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ANALYSIS OF THE FINITE ELEMENT VARIATIONAL CRIMES 
IN THE NUMERICAL APPROXIMATION OF TRANSONIC FLOW 

HARALD BERGER AND MILOSLAV FEISTAUER 

ABSTRACT. The paper presents a detailed theory of the finite element approxi- 
mations of two-dimensional transonic potential flow. We consider the boundary 
value problem for the full potential equation in a general bounded domain Q 
with mixed Dirichlet-Neumann boundary conditions. In the discretization of 
the problem we proceed as usual in practice: the domain Q is approximated by 
a polygonal domain, conforming piecewise linear triangular elements are used, 
and the integrals are evaluated by numerical quadratures. Using a new version 
of entropy compactification of transonic flow and the theory of finite element 
variational crimes for nonlinear elliptic problems, we prove the convergence of 
approximate solutions to the exact physical solution of the continuous problem, 
provided its existence can be shown. 

INTRODUCTION 

The investigation of transonic flow represents a very interesting part of fluid 
dynamics, both from physical and mathematical points of view. The interest 
resides in specific phenomena in high-speed gas flow and in the character of 
equations describing transonic flow. 

Although transonic flow problems play an extremely important role in the 
design of high-speed airplanes, turbomachines, and compressors, the funda- 
mental general questions concerning the existence and uniqueness of solutions 
are still open. Some results in this direction were obtained, e.g., by DiPerna 
[11], Morawetz [29], and Feistauer, Mandel, and Netas [15, 16, 17, 18, 32]. 
The publications [15, 16, 32] emphasize the importance of the second law of 
thermodynamics represented as an entropy condition; in [11, 17, 18, 29] the 
viscosity method is studied. 

In contrast to the lack of theoretical results there exists a series of methods 
for the simulation of various types of transonic flow. Here we shall deal with 
the numerical solution of the transonic flow model based on the full potential 
equation. 

Most numerical methods for the solution of transonic potential flow use fi- 
nite differences, upwinding in the density and line relaxation, and often apply 

Received by the editor October 25, 1990 and, in revised form, March 19, 1992. 
1991 Mathematics Subject Classification. Primary 65N30; Secondary 76M 10, 76H05. 
Key words and phrases. Transonic full potential equation, finite element discretization, discrete 

entropy compactification, variational crimes. 
The first author's research was supported by a grant from the Stiftung Volkswagenwerk, F. R. 

Germany. 

01993 American Mathematical Society 
0025-5718/93 $1.00 + $.25 per page 

493 



494 HARALD BERGER AND MILOSLAV FEISTAUER 

multigrid techniques ([1, 8, 25]). As an extension of this approach, the finite 
element method on structured meshes combined again with upwinding in the 
density and line relaxation can be considered ([9, 10]). 

Remarkable results were obtained by Glowinski, Pironneau, Bristeau, Peri- 
aux, Perrier, and Poirier ([24, 5, 22, 23]), who use the finite element method 
on unstructured meshes, least squares, and conjugate gradients. The entropy 
condition, which is incorporated into the minimization problem as a penalty 
functional, separates physical solutions from unphysical ones ([24, 4]). The 
convergence of this method for the case of polygonal domains was proved in 
Berger [3]. 

In this paper we shall study the finite element approximation of the tran- 
sonic flow problem in a general bounded plane domain Q described by the 
full potential equation with mixed Dirichlet-Neumann boundary conditions. 
In the discretization of the problem we proceed as usual in practice: the do- 
main Q with a piecewise curved boundary is approximated by a polygonal one, 
conforming piecewise linear triangular elements are used, and the integrals are 
evaluated by numerical quadratures. This means, according to Strang ([34]), 
that we commit the fundamental variational crimes. In order to improve the 
results of numerical calculations, we introduce a more involved version of the 
entropy condition. 

Using Berger's generalization ([3]) of the entropy compactification results 
obtained by Feistauer, Mandel, and Necas ([15, 16, 27]), and the theory of 
finite element variational crimes for nonlinear elliptic problems by Feistauer, 
Zenisek, Sobotikova ([19, 20, 21]), we shall present a detailed analysis for the 
convergence of entropic approximate solutions to an exact physical solution 
of the transonic potential flow problem. Special attention will be paid to the 
complete investigation of the convergence of the least squares method with 
entropic penalization. 

1. CONTINUOUS PROBLEM 

1.1. Some fundamental concepts. We shall deal with two-dimensional models 
of stationary, adiabatic, homentropic, compressible, irrotational flows described 
by the full potential equation 

(1.1.1) Z 0 (b(x)p(IVu12),) =0 in Q. 

Here, Q c R2 is a bounded domain that represents the region filled by the fluid, 
u is the velocity potential, and p is the density given by the relation 

(1.1.2) P(S) = Po ( 2 - 7 1s) , s E [O. - ], 

where po > 0 and ao > 0 are the density and speed of sound, respectively, 
at zero velocity, and K > 1 is the Poisson adiabatic constant. The velocity 
field is given by v = Vu = (0u/Oxl, Au/Ox2). If the flow is plane, then 
b -- 1. In other two-dimensional models (flow in a fluid layer of variable 
thickness, axially symmetric flow; cf., e.g., [13, 28, 1]) the function b depends 
on x = (xI, x2) E Q- 
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We usually add to equation (1 1. 1) mixed Dirichlet-Neumann boundary con- 
ditions 

(1.1.3) (a) UIrD = UD, (b) b(x)p(IVu12) 
u 

=qN 

where io is the derivative in the direction of the outer unit normal to ail and 
UD, qN are given functions. We assume that 

(1.1.4) an = rD UFN, FDnlFN =0, 

where the sets ID and FN are formed by a finite number of open arcs (i.e., 
arcs without their end points) and FD, rN denote the closures of ID and FN, 
respectively. 

We assume that the velocity potential u is a single-valued function in Q. 
This is true, e.g., if the domain n is simply connected. In multiply connected 
domains (flow past profiles) the situation becomes more complicated, owing to 
the fact that u is a multivalued function. We must incorporate the so-called 
Kutta-Joukowski trailing condition. For simplicity we do not consider this case. 

