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HOW WAS F6 FACTORED? 

H. C. WILLIAMS 

Dedicated to the memory of my friend, D. H. Lehmer 

ABSTRACT. In 1880 at the age of 82 Fortune Landry factored the 20 digit num- 
ber F6 = 264 + 1. How did he do it? Landry himself never described how 
he factored F6; however, he did leave enough clues in his work and letters to 
provide some indication of the ideas with which he was working. In this paper 
we present a likely reconstruction of Landry's technique. 

1. INTRODUCTION 

On July 12, 1880 Fortune Landry [8] published the following short announce- 
ment: 

"I have just factored the number 

264 + 1 = 18446744073709551617. 

This number is the product of two factors 274177 which is 
prime, and 67280421310721. I do not currently know if this 
last factor is a prime." 

This remarkable achievement, made even more so when one considers that 
Landry was 82 at the time, has unfortunately not received the attention that 
it deserves. There are two reasons for this: first, the factor 274177 is so small 
that many would tend to regard it as having been found by the simple process 
of trial division. This was not, however, the way Landry factored F6. This 
brings us to the second reason that his work has been largely ignored: he never 
published any account of how he did factor F6. Nevertheless, he did leave 
several clues as to how he did it, and the purpose of this paper is to use these 
clues to reconstruct the probable method that he used. 

It should be mentioned that according to Lucas [17] both Landry and 
LeLasseur succeeded later in proving that the larger factor of F6 is a prime. 
This seems to be the only contribution that LeLasseur made to the problem of 
factoring F6. 

In 1869 Landry [7] published a pamphlet containing the complete factoriza- 
tion of each integer of the form 2n + 1 for n < 64, with the exception of four 
numbers that he was unable to factor: 259 - 1, 261 - 1, (261 + 1)/3, 264 + 1. 
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In [15, pp. 23 8-240] Lucas states that Landry later factored 259 - 1 and that 
Landry thought (probably because they were difficult to factor) that the remain- 
ing three were prime. In fact, in 1877 Lucas [13] knew that F6 = 264 + 1 is 
composite, but his technique (see [15, p. 238, p. 313]) did not reveal the factors. 
He [14] also proved the following 

Theorem. The prime divisors of 24q + 1 are of the form 16hq + 1. o 

In 1891 Lucas [17] stated that by using this result for simplifying the search 
for factors of F6, Landry was able to factor F6 after a labor of several months. 
Landry, however, said very little indeed about how he did this. One of the few 
explicit references in print that Landry made to his technique is in a letter to 
Lucas, which, fortunately, Gerardin published in Sphinx-Oedipe [9]. Because 
of its importance in this investigation, we reproduce it in full here. It should 
be mentioned that all the work reported on in this paper was originally written 
in French; thus, all quotes are translations of this French into English. 

Paris, 7 July 80 
Sir 

The number 264 + 1 or 18446744073709551617 is the prod- 
uct of two factors 67280421310721 and 274177, the latter being 
prime. 

Notice of the result has been sent to the Academy today. 
Your advice proved to be ever the wiser, considering that the 

smaller factor is relatively small and would require only about 
1000 operations to discover by using the standard method of 
successive divisions. 

I had set up my calculations with the intention of taking the 
process to its end and thus I would be able to announce a re- 
sult. There was not much left to do when I unexpectedly came 
upon the factor 274177. After such a lengthy process, I could 
hardly believe it. The procedure I use first considers the largest 
divisors, less than V'N of course, of the number to be factored. 

One could very well conclude from this that the other factor 
is a prime, but besides the possibility that I could have erred 
during the course of such a lengthy process, in order to facilitate 
my work, I purposely left out divisors of particular forms which 
would be easy to deal with separately. 

I thank you very much for your interest in this work. This 
last 14-digit number will allow me to describe the methods that 
I use. I hope to arrive for the Congress quite early. Could you 
please let me know where I would be able to obtain the pamphlet 
where you will mention my work. 

