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Dedicated to the memory of D. H. Lehmer 

ABSTRACT. Let p and q be primes such that p =1 (mod q). Let a be 
an integer such that a(P-l)/q = 1 (mod p). In 1972, H. C. Williams gave an 
algorithm which determines a solution of the congruence Xq _ a (mod p) in 
O(q3 logp) steps, once an integer b has been found such that (bq - a)(P- 1)/q 0 

0, 1 (mod p) . A step is an arithmetic operation (mod p) or an arithmetic 
operation on q-bit integers. We present a refinement of this algorithm which 
determines a solution in O(q4)+O(q2 logp) steps, once b has been determined. 
Thus the new algorithm is better when q is small compared with p . 

1. INTRODUCTION 

Let p and q be primes and let a be an integer not divisible by p. If 
p 1 (mod q), the congruence 

(1.1) x_ =a (modp) 

has one solution x = au, where u and v are integers such that qu - (p - 1 )v = 

1 . The integer u is easily found by applying the Euclidean algorithm to q and 
p - 1. If p =1 (mod q) and a(P-l)l/ 0 1 (mod p), the congruence (1.1) 
has no solutions. If p =1 (mod q) and a(P-l)l/ = 1 (mod p), (1.1) has q 
solutions. H. C. Williams [14] has given an algorithm for finding a solution x 
of (1.1) when q is odd. Briefly, his algorithm may be described as follows: first 
determine by trial an integer b such that bq - a is not a qth power residue of 
p; then use the formula 

j q-1-j 
Uj m+n -Ui, nUj-i, m + (a - bq) Uj+i,nUq-l,m (modp) 

i=O i=1 

(j = 0, 1, q - 1; m = 1, 2,... ; n = 1, 2,...) 

recursively, starting with the initial values 

UO,1 =b, Ui,I = 1, U1,I = O (J= 2, ...,q - 1), 

to compute x = U0,(pq-1)/((p-1)q). Then x is a solution of (1.1). Once b has 

been determined, Williams' algorithm requires O(q3 logp) steps to solve (1. 1), 
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where by a step we mean an arithmetic operation in GF(p) or an arithmetic 
operation on q-bit integers. All q solutions of the congruence (1.1) are given 
by 

x(bq - a)j(P-I)lq, j = O, 1, ..,q - 1. 

In this paper we present a refinement of Williams' algorithm which deter- 
mines a solution of (1.1) in O(q4) + 0(q2 logp) steps, once the integer b has 
been found. Thus, our algorithm is better when q is small compared with p, 
roughly when q = 0((logp)'-), where 0 < e < 2 

We remark that Williams' algorithm is a qth power version of an algorithm 
for computing square roots in GF(p), which was published by Cipolla [5] in 
1903 (see also [2], [9, pp. 132-134]). Shanks [ 12] has also given an algorithm for 
determining qth roots in GF(p) . His algorithm is an extension of an algorithm 
of Tonelli [1 3]. Adleman, Manders, and Miller [1] have shown, assuming the 
extended Riemann hypothesis, that there is a deterministic algorithm running 
in time O(n logC(p + a)) for some c > 0 such that on inputs a, p, n, where 
p is prime, it outputs the least positive integer x such that xn --a (modp) 
or "no" if no such x exists. It is an open problem to find a polynomial-time 
algorithm-polynomial in log q and log p-for qth roots in GF(p) . 

Algorithms for the more general problem of factoring polynomials over fi- 
nite fields have been given by a number of authors, notably, Berlekamp [3], 
Moenck [10], Rabin [11], and Cantor and Zassenhaus [4] (see also [8, Chapter 
4]). Cantor and Zassenhaus give a heuristic argument to suggest that the ex- 
pected running time of their algorithm to factor a polynomial of degree n in 
GF(pm) is 0(n3+ n2 log(pm)). 

2. IDEA OF ALGORITHM 

Let p and q be primes with q lp - 1. Let a be a nonzero element of 
k = GF(p) which is the qth power of an element in k. We wish to determine 
a qth root of a. The algorithm constructs an extension field K = k[O] 
GF(pq) together with an element a E K which, when raised to the power 
(pq - l)/(p - 1), gives a. It then follows that a(Pq_l)/(q(p-l)) E k is the desired 
qth root of a. This strategy, in rather disguised form, is used by Williams 
[14]. The contribution of this paper is a way to compute the high power of a 
somewhat more quickly than the usual repeated squaring algorithm does. The 
idea is to write the exponent in base p and use automorphisms of K/k to get 
the effect of raising elements to peth powers. 