The study of the boundary value problem ( 1.1.1), (1 1.3, a-b) is fraught with 
difficulties caused by the nonlinearity of equation (1 1.1) and the fact that it is 
of mixed type: equation (1 1. 1) is 

elliptic for <2a2 
elliptic for IVu12 < 0 (subsonic flow), 

(1.1.5) parabolic for IVuj2 - 2a- (sonic flow), 
K + 

hyperbolc for >2a2 
hyperbolic for IVu12 > K+ (supersonic flow). 

We say that the flow in Q is transonic, if there are two nonempty subsets 
Q1, Q2 C Q such that the flow is subsonic in QL and supersonic in Q2. The 
boundary between Q, and Q2 is not known in advance and depends on the 
solution of equation (1 1.1). This boundary is usually formed by sonic lines and 
shock waves (or briefly shocks), characterized by jumps in the velocity and den- 
sity. This means that the velocity potential u is not continuously differentiable 
in Q. 

Across the shock F we consider the Rankine-Hugoniot transition conditions 

Au a u + 
(a)onEF, (1.1.6) (a) at ir or 

(b) p(jVuj2) au =p(jVuj2) W| on F, 

where - or + denotes the quantities in front of, or behind, the shock wave 
(with respect to the flow direction), respectively. By vertical bars and fit and 
io we denote here the derivatives with respect to the tangential and normal 

directions to the shock, respectively. 
The fact that transonic flow with shock waves is an irreversible process re- 

quires the incorporation of the second law of thermodynamics into our model. 
We express it as the entropy condition 

(1.1.7) IVul > IVuI on E, 
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which means that the velocity must decrease across the shock wave. 
We remark that the transition across the shock is connected with an increase 

of the entropy and a rise of the vorticity. Therefore, the model of irrotational 
and homentropic flows can only be used provided the quantity IVu12 does not 
exceed 2a/2((K + 1) too much. Then only so-called weak shocks occur, and 
the entropy increase as well as the vorticity production across the shock are 
negligible. This allows us to modify the function p(s) given in (1.1.2) close to 
the point 2a 2/(K + 1) and to extend it onto the interval [0, +oo) in such a way 
that 

(a) p E C1([O, +oo)), 

(b) p(s) = po (I - 2 2 S ) forms E [0, s1] 

(1.1.8) with s1 E (2 +1 -01) (Si is close to K-i) 

(c) < Poo < p(s) < Po, 

Jp'(s)(l +s)lJ< co, 

p'(s) < O for all s E [O, +oo). 

Here, po, pc, co > 0 are constants. 
Of course, if u is a solution of equation (1.1.1) with the modified density 

p satisfying ( 1.1.8), then the corresponding velocity field v = Vu has physical 
sense, provided 

(1 1.9) IVu12 < S1. 

1.2. Formulation of the problem. In the following we shall assume that the 
boundary OQ is Lipschitz continuous and piecewise of class C3. By the sym- 
bols Ck(Q2), C??(Q), LP(Q), LP(OQ), Wk P(Q), etc. we shall denote the 
well-known spaces of continuously differentiable functions, Lebesgue and 
Sobolev spaces of measurable functions, equipped with their usual norms 
(see, e.g., [26, 31, 6]). We set CO (Q) = {v E CO?(Q); suppv c Q}, where 
suppv = {x; v(x) :$ O} is the support of v . Beside the norm in W1'2(Q), 

( 1.2.1 ) JI UJJ W1 'W2(Q) = (j(U2 + IVU12) dx) 

we shall use the seminorm 

(1.2.2) IUIWl2(Q) (Jvu2 dx) 

The concept of the above spaces will also be employed for other open sets, and 
we shall use a similar notation. 

By meas we shall denote the two-dimensional Lebesgue measure. 

1.2.3. Assumptions on data. (A) There exists a domain Q c R2 and constants 
b1, b2 such that 

Q c Q. b E CO(2), O < b, < b < b2 < +oo in Q; 
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(B) qN: FN -+ R, qN E L(FN), qN is piecewise of the class C2 on EN; if 
PD = 0, then 

fqNdS = 0; 

(C) UD: FD R, UD = u*lrD, where u* E W1 ??(1f2) (the restriction U*lrD 
is meant to be in the sense of traces on an); if 1D = 0, we set u*- 0. 

1.2.4. Classical formulation. For simplicity, let us assume that Q is a simply 
connected domain (e.g., in the form of a channel) and that there exists only 
one shock wave in Q represented by a. smooth arc F such that Q2 - F = 

0- U Q+, where Q-, Q+ are disjoint nonempty domains. Let us consider the 
flow direction from Q- to Q+. Then we can introduce 

1.2.5. Definition. A function u: Q -* R Ii is a classical solution of the transonic 
flow problem in Q, if 

2. uJW E C2(Q ), 
3. u satisfies (1.1.1) in Q-UQ+ and (.1.3, a-b) on O.Q, 
4. u satisfies (1.1.6, b). 

We say that u is a physical solution, if it satisfies ( 1. 1.7) on F and ( 1. 1.9) in 
Q-uQ+. 

Let us note that (1.1.6, a) is automatically satisfied if (1) and (2) hold. 

1.2.6. Weakformulation. Let us introduce the spaces 

(a) Y = {vEC'(Q);supPvcQUFN} if FDO0, 
(1.2.7) (b) Y={vEC??(Q); jvdx=O} ifFD=0 

and set 

(1.2.8) V== F 2) the closure of Y in W1"2(Q). 

1.2.9. Lemma. We have 
(a) V = {v E W1'2(Q); vIrD_=O}O if FD 0. 
(b) V = {v E W1'2(Q); fn v dx = O} if FD = . 

The proof of case (a) can be found in [12]; in case (b) we use regularization 
(cf. [26], [31]). D 

1.2.10. Lemma. There exists a constant c > 0 such that 

fJUffW1,2(n) ?< CeUw1,2(2) Vu E V. 

Hence, I j IW1,2(Q) is a norm in V equivalent to the norm 11 * IIW1,2(Q). 