My thanks to you. 
Landry 

According to Lucas's theorem, any prime factor of F6 must be of the form 
256k?+. Since 274177 = 256.1071 + 1, we see what Landry was talking about 
in his third paragraph. Also, in [16] Lucas points out that the smallest factor 
for each of the Fermat numbers Fn = 22n + 1 of (then) known factorization 
is the smallest prime of the form k2n+2 + 1 . Thus, he was likely of the belief 
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that one factor of a composite Fermat number might tend to be small. This, 
undoubtedly, was the advice that he gave to Landry. It appears, however, that 
Landry did not take Lucas's advice because he states in his next paragraph 
that he wanted to set up his technique in order to test for all possibilities. 
Since \/V /256 1 * 7 x 107 is so large, trial division just wouldn't do the job. 
Indeed, in 1867 he [6] had estimated that attempting to prove F6 a prime by 
trial division (using the then-known form of the factors as 128k + 1 instead of 
256k + 1) could take up to 3000 years. We will explain certain other features 
of this letter as they become relevant to our discussion. 

2. LANDRY'S EARLY FACTORING IDEAS 

In order to get some familiarity with how Landry approached the factoring 
problem, it is of some value to discuss his work prior to 1869. Apart from some 
simple tables of primes and factors, Landry's first significant work on factoring 
is his 1859 pamphlet [5] in which he proved that 231 - 1 is a prime. This had 
also been done in 1772 by Euler, but Landry's interest in the problem was in 
reducing the amount of work to be done. 

Euler had realized that any prime factor p of N - 231 - 1 must have the 
form 1 + 31k. He also was aware that since (2/p) = 1, p must be congruent 
to +1 modulo 8. Thus, p = 248k + 1 or 248k + 63 for some integer k. 
Since [V7NT/248] = 186, this means that after 372 trial divisions (or fewer if 
one excludes composite values of 248k + 1 and 248k + 63), N can be shown 
prime. 

Landry approached this problem as follows. If N is composite, then 

N = (62x + 1)(62x' + 1), 

where x, x' E Z, and with no loss of generality 62x + 1 is a prime such that 
62x + 1 < vWN, i.e., x < 748. Since 

N = 622 - 558658 + 62 - 37? 1, 

we get 

(2.1) x+x'=62h+37, 
(2.2) xx' = 558658 - h 

for some h E Z+ . It follows from (2. 1) and (2.2) that 21h, h _ 3 or 4 (mod 5), 
and h 1 or 6 (mod 9). Hence, 

h = 90h'+k, 

where k E {24, 28, 64, 78}. If we solve (2.1) and (2.2) for x and x', we get 

(2.3) 2x, 2x' = 62h + 37 ? v/622h2 + 4592h - 2233263. 

If we eliminate x' from (2.1) and (2.2), we get 

(2.4) h = 558658 -x(37-x) CZ+. 
62x + 1 

Substitute 90h' + k for h and we find 

(2.5) hi = 558658 - k - x(62k - 137 - x) Z>0 
90(62x?+ 1) 
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Now we may assume that x < 748; but, if x > 80, then from (2.5) we see 
that h' < 1 and therefore h' = 0. If, however, h' = 0, then from (2.3) 

622k2 + 4592k - 2233263 = t2 (t E Z) 

for some k E {24, 28, 64, 78}. As this is not the case, we must have x < 80. 
In fact, if x > 60, then from (2.5) one has h < 2. Since 

622(k + 90)2 + 4592(k + 90) - 2233263 $A t2 (t E Z) 

for any k E {24, 28, 64, 78}, we must have x < 60. 
Consider now 62x + 1. We know from Euler's observation that 62x +1 + 1 

(mod 8). Also, 62x + 1 - 0 (mod 3, 5, 7). It follows that since x < 60, we 
can only have 

x E {5, 9,20, 21,24, 33,41,44,45,48, 53, 56}. 

However, (2.4) is not satisfied for any of these 12 values of x; hence, N must 
be a prime. Notice that with just 12 trial divisions (with the dividend much 
smaller than N) and 8 perfect square tests, Landry was able to show that N is 
a prime. 

Later in 1867 Landry [6] announced that he had discovered a very simple 
principle which he had used to obtain a number of factorizations of numbers of 
the form 2n + 1. He did not reveal this method, however; instead he presented 
several of his more impressive factorizations. This work was followed by the 
table in [7]. What was this new method? Landry finally described it in a letter 
[10] that he wrote to Charles Henry. 

Let N = ab, where a, b are odd and a > b. Put x = (a + b)/2,y = 

(a - b)/2, and we get 

(2.6) x 2- N =y2. 