3. THE ALGORITHM 

Let p and q be primes satisfying p -1 (mod q). Let a : k\{0} be such 
that a(P-l)l/ = 1 . We first show that there exists b E k with (bq - a)(P-l)/q 
0, 1 . Clearly, we can identify k with the residues { 1, 1 - a, 1 - 2a, . .. , 1 - 
(p - 1)a} modulo p. As k contains (p - 1)(q - 1)/q > q - 1 > 1 elements 
which are not qth powers, we can let I be the smallest nonnegative integer 
such that 1 - la is not a qth power of an element of k. Clearly, we have 
I > 1 and 1 - (1- 1)a = bq for some b c k. Then we have bq -a 1-la, 
and so, as 1 - la is not a qth power, we have (bq - a)(P-l)l/ 7& 0, 1 . We set 

(3.1) c = (bq - a)(P-l)/q 
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Clearly, c is a primitive qth root of unity in k. Since bq - a is not a qth 
power in k, we can adjoin a qth root 0 of this quantity to k and obtain an 
extension field 

(3.2) K = k[O] = GF(p)[0] GF(pq), where Oq = bq - a. 

In K we have QP = (Qq)(p-l)/qQ - (bq - a)(P-l)/qO = co, so that 

(3.3) Ofpn = cnt n=O, 1, 2. 

Now define x E K by 

(3.4) x = (b - 0)(p1-l)/((P-l)q) 

As (pq _1)/(p _1)= 1 +pp2+...+p-1 ,wehave 

q-1 
(3.5) x= f J(b - 0)P'J 

j=O 

Next we observe that (b - O)P = bP - OP = b - cd, so that 

(3.6) (b - O)PJ = b - c'O, j = O, 1, 2. 

As c is a primitive qth root of unity in k, we have 

q-1 

(3.7) J7(b - cJO) = bq - oq = a, 
j=O 

so that by (3.5), (3.6), and (3.7), we see that Xq = a. Since the equation yq =c 

has at most q solutions in the field K, and since it has exactly q solutions 
in the subfield k, every solution must belong to k. Thus, in particular, we 
have x E k. We have thus shown that x = (b - 0)((pq_1)/((p-I)q)) is a qth 
root of a in k. We remark that H. C. Williams' algorithm is equivalent to 
computing 1trK/k((b - 0)(pq-l)/(p-l)q), which is also a qth root of a. Note 
also that NKlk(b - 0) = a. 

In order to compute x, we write it in the form 

(3.8) x E(P- )lqE 

where 

(3.9) El = (b _ 
Q)(p_1)q-2 E2 =(b - 0)(pq_l)lq(p-l)_(p_l)q-l q 

First we consider El. Applying the binomial theorem to (p- 1 )q-2, and 
appealing to (3.6), we obtain 

q-2 

(3.10) E1 = JJ(b - cIQ)(-l)q-'(Q2) 
1=0 

say 

q-1 
(3.1 1) El E a,-O', 
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where aiEk, i=0, 1,...,q-1. Nowdefine ai(j)Ek for i=0, 1,... 
q-l and j= 1, 2, 3,... by 

q-1 q-1 
(3.12) E ai(j)O' = E ajO) 

i=o i=o 

so that 

(3.13) ai(l)=ai, i=0, 1, ...,q- 1, 

and 
q-1 

(3.14) E(P = Zai((p - 1)/q)O'. 
i=o 

Next we consider E2. Again, by the binomial theorem and (3.6), we obtain 
q-1 

(3.15) E2 = fJ(b - 

i=1 

It is easily proved by induction on i that the exponent (1 - (_l)ij(q-l))/q is 
an integer. Thus we have 

q-1 
(3.16) E2= ZbiO', 

i=O 

where bi E k, i = 0, 1, ..., q - 1. From (3.8), (3.14), and (3.16), we deduce 

X = ai((p - 1 )lq)O' i)( bjOj) 
i=O j=O 

that is 
q-1 

(3.17) x = ao((p - 1)/q)bo + (bq - a) Z ai((p - l)/q)bq-i. 
i=1 

Formula (3.17) is the expression we use to calculate x. We can now give the 
algorithm. 

Algorithm to determine all solutions x of the congruence Xq _ a (mod p). 
Input. p, q primes satisfying p 1 (mod q). a an integer not divisible 

by p. 
Step 1. Compute a(P-l)l/ in k = GF(p). If a(P-l)/ 7 1, then Xq = a 

has no solutions in k and the algorithm terminates. Otherwise, Xq = a has q 
solutions in k and the algorithm continues with Step 2. 