The proof follows from Friedrichs' or Poincare's inequality in the case 1.2.9, 
(a) or (b), respectively (cf. [31]). 0 

Further, let'us define the forms 

(1.2.11) a(u, v) = bp(IVu12)Vu.Vvdx, u, v E W,2(Q) 

(1.2.12) L(v)=j qvvdS, v E W12(Q), 

which are linear with respect to v. 
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1.2.13. Lemma. There exist constants c, a > 0 such that for all u, v, w E 
W1 2(Q) 

(a) ja(u, v)l ? cIluIAIw,2(Q)IjVIlW1,2(Q)), 

(b) a (v , v ) > cJV 12WI, 2(Q), 
(c) ja(u, w) - a(v, w)l < C1 U - v I WI, ,2(Q) JW I WI ,2(Q2), 

(d) IL(v)lI < cjjv jjwW , 2(Q) . 

Hence, the functions a(u, *) (u E W1 2(Q)) and L are continuous linear func- 
tionals on WI 2(Q). 

The proof follows from properties (1. 1.8) of the function p and assumptions 
1.2.3 (A), (B). See, e.g., [3]. 0l 

The weak formulation of the problem can be derived in a standard way. 
Starting from the classical solution in the sense of Definition 1.2.5, we multiply 
(1.1.1) by an arbitrary v E Y, integrate over Q, apply Green's theorem, and 
use (1.1.3, b), (1.1.6, b), (1.2.8), and Lemma 1.2.9. We obtain the following 
problem: Find u: Q 11-R such that 

(a) uEW1'2(n), 

(1.2.14) (b) u- u*EV, 

(c) a(u,v)=L(v) VvEV. 
We call u a weak solution of problem ( 1. 1. 1), ( 1. 1. 3, a-b), ( 1. 1.6, a-b). 

It is easy to show that problems 1.2.5 (1)-(4) and (1.2.14, a-c) are formally 
equivalent. This means that the classical solution u satisfies (1.2.14, a-c) and 
conversely, a weak solution satisfying conditions (1), (2) of 1.2.5 is a classical 
solution. However, the concept of a weak solution is more general, and it can 
also be used for transonic flow with several shock waves. 

1.2.15. Weak formulation of the entropy condition. In order to get a physical 
weak solution, it is necessary that this solution fulfills condition (1.1.9) and 
satisfies, in addition, the entropy condition (1.1.7) in a suitable sense. 

Glowinski and Pironneau ([24, 5, 22, 23]) originally suggested an equivalent 
form of the entropy condition (1.1.7), which reads 

(1.2.16) -jVu.Vvdx<K vdx VvECO(Q)+. 

Here, K > 0 is a suitable constant and 

(1.2.17) CO (2)+ = {v E CO (2); v > 0 in f2}. 

This condition has a very strong compactifying property, as has been pointed 
out in [15, 16, 32]. Nevertheless, its discrete analogue on unstructured meshes 
causes sometimes instabilities near the solid wall boundary, where the super- 
sonic pocket occurs. Therefore, it was suggested to apply condition (1.2.16) 
with test functions from Co(f2)+ instead of CO (K)+. However, this modi- 
fication is no longer consistent with the original (1.1.7) and moreover, in our 
numerical experiments we observed that its discretization causes convergence 
problems of the numerical scheme on the inflow and outflow boundary. 

In order to overcome these various difficulties, we shall develop a new ap- 
proach, which has good properties both from the theoretical and numerical point 
of view. 
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We assume that the Neumann boundary FN is split into two parts 17% and 
J4 satisfying 

FN =IF7 U I-0N n&flhl%=0, (1.2.18) qN =0, qN N rN=O 
qNlpn - ? qN~rlr 0 O. 

We assume that I ON and E1 are unions of a finite number of open arcs. 
In order to reformulate condition (1.1.7), we introduce the following sets: 

(1.2.19) += {v E C??(O); suppv c O?uI?, v > Oin Q}, 

(1.2.20) E+ =+W 2(a) 

Using the techniques from [12], we can show that 
(1.2.21) E+ = {v E W1'2(Q2); vIrDur = 0, v > 0 in Q}. 

Now the modified entropy condition has the form 

(1.2.22) - Vu*Vvdx<K vdx VvE a+. 

In view of (1.2.20), we can also use v E E+ as test functions in (1.2.22). 
Further, it is evident that (1.2.22) implies (1.2.16). If we assume regularity of 
the solution u and the shock wave F mentioned in Definition 1.2.5, then by 
virtue of (1.2.18) it is possible to prove the equivalence of (1.2.22) and (1.1.7). 

In view of the above considerations we define in WI 2(Qi?) the closed convex 
subset of admissible functions 

adlK {U E W"' (?) ; IIVU1IjLL(Q. ? Si, 
(1.2.23) 

-|Vu *Vvdx <K| vdx VVE9'+} 

and introduce the following 
1.2.24. Definition. We say that u: O -- R1 is a weak physical solution of the 
transonic flow problem, if it satisfies (1.2.14, a-c) and, moreover, u E p K for 
some K > 0. 

2. DISCRETE PROBLEM 

2.1. Triangulations and finite element spaces. Let us consider systems 
{1h}hE(0,h) (ho > 0) of polygonal approximations of Q2 and triangulations 
{34}hhE(O,k) of Oh with the following properties: 

(a) the vertices of Qh lie on aQ, 

(b) 8h is formed by a finite number of closed triangles, 

(c) 2h= U T, 

(2.1.1) (d) if T1, T2 E Jh, T1 54 T2, then either T1 n T2 = 0 or 
T1 n T2 is a common vertex or a common 
side of T1 , T2, 

(e). if T E 89, then at most two vertices of T lie on 
ai. 
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We denote by 1h = {Pl, .. ., PN, } the set of all vertices of '5 and let 

(a) Uh C Q. chfnlQh C O Q. 

(b) D n FN, Nf lNcah, 

(2.1.2) (c) the points of AQ, where either the condition of C3- 

smoothness of A2 or the condition of C2-smoothness 
of qN are not satisfied, are elements of ah. 