Determine for x = [v7N]+ 1, [vN]+2, ... a value for y such that (2.6) holds. 
Certain values of x can be easily eliminated by making use of moduli m such 
that for these values of x we cannot have 

X - N = y2 (mod m). 

For example, if m = 5 and N _ 2 (mod 5), then x 0 0, 4 (mod 5). Today, 
we call such moduli exclusion moduli. 

This method of factoring, which is particularly effective if the two factors 
a and b = N/a are close in value, had been discovered many years earlier by 
Fermat [3]. Landry, however, remained unaware of Fermat's work until Henry, 
one of the people involved in publishing Fermat's complete works, put it in 
print in his Recherches sur les Manuscrits de Fermat. It was the similarity of 
Fermat's idea to that of Landry that particularly struck Landry and-caused him 
to write his letter to Henry. 

Landry also noted in this letter that if N = 2n + 1, then for "certain" values 
of n the process can be accelerated because we know that 

a = 2nu + 1 , b = 2nv + 1 (u, v, E Z). 

Hence, x = 1 + ns, y = nt (s, t E Z). Although he did not say so, he must 
have been aware that from (2.6) these latter results allow us to restrict the value 
of x to a single residue class modulo n2, a result first put in print by Pepin 
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[1 8]. He went on to say that one could (by using other moduli) accelerate the 
course of the calculations, but that it is then necessary to follow up each series 
of possible values of x separately. 

Is this the method that Landry used to factor F6? No, for he mentioned that 
it was found to be insufficient for the larger numbers that he turned to after 
1867. In fact, he said that he had to find another method, and it was by this 
new method that he had recently factored F6 . Also, at the time of writing this 
letter (July or August of 1880) he stated that he was busy writing up this new 
method. 

3. LANDRY'S LATER FACTORING IDEAS 

It appears that Landry published most of this new method in the Proceedings 
of the Congress that he referred to at the end of his letter to Lucas. This annual 
conference was sponsored by the French Association for the Advancement of 
Science, and Landry's paper [11] was presented at the session devoted to math- 
ematics on August 16, 1880. Unfortunately, this discussion of his techniques 
gives the impression that they are almost trivial; this is certainly well illustrated 
by the synopsis of the paper given in Dickson [2, p. 371]. In fact, however, 
if one reads the paper carefully, it is clear that the new method is a further 
development of the idea presented in [5]. In view of this, we will rearrange the 
order of topics in this paper and modify them somewhat for our presentation 
here. Also, in order to aid us in showing what is going on, we use upper case 
letters to refer to quantities that are either known or easily calculated and lower 
case letters to represent those quantities that are difficult to evaluate. 

Suppose we wish to factor N = fi f2, where we know in advance that 

fi = Pnl + A, f2= Pn2+ A (ni, n2 > 1). 

Landry referred to factors fi, f2 such that f =f2 (mod P) as being "similar" 
modulo P. By substitution we get 

(3.1) Pnln2+ A(n? + n2)= (N - A2)/P = PQ + R; 

hence, 
A(ni + n2)= _R (mod P) 

and 

(3.2) n1+n2=R'+Ph, 

where R' = A R (mod P) (0 < R' < P) . Putting (3.2) into (3.1) and using 

Q = Q - (AR' - R)/P, 

we get 

(3.3) ngn2 = Q' - Ah. 

Solving (3.2) and (3.3) for h, we find that 

(3.4) h = QPni+(RA-ni) Ez?O 

With regard to the simultaneous equations (3.2), (3.3), Landry was aware of 
the following 
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Theorem. If p is an odd prime and p t PN, then there are exactly (p + (N/p))/2 
values of h (mod p) such that (3.2) and (3.3) can hold simultaneously modulo 
p. LI 

Furthermore, if (N/p) = 1, we can get a case of similar factors modulo p, 
i.e., n1 _ n2 (mod p) . To a single value of h (mod p), there correspond two 
possible forms n1 _ a, n1 _ b (mod p) . These forms of n1 Landry called the 
"conjugate" values to that of h modulo p. 

