D). 

So, A > 0 and 
(P- 1)(P + D) 

similarly, 
r ((P l)(P+C)+ 

A 
Now q > Pd-2 + 2 and D < P, so 

1< (P-1)(P +D) 2p2 
A 

giving 

CD_ p2 < p2 ( i 2 
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whence 

CD < p2 (Pd-2 + 3 
Pd-2+ 1 

as required. 5 

Corollary. There are only finitely many Carmichael numbers N = pid,I Pi with 
a given set of d - 2 prime factors P1, . , Pd-2 

Parts (1) and (2) of Proposition 2 are contained in Satz B(e) of Knodel [1 5]. 
The Corollary was obtained by Beeger [2] for the case d = 3 and by Duparc 
[9] in general. 

Proposition 3. Let P = pId-2 Pi . Then 
(1) Pd-I < 2P2, 
(2) Pd < P3- 

Proof. We use Proposition 2. Putting A > 1 and D < P in (1), we have 
Pd-I < (P - 1)(2P) + 1 < 2P2. Putting D > 2 and Pd-2 > 3 in (3), we have 
C < 3p2/4; substituting this in (2), we have Pd < P3 as required. o 

A slightly stronger form of this result was obtained by Duparc [9]. 

2. ORGANIZATION OF THE SEARCH 

Assume throughout that N is a Carmichael number less than some preas- 
signed bound X and with exactly d prime factors. We obtain all such N as 
lists of prime factors by a back-tracking search. 

We produce successive lists of P1, ..., Pd-2 by looping at each stage over 
all the primes permitted by Proposition 1 (1). 

At search level d - 2 we put P = I2d-2pi. If P is small enough, then 
we proceed by using Proposition 2, looping first over all D in the range 2 to 
P - 1 , and then over all C with CD satisfying the inequalities of Proposition 
2(3). For each such pair (C, D), we test whether the values of Pd-I and Pd 
obtained from 2(1) and 2(2) are integral and, if so, prime. Finally, we test 
whether N - 1 is divisible by Pd-I - 1 and Pd - 1 . 

If the value of P at level d - 2 is large, then we loop over all values 
of Pd-I permitted by Proposition 1(1) and Proposition 3(1). Now put L = 
lcm {Pl - 1, ... Pd-I - 1 }. The innermost loop runs over all primes p with 
Pp _ 1 mod L for which p - 1 divides P - 1 and which satisfy the bounds of 
Propositions 1(3) and 3(2). Such p are possible Pd . 

This innermost loop is speeded up considerably by splitting the range of 
such p into two parts. For small values of p we compute P' with PP' _1 
mod L and let p run over the arithmetic progression of numbers congruent to 
P' mod L, starting at the first term which exceeds Pd-i . For each such p we 
test whether p is prime and p - 1 divides P - 1. For large values of p we 
run over small factors f of P - 1. Putting p = (P - l)/f + 1, we then test 
whether Pp _ 1 mod L and p is prime. 

We note that testing candidates for pi for primality is required at every stage 
of the calculation. We found that precomputing a list of prime numbers up to 
a suitable limit produced a considerable saving in time. 
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Finally we note that using Proposition 1(3) ensures that, in the range up to 
1015, the candidate pi are all less than 225, so that 32-bit integer arithmetic is 
always sufficient. 

3. CHECKING RANGES BY SIEVING 

We used a sieving technique to verify that the list of Carmichael numbers 
produced by the method of ?2 was complete in certain ranges. 

Suppose that we wish to list those Carmichael numbers in a range up to X 
which are divisible only by primes less than Y. We precompute the list 2 
of primes up to Y. We form a table of entries for the integers up to X; for 
each p in Y we add logp into the table entries corresponding to numbers t 
with t > p, t _ O modp, and t 1 mod (p - 1): that is, t > p2 and t _ p 
mod p (p - 1) . At the end of this process we output any N for which the table 
entry is equal to log N. Such an N has the property that N is squarefree, all 
the prime factors p of N are in Y, and that N _ 1 mod (p - 1) for every p 
dividing N: that is, N is a Carmichael number whose prime factors are all in 
Y2. 