By hT and OT we shall denote the length of the maximal side and the magnitude 
of the minimal angle of T E Sh, respectively. We set 

(2.1.3) h=maxhT, Oh = minlOT. 

We shall assume that the system {5}hhE(O ,ho) is regular. This means that there 
exists do such that 

(2.1.4) oh > 0 > 0 Vh E (O, ho). 

By NDh, FNh, Nh, and FNh we denote the approximation of 1D, FN ,FN 

and rN' respectively. 
Approximate solutions to problem (1.2.14, a-c) will be sought in the finite- 

dimensional space of conforming piecewise linear elements 

(2.1.5) Xh = {Vh; Vh E Co(Qh), Vh is affine on each T E h}. 

The space V will be approximated by 

(a) Vh Vh E Xh; vhlrD}h ? 

(2.1.6) {Vh E Xh; Vh(Pi) = OVPi E ah nfFD} ifJTD $0, 

(b) Vh ={vh EXh; jvhdx=O} if FD=. 
ah 

By Whi, i = 1, ... , Nh, we denote the basis functions in Xh with the property 
Whi(Pj) 5ij1, i, j = 1 ,... 5,Nh . 

We further denote by rh: ah -* Xh the operator of the Lagrange interpolation: 

(2.1.7) rhv E Xh, (rh v) (Pi) = v (Pi) VPi E ah for v: ah -1R 

2.2. Finite element discretization of the problem. Let the form a(u, v) be 
approximated by 

(2.2.1) ahh(U, v) = jbp(IVU2)VU Vvdx, U, V E WI, 2 (K2 
Qh 

In order to approximate L(v) , we shall introduce an approximation qN: rNh 

RI of qN. Let xS, x2 be the local Cartesian coordinates in the neighborhood 1' 2 
of a side S C a'h of a triangle T E ST adjacent to 0nh such that xs and 
XS are measured in the tangential and normal direction to S, respectively. 
Now (provided h E (0, ho) and ho is sufficiently small), the arc X c a&Q 
approximated by the side S, can be expressed by the graph of a function x4 = 
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(oS(XjS), XjS E [0, S(S)] (s(S) = the length of S). Then for S C PAh and 
X CN we define qNh Is as 

(2.2.2) qNh(x4) = qN(XS X , (X1()) 

and put 

(2.2.3) Lh(Vh) qNhv dS, V E WI'2(2h) 
hNh 

We note that from the assumption that 0 is Lipschitz continuous and piece- 
wise of class C3 it follows that (cf. [14, ?3.3]) 

(2.2.4) #S(xs)I < ch2, X E [0, S(S)]. 

Here and in the sequel, c denotes a generic constant independent of h, which 
can have different values at different places. 

From the Sobolev imbedding theorems ([6, 26, 31]) it follows that 

(2.2.5) W1'P(0) c C0(U) forp E (2, ox]. 

Therefore, each v E W1 r(Q) is for r > 2 defined on the set ah, and we can 
construct its Lagrange interpolant rhv . 

The approximation of the Dirichlet boundary data u* E W1 'IO(R2) is given 
by 

(2.2.6) Uh = rhU E Xh. 

Now we could already formulate the discrete problem of (1.2.14, a-c). How- 
ever, in practice the integrals in (2.2.1) and (2.2.3) are evaluated by numerical 
integration. We write 

(a) Fdx= Fdx, 

(2.2.7) kT 

(b) F dx f meas(T) Z a)WT,kF(xT,k) if F E C?(T). 
k=l 

Here, XTk E T and aTk E R1I. We shall assume that 

(a) 0T,k > O, 

(2.2.8) (b) ZTk = 1. 
k=1 

Similarly, we evaluate integrals over FNh 

(a) jFdS= E F f ds, 

(2.2.9) S 
h 

ks 

(b) F dS = s(S) ZIs,jF(xsj) if F E C?(S), 
j=1 

where Xs,j E S, I3s,j E R1 and S c rNh is a side of a triangle T E ST. We 
assume that 

(2.2.10) the order of the integration formulas (2.2.7, b) and 
(2.2.10) 

~(2.2.9, b) is > 1. 
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If we approximate the forms ah and Lh by means of (2.2.7, a-b) and (2.2.9, 
a-b), then for Uh, Vh E Xh we get 

(a) ah(Uh, Vh) = Z meas(T)p(I(VUhIT)12)VUhIT 
TEh 

kT 

(2.2.11) * ~~~~VVh IT 
% 

JT, jb(XT, j) 
J=I 

ks 

(b) Lh(vh)= s(S), I3s, jqNh(XS,j)Vh(XS,9) 
SCf N j=1 

h 

Note that if all XT, j E 8h and xs, j E h n rN, then for practical computations 
it is not necessary to extend the function b outside of Q and to introduce the 
approximation qN, of qN. 

From the results of [20, Theorems 2.2.4 and 2.2.7] it is known that because 
of (1.1.8), 1.2.3, (2.2.8), and (2.2.10), the following estimates hold: 

(2.2.12) Iah(Uh, Vh) 
- ah(Uh, Vh)I 

< ch(l + 
IIUhI1W1,2(nh))IIVhIjW1,2((h) 

VUh, Vh E Xh, Vh E (0, ho), 

(2.2.13) ILh(Vh)-Lh(Vh)I <chllVh W,2(Qh) VVh EXhVh e (0, ho). 
In view of later considerations we shall add to Lh a continuous linear pertur- 
bation functional h: Vh -- R1 which has the property 

(2.2.14) lim I sup LXh(vh) I =0. 
h-*0o VhEVh IlVhIIWI,2(Oh) I 

1 Vh#O ) 

(Its form will be specified later.) 
Now we come to 

2.2.15. Discrete problem. Find Uh: i2h -+ RI such that 

(a) Uh E Xh, 

(2.2.16) (b) Uh-Uh E Vh, 

(c) ah(Uh, Vh) = Lh(vh) +?Z'(Vh) VVh E Vh. 