Landry preferred the use of (3.4) to the usual trial division process because 
the numerator was less than N. Also, we can assume that n1 < 1/PP. Landry 
states that "when the values of N become large, it becomes necessary, in order 
to avoid numerous operations, to resort to forms of h and n, for moduli 
2, 3, 6, 5, ... and to put aside for separate treatment the similar factors of N 
which result when n1 _ n2 for any of these moduli." That is, we attempt to 
restrict h by using certain moduli and (3.2), (3.3) with respect to these moduli. 
With the exception of the number1 6, Landry's moduli were intended to be the 
small primes. 

Suppose G is a product of certain moduli and K a possible value of h 
modulo G. We have 

h = Gh'+K (h' > O, O < K < G), 

and 

h' _ Q- ni(R' - ni) K 
G(Pn 1 +A) G' 

Notice that if n1 exceeds some bound B (, Q'/(PG)), we must get h' < 1. 
Since this forces h' = 0, we must have 

(3.5) n? + n2= R' + PK, 
1 nlln2 = Q- AK 

when n, > B; but, if (3.5) has no solution in integers, then this possible value 
of h (mod G) can be eliminated. On the other hand, if (3.5) has a solution 
(n1, n2), then N = f f2, where fi = Pnl + A, f2 = Pn2 + A. 

Notice that there are two problems here: (1) find a convenient value of G 
in order to get B small, (2) determine a fast method of resolving (3.5). With 
respect to the first of these problems, Landry suggested the use of several moduli, 
but pointed out that "it becomes necessary to adopt for the work a particular 
setup which allows us to conveniently group together the residues of the forms 
of h and then those of the n1 values which are conjugate to them." He hoped 
to show how this could be done "soon", but never did. With respect to the 
second problem, he said that he "would give a method", but none appears in 
[11]. Fortunately, he does provide us with his method in a later paper [12]. 
Indeed, he even states in [12] that he used this idea in his work on factoring 
F6. (Actually, he does not mention F6 explicitly, but refers to [1], which is an 
announcement of his factorization of F6 .) 

The idea is very simple and rather neat. Suppose, for a given pair of integers 

ILandry singled 6 out as a special modulus in his treatment in [1 1], but it is not really necessary 
to do this. 
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P, Q > 0, we want to find positive integers x', x such that x' < x and 

x +x = P, 

xIx = Q. 
Suppose further that 

xi = dolok + dl okI? + ... + dk (O < di < 9, do ?), 

and put a=do lOk . If 

x = x - a (> 0), 

x =x'-a(?0), 

PI = P - 2a (> 0), 

Qi = Q - (P - a)a (> 0), 
then 

Xi + X1 = PF, 

xIxl = Qi. 

Notice that a is the largest possible multiple of 1 ok such that the four inequal- 
ities above can hold. Also, since x' = Q/(P - x') and 0 < x'/P < 1/2, we 
get 

Q/P < x' < 2Q/P; 
thus not many trials are needed to find a. Indeed, as Landry notes, we have 

P xi 
p ,= 1 +-, 

PI PI =xlI l +X xl + x' - a 
P1 - x1 xl xI x x - a 

thus, PI/(Pi - x1) is closer to 1 than P/(P - x'). It follows that the values 
for successive values of a, are closer to Qn/Pn as n increases. Thus, the 
value of x' can be computed very simply, one digit at a time. If there are no 
possible values for x, x', this will become clear when no value for an an can 
be determined, i.e., no Qn = 0. 

Consider the following example: 

x + x' = 3842 =P, 
xx' = 1330945 = Q. 

Since [Q/P] = 346, try a= 300. 

P= 3842 1330945 = Q 
2a = 600 1062600 = a(P- a) 

P1 = P- 2a = 3242 268345 = Qi 
2a1 = 160 259360 = a (Pi - a,) 

P2 = P1 - 2a1 = 3082 15385 = Q2 

2a2 = 10 15385 = a2(P2 - a2) 

P3 = P2 - 2a2 = 3072 0 = Q3. 

Hence, x' = 385 and x = 3457. 
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In the large, then, Landry's factoring idea is the following: (1) Test for all 
possible values of K whether or not (3.5) has a solution. If it does, we have a 
factor of N. If not, (2) test (3.4) for all possible values of n1 < B. We either 
find a factor of N, or N is a prime. 

4. A POSSIBLE SETUP FOR FACTORING F6 

Since Landry seems never to have published anything more on the factoriza- 
tion problem than what we have mentioned above, the remainder of this paper 
must be somewhat speculative. We can only describe a technique for factoring 
F6 which is consistent with all of Landry's work that has been published. What- 
ever method he did use would most likely not differ significantly from what we 
shall now describe. 