From Proposition 1(3), it is sufficient to take Y = V to obtain all the 
Carmichael numbers up to X. 

The time taken to sieve over all the numbers up to X will be bounded by 

x+ LP(P)J <X+XEp(pl =o(X), 

which is an improvement over a direct search for Carmichael numbers' but still 
considerably slower in practice than the search technique. 

We therefore consider a "large-prime variation". After sieving with Y = X 3 

we use a further technique to deal with those Carmichael numbers which have 
aprime factor q greater than X . For each prime q in the range X 3 to X 2, 
we consider all numbers P in the range q < P < X/q which satisfy P 1_ 
mod (q - 1). For each such P we first test whether (2P)q -2 mod P. If 
so, N = Pq is a Fermat pseudoprime to base 2 and hence a candidate to be a 
Carmichael number. The number of P tested at this stage is 

Z q( 
- 

=O(Xl). 

X3<q<X2 

Let Cx denote the number of P which pass on to the second stage. We next 
factorize such P, checking that the primes p dividing P are distinct, less than 
q and have the property that N 1_ mod (p - 1) . If so, then N is a Carmichael 
number with q as largest prime factor. The time taken to perform the second 
stage, using trial division, is O( P/-Iq) = O(X3) for each value of P coming 
from a given prime q, so O(CxX3k) in total. Hence, the total time taken for 
the large prime variation is O(X2 + CxX ). Since Cx is noticeably smaller 
than Xi , the large-prime variation gives an improvement over the estimate in 
the previous paragraph. 

I Testing the condition 2N- -1 mod N for all N up to X would take time O(X logX) . 
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4. COMPARISON WITH EXISTING TABLES 

Carmichael in his original paper [3] gave four examples with three prime 
factors and later [4] a further ten examples with three prime factors and one 
example with four prime factors. Swift [26] described a computation of the 
Carmichael numbers to 109, searching over possible lists of prime factors, and 
discusses earlier tables. Yorinaga [28] gave examples of Carmichael numbers 
with up to 15 prime factors. Pomerance, Selfridge, and Wagstaff [23] listed 
the Fermat pseudoprimes base 2 up to 25-109, and selected the Carmichael 
numbers from this list by testing the prime factors. Jaeschke [13] computed 
the Carmichael numbers up to 1012 by a search strategy. These results are 
summarized by Ribenboim [24, 25]. Guillaume [11] computed the Carmichael 
numbers up to 1012 using a method similar to the "large-prime variation". 
Keller [14] obtained the Carmichael numbers up to 1013 by a search strategy 
and Guthmann [ 12] used a sieving method very similar to that of ?3 on a vector 
computer to obtain the Carmichael numbers up to 1014. 

Our results are consistent with the statistics of the computations described 
above with two exceptions. Jaeschke [13] reports three fewer Carmichael num- 
bers up to 1012. He has stated2 that this discrepancy is due to his computer 
program having terminated prematurely when testing numbers very close to the 
upper bound of the range. Keller [14] reports one less Carmichael number up 
to 1013. He has stated3 that this was missed by a book-keeping error. 

We have further checked our tables by extracting the Carmichael numbers 
from the tables of Fermat pseudoprimes base 2 of Pomerance, Selfridge, and 
Wagstaff [23], and Pinch [20]. Morain has checked our tables up to 1012 against 
those of Guillaume. In each case there is no discrepancy. 

Keller has recently verified the computation up to 1015 by a different method. 

5. DESCRIPTION OF THE CALCULATIONS 

We ran the search procedure of ?2 with upper limits of X = 10n for each 
value of n up to 15 independently. As a consequence, the list of Carmichael 
numbers up to 1014 was in effect computed twice, that up to 10'3 three times 
and so on. The computer programs were written in C, using 32-bit integer 
arithmetic, and run on a Sun 3/60 or a Sparc workstation. As a check, both on 
the programs and the results, some of the runs, including all those up to 1012, 
were duplicated using the rather strict Norcroft C compiler on an IBM 3084Q 
mainframe. A total of about 200 hours of CPU time was required. All the 
results were consistent. 