Using the same techniques as in [19, 21], we can prove the solvability of 
problem (2.2.16, a-c): 

2.2.17. Theorem. For each h E (0, ho) there exists at least one solution Uh of 
problem (2.2.16, a-c) which satisfies the estimate 

llUhIIWI,2 Ph) < C, h E (O. ho), 
with c independent of h. 

In the discretization of the entropy condition (1.2.22) we can proceed in a 
natural way, leading to 

-JVUh 
* 
VVh dx <K Vh dx 

(2.2.18) Jh Vh 

Vh E Eh = {Vh E Xh; Vhl U- =O and Vh > O in Qh}. 
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However, it will be convenient to generalize this condition in the following way: 

2.2.19. Definition. Let K > 0 be an arbitrary fixed constant. A function 
Uh E Xh satisfies the discrete entropy condition, if 

(2.2.20) -j VUh* VVh dx < K | h dx+y(h) IIvIILoo(Dh) VVh Eh Ej 
Qh Qh 

where y: (0, ho) -* [0, +ox) and 

(2.2.21) lim y(h) =0. 

2.2.22. Definition. We say that Uh: Oh R1 is a physical approximate solu- 
tion of the transonic flow problem if it satisfies (2.2.16, a-c) (where fh has 
property (2.2.14)) and 

(2.2.23) Uh E gaS,K,h {(oh E Xh; IIVhII2(Qh) < s5 and (Ph satisfies 
the discrete entropy condition(2.2.20)}. 

Let us remark that Theorem 2.2.17 does not guarantee the existence of a so- 
lution that satisfies, in addition, the discrete entropy condition and the uniform 
pointwise estimate for the gradient. Therefore, we shall reformulate the discrete 
problem in a suitable way which takes these features into account. 

2.3. Least squares method with penalization. In this subsection we shall refor- 
mulate the problem of finding a physical approximate solution as a minimiza- 
tion problem. This approach was introduced by Glowinski and Pironneau in 
their paper [24]. (Cf. also [3, 4, 5, 22, 23].) Instead of seeking the solution Uh 
of (2.2.16, a-c) satisfying (2.2.23), we shall solve an appropriate minimization 
problem. 

Let us denote Ai = meas(suppwhi), i = 1, ..., Nh . Further, we define the 
set 

(2.3.1) ah={Pi Eah: Pi r FDUrN}. 

Now we introduce the positive functional JYh: Xh -* R1 by 

J*(h) :=-| IVh(Vh)I2 dx 
2 h 

(2.3.2) + 22 7[- fh@Vhjd- a x 

where It > 0, K > 0. e > 0 are arbitrary but fixed constants and (t)+ = 

max(t, 0) for t E R I. The function Xh := h(h) is defined as a solution of the 
discrete weak Poisson problem 

(a) Xh E Vh, 

(2.3.3) (b) Jh * VVh dx = ah(Oh, Vh) -Lh(Vh) VVh E Vh. 
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The functional Ah can be considered as a cost functional with (2.3.3) as 
the corresponding state equation. Note that the function 4h((h) is a weighted 
residual of the expression ah(h, Vh) -Lh(Vh) . Clearly, if Jh (oh) = 0 for some 
'h E Uh+ Vh := {Uh EXh; Uh U* +Zh Zh E Vh}, then h(Ph) =0, and Ph is 
a solution of (2.2.16, a-c) with 2 - 0. 

In order to incorporate the discrete entropy condition (2.2.18), Glowinski 
and Pironneau introduced the penalty functional ,9h: Xh R R1 

(2.3.4) dx-K(h)= > 1 hdX 2 (Vh Ah [(An VWhid fJ WhidX 
PiE66h I L I h h hj 

However, they considered the case e 1_ and &h = ah n fh . It had been ob- 
served in Berger's paper [31 that the case e > 1 leads to a convergence problem, 
provided Q is a polygonal domain. Without the incorporation of 29h into the 
functional Ah one obtains nonphysical solutions with expansion shocks as a 
minimizer of Ah (see Glowinski and Pironneau [24] and Berger, Warnecke, 
and Wendland [4]). 

We now define a family of functions {Uh}hE(O,ho) by the solution of the 
discrete minimization problem 

(2.3.5) Jh(Uh)= min Jh(h). 
(PhEu*+Vh 

II V(h 112Lo(ah ) S2 

Here, 52 E [0, Xc) is an arbitrary but fixed constant. The functional Fh is 
continuous, and its minimum over the finite-dimensional closed bounded set 
Ks2,h := P{ah; (Ph E Uh + Vh, IINVPhII1(12 ) < 52} is obtained in at least one 
element Uh E Ks2,h - 

For our further considerations we shall introduce the following definition and 
mention some results which will be used later. 

2.3.6. Definition. We say that the family {.9h} of triangulations is quasiuni- 
form if each triangle T E Th contains a circle of radius cl h and if it is contained 
in a circle of radius c2h. Here, cl and c2 are constants independent of h and 
T. 

The following estimates can be derived for a quasiuniform family of trian- 
gulations (cf., e.g., [6]): 

(2.3.7) IIVWhcILO(Qh) ? h, i = 1, ... N, 

(2.3.8) ch2 <Ai<Ch2, i= 1,..., Nh, 

(2.3.9) Nh ? 

Here, c, C are positive constants independent of h. 
Now we shall prove that the family {Uh} defined by (2.3.5) satisfies an esti- 

mate which already looks similar to the entropy condition (2.2.20). The tech- 
nique of the proof is similar to the one for Theorem 4.1 in Berger [3]. 

2.3.10. Theorem. Let {8h}hE(,ho) be a quasiuniform family of triangulations, 
or more generally, let {1,T} be such that (2.3.9) holds. Then the family 
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{Uh}hE(O, h,) of solutions of the minimization problem (2.3.5) satisfies the in- 
equality 

(231 L VUh - VVh dx < K V hld x +C Sh(Uh hIVhIILc (Qh) 
(2.3.1 1) 

Vh 
dx+C95hh 

VVh E Eh. 