We can (in view of Lucas [17] and Landry [9]) use P = 256 and A = 1; 
hence, R = R'= 0, Q = Q'= 2,48 , and we get 

(4.1) n1+n2=256h, 

(4.2) n1n2 = 248 - h, 
(4.3) h = 248 + n 2 

256n1?l 

Also, in order for (4.1) and (4.2) to hold, we require that 

(4.4) 214h2 + h - 248 = t2 (t E Z). 

If we use 
G = 2 4 .3 .5 .7. 11 E 13. 17 E 19 = 77597520, 

we find from (4.3) that if n1 > 14170, then h' = 0 for h = Gh'+ K (K > 0). 
If h' = 0, we get h = K and 

(4.5) 214K2?+ K - 248 = t2 (t E Z) 

from (4.4). We also get 

(4.6) n +?n2 = 256K, 

(4.7) n1n2=248-K 

from (4.1) and (4.2). 
We next investigate the possible values of h. By using (4.4), we see that the 

only possible values of h are given by 

h _0*, 4*, 1, 9 (mod 16), 
h 1 (mod 3), 
h O, 1 (mod 5), 
h_ 1, 4, 6 (mod 7), 
h 1, 3, 4, 9, 10 (mod 11), 
h O, 1,2,3,5*, 8, 11* (mod 13), 
h 0, 1, 2, 3*, 10*, 11, 12, 13, 15 (mod 17), 

h 5, 7, 8, 9, 11, 13, 14, 15, 17 (mod 19). 
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Residues with an asterisk (*) lead to similar factors with respect to the given 
modulus or in the case of 16 a divisor of that modulus. In his letter to Lucas, 
Landry said that he left certain forms aside; in view of [11], these would likely be 
those types of forms. This is simply because for these forms the corresponding 
modulus (or a divisor of it) can be absorbed into the P value; and, as this 
increases the P value, the resulting calculations can be accomplished more 
quickly. Thus, if we eliminate these forms from consideration, we find that the 
total number of possible values of h mod G is 

2 x 1 x 2 x 3 x 5 x 5 x 7 x 9 = 18900. 

We must now deal with the problem of the values of n1 which are conjugate 
to the h-values. We first point out that if h -1 (mod 16), then n1 - 1, 7 
(mod 8); if h =- 9 (mod 16), then n1 -3, 5 (mod 8). The other conjugate 
values modulo p, where pIG, are given in the tables below. 

P t h I 1 | Pit h 0 I 1 
3 ni 0, 1 5 ni 2,3 1,0 

I p II h 1 I 4 i 6 1 
7 nl 4,0 3,6 1,2 

1p h I 1 1 3 1 4 1 9 10 
11 nj 1,2 0,9 4,8 6,10 3,5 

I p I h 1 0 1 1 1 2 1 3 1 8 
13 ni 5,8 0,9 7,11 2,12 1,6 

I p 1 h 0 1 1 2 1 1 1 12 I 13 1 15 1 
17 1 nj _ 4,13 0 ,1 7,12 1 3,8 1 14,15 2,11 1 6,9 1 

I r h j 5 I 7 1 8 9 11 1 13 j 14 j 15 1 17 
19 nl, 1,6 12,13 16,18 9,15 0,4 8,14 5,7 10,11 3,17 

Notice that if n1 < 141170, we cannot have n1 _ 0 (mod 2), nI - 2 
(mod 3), n 1-4 (mod 5), n 1I - 5 (mod 7), n 1I - 7 (mod 11), n 1 - 3, 4, 10 
(mod 13), n I-5, 10, 16 (mod 17), or n1 2 (mod 19). Up to 14170 we 
would expect, then, to find about 

14170x 1 x 
2 

x 4 x 6 10 x 14 x 
14 

x 
18 

- 1767 2 3 5 7 1 1 13 17 19 - 

values of n1 which could be admissible. In fact there are exactly 1773 such 
values. 

We now turn to the algorithm for factoring F6. 