The sieving process of ?3 turned out to be too expensive to run over the 
whole range up to 1015. We therefore applied the sieving technique to various 
subranges. 

As a preliminary check, we ran the "large-prime variation" for Carmichael 
numbers up to 1012 with a prime factor between 104 and 106, and for Car- 
michael numbers up to 1015 with a prime factor between 105 and 107.5. The 
lists matched those found by the search process: there were 2347 such numbers 
in the list up to 1012, and 4245 in the list up to 1015. These checks took about 
100 hours of CPU time on a Sun 3/60 workstation. 

2Letter dated 21 'January 1992. 
3Electronic mail dated 5 May 1992. 



386 R. G. E. PINCH 

In order to check our results against those of [13], we carried out the sieve 
for the range 1012 - 1010 to 1012 using primes up to 105 . The search method 
had previously found 24 Carmichael numbers in this range, 20 having all prime 
factors less than 105 . The sieve found these 20 as expected, and the run of 
the large-prime variation for this range had already found the other four. This 
check took about 20 hours of CPU time on a Sparc workstation. 

The sieving method was run up to 1012 with a set of primes including those 
up to 106 as part of the calculations in Pinch [20]. 

We also used the sieve on a number of randomly chosen intervals of length 
106 up to 1015. In each case the results were again consistent with the results 
of the search. 

6. STATISTICS 

Let C (X) denote the number of Carmichael numbers less than X, and 
C (d, X) denote the number which have exactly d prime factors. In Table 1 we 
give C (d, X) and C (X) for values of X up to 1015 . No Carmichael number 
in this range has more than nine prime factors. We have C (1015) = 105212. 

TABLE 1. The number of Carmichael numbers with d prime 
factors up to 1015 

d 
logl0X 3 4 5 6 7 8 9 total 

3 1 0 0 0 0 0 0 1 
4 7 0 0 0 0 0 0 7 
5 12 4 0 0 0 0 0 16 
6 23 19 1 0 0 0 0 43 
7 47 55 3 0 0 0 0 105 
8 84 144 27 0 0 0 0 255 
9 172 314 146 14 0 0 0 646 

10 335 619 492 99 2 0 0 1547 
11 590 1179 1336 459 41 0 0 3605 
12 1000 2102 3156 1714 262 7 0 8241 
13 1858 3639 7082 5270 1340 89 1 19279 
14 3284 6042 14938 14401 5359 655 27 44706 
15 6083 9938 29282 36907 19210 3622 170 105212 

In Table 2 we give the smallest Carmichael number with d prime factors for 
d up to 20. 

In Table 3 (see p. 388) we tabulate the function k(X), defined by Pomerance, 
Selfridge, and Wagstaff [23] by 

C (X) = X exp (-k(X) log X log log log X) log log X 

and the ratios C (1 On)/C (1 on- 1) investigated by Swift [26]. Pomerance, Self- 
ridge, and Wagstaff [23] proved that lim inf k > 1 and suggested that lim sup k 
might be 2, although they also observed that within the range of their tables 
k(X) is decreasing. This decrease is reversed between 1013 and 1014; Swift's 
ratio, again initially decreasing, also increases again before 1015. Pomerance 
[21, 22] gave a heuristic argument suggesting that lim k = 1 . 
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TABLE 2. The smallest Carmichael numbers with d prime fac- 
tors 3 < d < 20 

d N 
factors 

3 561 
3.11.17 

4 41041 
7.11.13.41 

5 825265 
5. 7.17.19.73 

6 321197185 
5.19.23.29.37.137 

7 5394826801 
7.13.17.23.31.67.73 

8 232250619601 
7.11.13.17.31.37.73.163 

9 9746347772161 
7.11.13.17.19.31.37.41.641 

10 1436697831295441 
11.13.19.29.31.37.41.43.71.127 

11 60977817398996785 
5. 7.17.19.23.37.53.73.79.89.233 

12 7156857700403137441 
11. 13.17.19.29.37.41.43.61.97.109.127 

13 1791562810662585767521 
11. 13.17.19.31.37.43.71.73.97.109.113.127 

14 87674969936234821377601 
7.13.17.19.23.31.37.41.61.67.89.163.193.241 

15 6553130926752006031481761 
11.13.17.19.29.31.41.43.61.71.73.109.113.127.181 

16 1590231231043178376951698401 
17.19.23.29.31.37.41.43.61.67.71.73.79. 97.113.199 