(The constant c > 0 is independent of h.) 
Proof. Let Vh E Eh . Then, by the definition of ,Ah(Uh) and the Cauchy in- 

equality, we obtain 

VUh *VVh dx-K Vh dx 
Qh Qh 

? Z Vh(Pi) (-f VUh VWhdX-K/ WhidX) 

Pi E rh / 

? IIVhIco(Pi) Z- &Lvuhvwhidx-KJ ~whjdx)~ 

? IIVh(Loo(h) V- {Z VUh V VWhd dxj K W w h dx1 

I IlVhIILE (Qh) V Nh.- [( h U-h) X d) 

i= 1 ..., Nh 2 

Using (2.3.8) and (2.3.9), we immediately obtain (2.3.11). 0 

2.3.12. Remark. If FN = 0 or I* = 0, then it is easy to prove that 2"h(Uh) 

is uniformly bounded by a constant independent of h (see [3, Lemma 4.11). 
Hence, (2.3.11) implies that for these cases 

(2.3.13) -j VUh * Vvhdx ? K X hdX+chelVhIIL?(Sh) VVh e Nh 

is valid, and for e > 1 the solutions of the minimization problem (2.3.5) satisfy 
the discrete entropy condition (2.2.20), (2.2.2 1). 

3. CONVERGENCE 

Here we shall deal with the convergence of the approximate finite element 
solutions uh of the transonic flow problem to an exact solution, provided h -h 

0. The main tools are the compactification properties of the entropy condition 
(discovered by Feistauer, Mandel, Nepas [15, 16, 27] and generalized by Berger 

[3]) and the analysis of the finite element vaniational crimes for nonlinear elliptic 

problems by Feistauer, Zenitek, Sobotikova [19, 20, 21]. 

3.1. Preliminaries. In the sequel we shall consider a family mte}hE(O, hm) of 

triangulations of the domains Qfo and assume that hoa> 0 is sufficiently small. 
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We set 

(3.1.1) W (h =Q-Qh, Th =Qh-Q. 

By [14, Lemma 3.3.4], 

(3.1.2) meas(wOh U Th) < ch2. 

If T E 3h is a boundary element, i.e., an element adjacent to aQh with vertices 
pIT, P2T E aQ and P3T E fh n Q. then by Tid we shall denote the curved 
triangle with two straight sides PTP3T, P2TP3T and one curved side ET C aQ 
with endpoints PT, p2T. We call Tid ideal element associated with T. 

If we replace all boundary triangles in Th by their associated ideal elements, 
we obtain the ideal triangulation 'id of the domain Q, associated with Th. 

Let Vh E Xh . We define its natural extension Vh E C(Qh U Q) as Vh = Vh 
on Qh and Vh I Tid = pITid, where p is the polynomial of order < 1 satisfying 
PIT = VhIT. It is evident that Vh E W1 PP(Q) for p E [1, xc] (cf. Ciarlet [6, 
Theorem 2.1.1]). 

In [20, Lemma 3.3.13], the following estimate for the approximation Lh of 
the form L was proved: 

3 
(3.1.3) ILh (Vh) - Lh) I < chlvh 2 Iw ,2(A) Vh E Xh, h E (0, ho). 
Further, by a technique analogous to [20, Lemma 3.3.12], we prove that 

(3.1.5) IIVh IILP(whl h) < ch2 IIVh IIWP O (Qh) 

VVh E Xh, Vh E (0, ho), Vp E [1, x]. 
Here and in the following, the constant c is independent of h and Vh, but 
it can depend on p in general. For the proof of (3.1.5) we need the uniform 
theorem on traces in W1'P(9(h), which is a consequence of similar arguments 
as in [14, Theorem 3.3.6] and [26, Chapter 6]: For p E [1, xc] there exists a 
constant c > 0 such that 

(3.1.6) IIVMILP(OQh) < CIIVIlw1,p(Ah) V E v W (Qh), h E (0, ho). 

3.1.7. Lemma. We have 

(3.1.8) IIVhl WI ,2(A) < ClVhIW1,2(A) VVh E Vh, vh E (0, ho) 
with c independent of Vh and h. 
Proof. In the case PD # 0 (cf. (2.1.6, a)) the assertion is a consequence of the 
discrete form of Friedrichs' inequality ([35]). 

Let PD = 0. Then Vh is defined by (2.1.6, b). For Vh E Vh, let us set 

(3.1.9) h h- meas(Q) hdx. 

It is evident that vh E V (see (1.2.9, b)) and, by virtue of Lemma 1.2.10, 

(3. 1. 10) ||V~h W1W, 2(Q) < C INh wa, 2(Q) . 

Now, using the relation 

IVhIW1,2(Q) = lVhlwI2 2((h) + IVIW1,2(0h) - IVhIWI,2(Th) 
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similar relations for IIhUhII2(i) and f&vUhdx, estimates (3.1.4), (3.1.5), and 

(2.1.6, b), we find that 

(IN 1IL2(O) - 2 (IIVhL2(Q) - C (j| h Idx) 2) 

1 11 ch 2I 112I 1,2(ilh)), 

12 12(|V +| Qch llVhll 12(Q) 

INh W1,2(Q) lVhWI ,2 + Ch VhW, 2(h), 

IVh w1,2(Q) ?N WI 2(-chI Wvh || 2(Oh). 

From (3.1.10) and (3.1.11) we get 

(2- ch)IlVhIl,2(Qh) ?C IN( vWI2(a) + ChllVhIIW1,2(Q )), 

which immediately yields (3.1.8), provided h E (0, ho) and ho > 0 is suffi- 
ciently small. o 

In the same way as in [21] we define the ideal interpolation Ih: C0(Q) - 
W1 nP(Q). The construction of the interpolant IhdV to v E C(Q) is described 
in [21, Definition 5.1.1], and is based on [20, Lemma 3.3.4] and the results from 
Zlkmal [36]. For our further considerations the following property is important. 

If T E Th is a boundary triangle with vertices PT[, p2T E &Q, Tid is the 

ideal element associated with T, and I c ad2 is the curved side of Tid with 
end points p1T, p2T then we have the implication 

(3.1.12) v(PW)=v(Pfl=0?'Idv=0 onX. 