5. THE ALGORITHM 

One of the difficulties one encounters on using Landry's ideas to factor F6 
is keeping track of the large number (18900 here) of possible values of K. 
Landry may have just done this in a very ordinary (and tedious) fashion, but it 
is possible that he might have done this as we describe here. We first note that 
if G= G1G2, where gcd(G1, G2) = 1 and 

K-K1 (mod G1), K-K2 (mod G2), 
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then 
K=_ W + W2 (mod G), 

where 

WI G2Z2KI, W2_ G1Z1K2 (mod G) 

and 

G1Z1 _ 1 (mod G2), G2Z2~l _ (mod GI). 

This is just a simple case of what today is called the Chinese Remainder The- 
orem. In its more general form it can be found in Gauss [4, art. 36]. Since 
Landry had read [4] (see [6]), it is entirely possible that he was aware of this 
and that he utilized it in his calculations. We will show how below. 

We also know that Landry was aware of the idea of using exclusion moduli to 
eliminate possible candidates as solutions for certain equations. Thus he might 
very well have used this technique to eliminate values of K which fail to satisfy 
(4.5). Suppose that F = {23, 29, ... } (no prime in g can divide G) is the 
set of prime exclusion moduli which Landry used. Note that IFl need not be 
very large and could have even been 0. 

A simple idea for keeping track of the K-values (and for eliminating many 
of them) can now be implemented by making use of three relatively short lists: 
Y, 2 2, 23 . We point out that there are 135 possible values of K (mod G1) 
when G, = 1463 = 7 * 11 * 19. For each of these compute a list made of the 
corresponding WI-values given above, together with a sequence of the values of 
each WI modulo the exclusion moduli in F. There are 140 possible values of 
K (mod G2) when G2 = 53040 = 16 . 3 .5 13 .17. For each of these compute 
a list of 22 made up of the corresponding W2-values, together with a sequence 
of the values of each W2 modulo the elements in 9. Finally, compute a list 
Y3 of all values of Y (mod E) such that 

(214Y2 + Y-248 - 

for E E F. 
We now have the following 

Algorithm. 

(1) To each WI cz 2 add every element W2 c 2 (and reduce mod G). 
Check if the resulting value of K can be excluded from satisfying (4.5) 
by using the easily computed value of K modulo E for E E F and 
23 . If this does not exclude the K-value, use the method of [12] to 
solve the simultaneous equations (4.6), (4.7). 

(2) Test if any of the 1773 possible values for n1 < 14170 is such that (4.3) 
holds. 

Even if IFI = 0, this algorithm could probably have been executed by hand 
in the several months that Lucas said that Landry required. However, it is 
useful to see how effective the use of exclusion moduli is in this problem. The 
total number of K-values here is 18900. In the table below we give the number 
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of K-values remaining in this problem as various exclusion moduli are used. 

l' new modulus number of K-values remaining 

0 - 18900 
1 23 9041 
2 29 4656 
3 31 2259 
4 37 1126 
5 41 542 
6 43 268 
7 47 140 
8 53 67 
9 59 37 
10 61 19 
11 67 11 
12 71 6 
13 73 2 
14 79 1 

In view of this rapid rate of decrease (a decrease rate with which Landry 
would have to have been familiar after doing the work reported in [6] and [7]), 
it is difficult to accept that he would not have made use of at least a few exclusion 
moduli in order to lessen his work load. 

Note that this algorithm would find the factor 274177 toward the end of all 
the work, as most of the work is done in Step (1) of the algorithm and n, = 1071 
is the 137th value in the list (in ascending order) of the 1773 possible values 
for nl < 14170 in Step (2). 

In summary, then, Landry seems to have been most unlucky in his attempts 
to factor F6. He first tried to use Fermat's difference of squares method; but, 
as the factors of F6 are not at all close in value, he failed. This failure seems 
to have left him for awhile with the impression that F6 is prime. When Lucas 
later stated that it is composite, Landry decided to try again. As simple trial di- 
vision would (possibly) be very time-consuming, he elected (contrary to Lucas's 
advice, it appears) to use a more sophisticated technique, which grew out of his 
early primality testing ideas. This method would, after a large but manageable 
amount of labor, ultimately yield the factorization. When, after a great deal 
of work, Landry finally discovered the factorization, one of the factors turned 
out to be so small that it could have been found considerably more quickly by 
the simple trial division process. It must, however, be emphasized that his in- 
genious method would still have worked with about the same amount of effort 
even if the small factor had been much larger. Unfortunately for Landry, it was 
not. 
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