17 35237869211718889547310642241 
13.17.19.23.29.31.37.41.43.61.67.71.73. 97.113.127.211 

18 32809426840359564991177172754241 
13.17.19.23.29.31.37.41.43.61.67.71.73. 97.127.199.281.397 

19 2810864562635368426005268142616001 
13.17.19.23.29.31.37.41.43.61.67.71.73.109.113.127.151.281.353 

20 349407515342287435050603204719587201 
11.13.17.19.29.31.37.41.43.61.71.73.97.101.109.113.151.181.193.641 

In Table 4 (next page) we give the number of Carmichael numbers in each 
class modulo m for m = 5, 7, 11, and 12. 

In Tables 5 and 6 (see p. 389) we give the number of Carmichael numbers 
divisible by primes p up to 97. In Table 5 we count all Carmichael numbers 
divisible by p: in Table 6 we count only those for which p is the smallest 
prime factor. The largest prime factor of a Carmichael number up to 1015 is 
21792241, dividing 

949803513811921 = 17 . 31 * 191 . 433 . 21792241, 

and the largest prime to occur as the smallest prime factor of a Carmichael 
number in this range is 72931, dividing 

651693055693681 = 72931 - 87517 . 102103. 
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TABLE 3. The functions k (10o) and C (10o)/C (ion-i) 

n k (I on) C (lOn)IC (Ion-,) 
3 2.93319 
4 2.19547 7.000 
5 2.07632 2.286 
6 1.97946 2.688 
7 1.93388 2.441 
8 1.90495 2.429 
9 1.87989 2.533 

10 1.86870 2.396 
11 1.86421 2.330 
12 1.86377 2.286 
13 1.86240 2.339 
14 1.86293 2.319 
15 1.86301 2.353 

TABLE 4. The number of Carmichael numbers congruent to c 
modulo m for m =5, 7, 11, 12 

m c 25.109 loll 1012 1013 1014 1015 

5 0 203 312 627 1330 2773 5814 
1 1652 2785 6575 15755 37467 90167 
2 82 154 327 702 1484 3048 
3 102 172 344 725 1463 3059 
4 124 182 368 767 1519 3124 

7 0 401 634 1334 2774 5891 12691 
1 1096 1885 4613 11447 28001 69131 
2 105 186 432 967 2109 4599 
3 152 232 496 1055 2178 4707 
4 129 211 450 985 2122 4592 
5 138 222 454 1033 2224 4777 
6 142 235 462 1018 2181 4715 

11 0 335 547 1324 3006 7032 16563 
1 640 1131 2770 6786 16548 40891 
2 139 217 473 1068 2361 5338 
3 142 220 457 1045 2348 5319 
4 104 187 442 1026 2317 5261 
5 152 243 466 1066 2370 5316 
6 116 198 440 1061 2400 5384 
7 122 195 458 1023 2223 5165 
8 129 222 475 1107 2450 5449 
9 131 218 465 1042 2285 5179 

10 153 227 471 1049 2372 5347 

12 1 2071 3462 7969 18761 43760 103428 
3 0 0 1 2 2 5 
5 20 32 64 124 228 448 
7 47 75 147 289 547 1027 
9 25 36 60 103 165 294 

11 0 0 0 0 4 10 

It is well known that the probability, PR(N), say, of an odd composite 
N passing the Rabin test for a random base modulo N is at most 4: it is 
easy to show that this bound is achieved if and only if N is a Carmichael 
number with exactly three prime factors, all -= 3 mod 4; call this class 'W3. 
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TABLE 5. The number of times a prime p < 97 occurs in a 
Carmichael number 

p 25.109 1011 1012 1013 1014 1015 

3 25 36 61 105 167 299 
5 203 312 627 1330 2773 5814 
7 401 634 1334 2774 5891 12691 