If we proceed in the same way as in the proof of [36, Theorem 2], where we set 
k = 2 and work in WkP(Q) (p E [1, oc]) instead of Wk,2(Q), we get the 

estimate 

(3.1.13) IIIdh bowlP(Qh) ? chllVhIIW1,P(Qh) VVh E Xh Vh E (0, ho). 

From (3.1.12), (1.2.21), (2.2.18), and the construction of Ihd (see [21, Defini- 

tion 5.1.1] and [20, Lemma 3.3.4]) we can see that 

(3.1.14) Vh E E*+ Ih idsh E E+. 

Further, for Vh E Vh, define vh E V in the following way: 

(a) Vh = IhdUh if FD $0, 

(3.1.15) (b) quIa; 
m ( Qj hdx if JD=0. 
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Then we have 

3.1.16. Lemma. For p E [1, o] there holds 

(3.1.17) V <-VhII P(() ? 
chllVhllw1,P(Qh) VVh E Vh, Vh E (0, ho). 

Proof. Provided rD , 0, the assertion (3.1.17) is a consequence of (3.1.13). 
Let FD = 0. Then 

Vh Vhllw1,pWQ) = (meas(Q))/P-11 vhdx 

= (meas(K2))1/P-1 Vh dx + ' Vh dx - Vh dx 
Qh h th 

If we use the assumption that Vh E Vh, which means that 

Vh dx = 0, 
Qh 

then from the Holder inequality, (3.1.2) and (3.1.5) we get the estimate 

IVch - Vh || W ,P(Q) ? ch2 llvh ||WP(Qh) 

with c independent of Vh and h. Hence, also (3.1.17) holds. o 

In the sequel, for v E W1 P(Q) we shall denote by vc the extension of v. 
That is, vc E W1'P(R 2), vcl = v, and 

(3.1.18) |IVC ll WIP(R2) < Vf 11 Wl .P(n) 

where c is independent of v and p (cf. [31, Chapter 2, ?3.7]). 
By [7, Theorem 6], [19, proof of Lemma 3.1.3], and (3.1.4), (3.1.5) we have 

the following approximation results: 

3.1.19. Lemma. Provided v E W 1P(Q), we have 

(a) llvc - rhvllw1'P(Qh) h4 0 for p E (2, ox), 

(b) liv - rhUllw1,P(i) -+ 0 forp E (2, ox), 

(3.1.20) ~(c) 11 rhV11W1'P(Qh) < C11V11W1 P(Q) for p E (2, xo], 

(d) 11rhV IIL-?(Uh) < 11V 11LOO(Q) , 

(e) llrTh-vjw1P(() ? cjvwp(Q) forjp E (2, o], 

where c is a constant independent of v and h E (0, ho). 0 

Because of later considerations, in addition to the Lagrange interpolation 
we introduce its modification flh: Uh -- Vh defined in the following way: For 
v.: h -+R1 we set 

(a) JIhv= rhv if D 0, 

(3.1.21) (b) JhJ = r-v - rhvdx if 1D = 0. 
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3.1.22. Lemma. If p E (2, ox) and v E V n Wl P(Q), then 

(a) llvh- hVllwp(ah) h 0, 

(3.1.23) (b) liv-0 0- VflrhVll1W1,P(Q) + 0 

(c) liV - (I1hV)llw1,P(Q) 0. 

The proof obtains from (3.1.20, a), (3.1.4), (3.1.5), and a similar technique 
as in Lemma 3.1.16. 5 

Now let us draw our attention to the solutions Uh of problem (2.2.16, a-c). 
We assume that u* = rhu* and u* E W1 ?(IR2). In view of (2.2.16, b), the 
solution Uh can be written in the form 

(3.1.24) Uh = Uh + Zh, where Zh E Vh. 

Similarly as in [19], we define the function U' E WI,2(eQ) associated with Uh: 

(3.1.25) Uk = Uh +Zh, 

where Zh is defined by (3.1.15). 
In view of (3.1.20, c and e) we have 

(3.1.26) llh*llw P(Qh), llthllWlP(W) ? c, h E (0, ho), p E [1, xc]. 
Let s2 > 0 and 

(3.1.27) llVUhllLoo(h) ? /, h E (0, ho). 

Then, of course, also 

(3.1.28) llVllL-(Q) < VS2, h E (0, ho) 

and 

(3.1.29) llUh lw1 W (Ah) , 1lUhll 00Wl(a) < C, h E (0, ho). 

Further, U' n = Zh -Zh, Zh = Uh-U, and u g = Uh +(u -Uh). From this, 
(3.1.17), (3.1.27), (3.1.29) we get the estimates 

(3. 1 .30) ll Zh llhw1P(Uh) < C, 

iiu3 -Uh1lWi,P(Q) < ch 11 Zh || WP(Qh) < ch, h E (0, ho), p E [1, xc], 

and 

(3.1.31) 
h V+ch, he0h) 

(~ ~ ~ ~~~~: *v /s- + ch , h E (O. ho). 

Hence, 

(3.1.32) llUhllw 1P(Q) < c, h E (0, ho), p E [1, 00]. 

This implies the existence of a subsequence {Uh, } and a function u such 
that 

hn 0+, 

(3.1.33) Uhn u -weaklyinW1'?(Q), 

Uhn u weakly in W1 P(2), p E [I , x0). 
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The aim of our following considerations will be to prove strong convergence of 
uh and to show that the limit u is a solution of the continuous transonic flow 
problem. 

3.2. Compactification by the discrete entropy condition. The proof of conver- 
gence of the approximate solutions Uh to a solution of the continuous problem 
will be based on the following fundamental theorem: 

3.2.1. Theorem. Let q E (2, oo) and Gn E (WI, q())y (= dual to the space 
W, q (Q)) be a sequence satisfying 

(3.2.2) Gn - G weaklyin (WI, (Q))I 

and 

(3.2.3) Gn(V) < Ljjv11LO(Q) VV E Co??(Q+ 

where L is a constant independent of v and n. Then 

(3.2.4) Gn G strongly in (W1'P(Q))' for all p> q. 