Step 2. Try b = 1, 2, 3... until the first integer b is found such that 
(bq - a)(P-l)l/ :A 0, 1, and set c = (bq - a)(P- )lq . 

Step 3. In K = k[O] = {C+ CI + + Cq-IOq-CljCo, Cl,., cq-1 c kl, 
where 0q = b - a, compute the quantities Xi = (b - c l)(1) (ql) for i = 

0,1,..., q- 2 and Yi=(b_ Cq-1-10)(I-(-) ))Iq for i= l,..., q-l. 
Then compute the products El = HL72X - i=4 a6i' and E2 = HI21' Y = 

q01 b0i1 to obtain ao, a,..., aq,bo, bi, ..., bq E k. 
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Step 4. Use the recurrence relation in k, 

i q-1 

(3.18) aa(m + n) = 7 aj(m)aj_j(n) + (bq - a) : aj(m)aq+i1j(n) 
j=O j~~~~~~~=i+1I 

(m , n = I1, 2, ...) 

subject to the initial conditions 

(3.19) ai(1) =ai (i=0, 1, ..., q-l), 

to calculate ai((p- 1)/q) (i = 0, 1, ..., q - 1). 
Output. A solution x of the congruence Xq _ a (mod p) is given by 

q-1 

(3.20) x = ao((p - l)/q)bo + (bq - a) Zai((p - 1)/q)bq-i. 
i=l 

All solutions are given by xj = cjx, j = O, 1, ...q - 1. 

We conclude this section by determining the running time of the algorithm. 
Recall that a step is an arithmetic operation in k = GF(p) or an arithmetic 
operation on q-bit integers. Note that arithmetic operations in K = GF(pq) 
take O(q2) steps. 

Step 1. The calculation of a(P-1)lq can be carried out in O(logp) steps in 
k by the repeated squaring technique. 

Step 2. Let N denote the number of (x, y) E k x k with xq _ yq = a and 
B the number of values of b E k for which (bq - a)(P- 1)/q = 0 or 1. Then we 
have 

N=ZE1= E 1+E E 1=q+q E 1 =q+q(B-q). 
xEk yEk xEk xEk yEk xEk 
Xq -yq=a Xq la y=/0 (Xq -a)(P- I)/q= 

yq=xq -a 

From the work of Davenport and Hasse [6, p. 174] we have 

IN -pl < q - I + ((q - 1)' - (q - 1))Vlp/, 

so that 
IqB - q(q - 1) -pi < q - 1 + (q - 1)(q - 2)#. 

Hence, we have 

p (q2 - 1) (q - 1)(q - 2) B <-+ + V/Ki 

q q q 
<p +(2q2 - 3q + 1 ) p 

and 
p (q - 1)2 (q-1)(q-2) p B >-+ lp3- >p- qfjp 
q q q q 

so that 
B 1 2q 
p q - v7p 
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Thus, for q small compared with p, say for example q < p 1/4, a random value 
of b does not satisfy (bq - a)(P- l)/q 7& 0, 1 with probability 

B 1 +0( q j)= I 
+o(p-1/4). 

Thus finding an appropriate value of b is usually quite fast in practice. 
Step 3. First we observe that all of the values of bi (i = 0, 1, . . ., q - 1) and 

Ci (i = 0, 1, ..., (q - 1)2) can be computed in O(q2) arithmetic operations 
in k. 

Next we remark that as 

(q - 2) < 2q2 < 2q < Oq 

for i = 0, 1, . . . , q - 2, each entry in the first q - 2 rows of Pascal's triangle can 
be represented as a q-bit integer, and so O(q2) additions of q-bit integers are 
required to compute all the binomial coefficients (ql72) (i = 0, 1, ... , q - 2) 
from Pascal's triangle. 