11 335 547 1324 3006 7032 16563 
13 483 807 1784 3998 9045 20758 
17 293 489 1182 2817 6640 16019 
19 372 608 1355 3345 7797 18638 
23 113 207 507 1282 3135 7716 
29 194 336 832 2094 5158 12721 
31 335 571 1320 3086 7270 17382 
37 320 535 1270 2926 6826 16220 
41 227 390 1001 2418 5896 14344 
43 184 296 772 1920 4663 11594 
47 53 80 199 492 1223 2873 
53 92 160 351 813 2041 5143 
59 26 41 92 262 644 1611 
61 269 453 1075 2542 6047 14429 
67 110 178 407 1063 2540 6306 
71 104 194 521 1320 3351 8546 
73 198 348 849 2145 4925 11929 
79 64 107 247 686 1728 4318 
83 14 24 56 137 340 838 
89 68 131 320 788 1951 4981 
97 123 193 495 1277 3123 7594 

TABLE 6. The number of times a prime p < 97 occurs as the 
least prime factor of a Carmichael number 

p 25.109 1011 1012 1013 1014 1015 

3 25 36 61 105 167 299 
5 202 309 624 1325 2765 5797 
7 364 579 1218 2557 5461 11874 

11 263 428 1071 2509 5979 14397 
13 237 431 1058 2462 5699 13514 
17 117 206 496 1318 3244 8114 
19 152 244 532 1401 3358 8141 
23 37 78 207 535 1360 3317 
29 55 103 284 729 1822 4659 
31 101 168 390 876 2116 5153 
37 60 95 219 551 1401 3418 
41 35 68 171 414 1092 2736 
43 35 65 168 403 943 2308 
47 14 16 36 81 195 459 
53 19 30 55 147 363 973 
59 2 4 11 43 100 272 
61 34 58 148 364 851 1978 
67 8 18 50 123 317 815 
71 15 25 66 161 389 979 
73 14 28 68 175 406 1015 
79 4 10 17 66 175 467 
83 1 1 4 8 39 79 
89 10 16 23 55 148 409 
97 10 20 50 106 261 606 
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McDonnell [18] showed that if PR(N) > ' for N > 11 , then N E F3, or else -64 
one of 3N + 1, 8N + 1 is a square. (Damgard, Landrock, and Pomerance [5, 
6] prove a similar result for PR(N) > I .) Numbers in F3 are also those for 
which Davenport's "maximal 2-part" refinement [7] gives no strengthening of 
the Rabin test. There are 487 W3-numbers up to 1015, and 868 up to 1016, 
the first being 8911 = 7 . 19 . 67. 

Lidl, Muller, and Oswald [16, 17, 19] characterize a strong Fibonacci pseudo- 
prime as a Carmichael number N = l pi with one of the following properties: 
either (Type I) an even number of the Pi are _ 3 mod 4 with 2(pi + 1) I N- I 
forthe pi 3mod4 and Pi+ l N+ 1 forthe pi l I mod4; or (TypeII) 
there is an odd number of Pi, all 3 mod 4 , and 2(pi + 1) I N - pi for all pi. 
(A strong Fibonacci pseudoprime is termed a strong (- 1)-Dickson pseudoprime 
in [19].) They were not able to exhibit any such numbers. We found just one 
Type-I strong Fibonacci pseudoprime up to 1015, namely 

443372888629441 = 17 i 31 i 41 i 43 i 89 i 97 i 167 331, 
and none of Type II. This also answers the question of Di Porto and Filipponi 
[8]. 

Williams [27] asked whether there are any Carmichael numbers N with an 
odd number of prime divisors and the additional property that for p N, 
p + 1 I N + 1. There are no such Carmichael numbers up to 1015. 

Finally we note that C (274859381237761) = 65019 gives the smallest value 
of X for which C (X) > X 3. 
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