Knowingthevaluesof c1 (i=0,1,..., q-2) and (q-.2) (i=0,1,..., 
q - 2), we can, when q - i is even, compute each quantity (bcl0)(1)l(Q12) = 

(b - ciQ)(q72) by repeated squarings in K in 0(q2log(q72)) steps. Knowing 
the values of bi (i = 0, 1, ..., q - 1), (cY)' (i = 0, 1, ..., q - 1; j = 

0, 1, ..., q - 1) and (q(2) (i = 0, 1, ..., q - 2), as 

(3.21) (b - c'O) -l = aP-2 (bq- I + bq-2cI ? + + (CI)q-loq-), 

we can, when q - i is odd, compute each quantity 

(b - ciO)(_ l)q-(q-2) = (b Ci)(q-2) 

- (aP-2(bq-1 + q-2Cto + + (C)q-loq-1l ))(q 2) 

by repeated squarings in K in 

0(logp) + 0(q) +0 (q2log (q i2)) 

steps. Hence, all of 

XI = (b - ciQ)(-1) 2l(Q-2) (i = 0, 1, . ., q - 2) 

can be computed in 

0(q2) + ,(0(logp) + 0(q) + 0 (q2log ( 2))) (qlogp) + O(q4) 

steps, as 

Elog ( n)2n2, as n x 
1=0 

see [7]. Multiplying the Xl together in K to obtain El = llq2 XI = EZq- a,0' 
takes a further O(q) multiplications in K, that is, O(q3) steps. Hence, ao, 
al, ... ., aq_ l can be computed in 0(q log p)+O(q4) steps. A similar calculation 
shows that bo, b1, ... , bq_ can also be computed in O(q logp) + O(q4) steps. 
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Step 4. The quantities ai((p- 1)/q) (i =0, 1, ..., q - 1) can be computed 
from the values of the ai (i = 0, 1, ..., q - 1) using (3.18) in O(q2logp) 
steps, since each use of the recurrence relation (3.18) requires O(q) operations 
and each of the q recurrence relations must be applied 0(log(p - 1 )/q) times 
in the repeated doubling technique. 

The calculation of the solution x of (1.1) from the values of the ai((p - 1 )/q) 
(i = 0, 1, ..., q- 1) and bi (i = 0, 1, ..., q- 1) using (3.20) takes O(q) 
steps, and the calculation of the other solutions xci (j = 1, 2, ... , q - 1) can 
be done in O(q) steps. Hence the algorithm determines all the solutions of 
(1.1) in O(q4) + O(q2 logp) steps, once a suitable b has been determined in 
Step 2. 

We remark that this algorithm (suitably modified) can be used to compute 
qth roots in GF(p'), when q divides pn - 1. 

4. EXAMPLE 

Following the suggestion of the referee, we present a small example to illus- 
trate our algorithm, which the interested reader can easily check by hand. The 
algorithm is easily programmed to solve (1.1) for large values of p and values 
of q small compared with p. 

We determine all the solutions x of the congruence 

(4.1) x3 =_2 (mod 31), 

using our refinement to the algorithm of H. C. Williams. Here, p = 31 , q = 3, 
a = 2, (p-l)/q = 10, (pl)q-2 =30 and (pq_I)q(p-I)-(p-j)q-lq =31. 
As 

a( l)/= 210 _ 322 1 (mod p), 

the congruence (4.1) is solvable. We can take b = 2, c = 25, as 

(bq - a)(P-I)l/ = (23- 2)10 = 610 = 365 -55= -3125 _ 25 (mod p). 

Also, 0 is a root of Oq = bq - a, that is, 03 = 6. We perform calculations in 
k = GF(31) and K= GF(31)[0] GF(313). 

Appealing to (3.9), (3.10), and (3.21), we have 

E1 = (2 -0)30 = (2-0)-1(2-250) = (2 + 0 + 1602)(2 + 60) = 22 + 140 + 702, 

so that ao = 22, a, = 14, a2 = 7. Making use of the recurrence relations 

ai (m + n) = EZ=O aj(m)a,1 j(n) + 6 E2=,+1 aj(m)a3+,-j(n), 
<~ ~ ~ ~ ~~~~~~~M mn =1, 2,.. 

al(1) = a1, i = 0, 1, 2, 3, 

we obtain the values in Table 1 (next page). 
Next, from (3.9) and (3.15), we have E2 = 2 - 250, so that bo 2, bi = 6, 

b2 = 0. Finally, appealing to (3.20), we obtain 

x = ao(1O)bo + 6(al(10)b2 + a2(10)bl) = 9 x 2 + 6 x 19 x 6 =20. 
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TABLE 1 

j aO(j) al(j) a2(j) 

1 22 14 7 
2 17 11 8 
4 1 12 - 14 21 
8 14 6 18 

10 9 4 19 

We note that x = 20 is indeed a solution of (4.1), as 203 - (-11)3 

(-121)11 _ 3 x 11 = 33 2 (mod 31). All solutions of (4.1) are given by 
x = 20- 25i (mod 31), j= 0, 1, 2, that is, x _ 20, 4, 7 (mod 31). 
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