Proof. See Berger [3, Theorem 5.1J. 0 

We remark that the first version of this theorem was proved in 115] for the 
case q = 2, L = 0, as an extension of Murat's result [30]. Theorem 3.2.1 
represents a generalization of [27, Lemma 3.11. 

Now we prove the first convergence result: 

3.2.5. Theorem. Let {Uh}, h E (0, ho), be a family of physically admissible 
approximate transonic flow solutions. This means that for each h E (0, ho), the 
approximation uh satisfies (2.2.16, a-c) and us E ,adK h. Then there exists 
a subsequence {Uhn } such that 

(3.2.6) U/ -+ u strongly in W1 ,P(Q) Vp E [1, co) 

(where us is defined in (3.1.25)) and u is a physically admissible solution of 
(1.2.14, a-c) satisfying u E "aldK . Moreover, 

(3.2.7) lim I Iu - uhnlIw1 P(Qhn) = 0 p E [1, x). 

Proof. (I) Let q E (2, oo) be arbitrary and fixed. Let us consider the subse- 
quence {uhs} and the function u satisfying (3.1.33). For simplicity we shall 
write h := hn in the sequel. 

We define the linear functions G, Gh: W ,q(Q) ,'R 

(a) Gh(v) = L- VUh-Vrhvdx-Kh rhvdx, 
Qh Qh 

(3.2.8) v E Wl g(Q), h E (0, ho), 

(b) G(v) = - Vu-Vvdx-K v dx, v E Wl.q(Q). 

By the Holder inequality, (3.1.27), where we set S2 := s1, and (3.1.20, c), we 
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get 

(3.2.9) IG(v)l, IGh(v)I < CIIVIIW1,q(Q), V E Wl q(Q), h E (O ho), 

which means that G, Gh E (WI q 
(II) Now we show that 

(3.2.10) Gh - G weakly in (W q(Q)), if h -+0. 

For arbitrary v E W1 q (Q) we have 

IGh(v) - G(v)I ? I, + I2+ I3 

where 

II VUh - V(rhv-vc) dx| +K | (rhV-vc) dx | 
h +K 

I2 = L | VhL + Vvc dx- Vu' - Vv dx + K Lvc dx- v dx 

13 J||V(ut -u)*Vvdx 

By (3.1.20, a), (3.1.27), and the Holder inequality, we have I -+ 0 for h 0. 
By (3.1.33) also I3 -+ 0. Further, 

I2 < 1lVUh - Vvc dx - Viih - Vv dx 
QhQ 

+ K VC dxL- v dx + jV(ut-T *h)-Vvdx. 

If we use (3.1.2), the Holder inequality, (3.1.29), (3.1.30), and the absolute 
continuity of the Lebesgue integral, we find that 

I2 < I VUh - Vvcl dx + Kj jvl dx + chjjVjjwlq(Q) -' 0. 
Zh Ulh Zh U'h 

Hence, (3.2.10) is valid. 
Since the functions Uh satisfy the discrete entropy condition, (2.2.20) and 

(2.2.2 1) hold. There exist constants L > 0 and hI E (0, ho) such that y(h) < L 
for all h E (0, hl). For arbitrary v E Co(Q)+ we have rhv EEh+ and thus, 
by (3.1.20, d) and (3.2.8, a), we get 

Gh(v) < LIIVIILoo(Q), V E Co??(Q)+, h E (O, hi). 

We see that the assumptions of Theorem 3.2.1 are satisfied, and since q > 2 
was arbitrary, it follows that 

(3.2.11) Gh -+ G strongly in (W1 P(Q))' for allp > 2. 
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(III) We use the relations obtained by a recurrent process: 

(a) |U-Uh 12 V(u U-) - V(U -u) dx 

= I Vu - V(u- u) dx-J Vu4 - V(u- u) dx, 

(b) jVu' - V(u - u') dx 

2 

= ful4. V(u -|) dx+ V4 V(Thu- ih) dx 
h h 

3 

+jVu,- V(gh-u')dx, 

(c) jVz4*V(Th-uh) dx 

4 

= j+|vu' V(-u -Uh) -dX 

(d) JVUh -V(rh-u-h) dx 

(3.2.12) = 1 -V(rhu-Uh) dx 
5 

+ |V.h * V(Th-uh) dx-j VUh *V(rhu-Uh) dx, 
(sh T~~~~~~~~~~h 

(e) - 1 VUh - V(rhu-uh)dx 

= Gh(u-Th) + K (rhu-Uh) dx 
Qh 

6 7 8 

= G(u-u') + G(u- + (Gh- G)(u-Ti) 

+KJ (T-uf - Th) dx 

9 

+ K (rhu -Uh)dx-Kj (hTU-Uh )dx, 
Th Zh 

10 11 

~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ N J 
( ( | u - -Uh) dx = | r U) dx + |(u - u) dx 

12 

+(ju- dx. 
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All the terms in (3.2.12) denoted 1-12 tend to zero, if h -* 0. This is 
a consequence of the following table, where we introduce the formulas and 
estimates which imply the convergence of the particular terms 1-12: 

1. (3.1.33) 
2. (3.1.3 1), (3.1.20, b) 
3. (3.1.31), (3.1.30) 
4. (3.1.20, e), (3.1.29), (3.1.30) 
5. (3.1.20, c and e), (3.1.27), (3.1.28), (3.1.2) 
6. (3.1.33) 
7. (3.2.9), (3.1.27), (3.1.30) 
8. (3.1.28), (3.2.11) 
9. (3.1.20, c and e), (3.1.29), (3.1.2) 
10. (3.1.20, b) 
11. (3.1.33) 
12. (3.1.30). 

Hence, IU-UhIW1,2(Q) -+ 0 if h -* 0. From (3.1.33) and the compact imbedding 
W 1, 2 

(Q-) L2(Q) it follows that jju - UtIIL2(Q) -+ 0 and thus, 

(3.2.13) limn Iu - Uk11Wl,2(Q) = 0. 

The sequence us is bounded in W 1OO(Q) . By the Lebesgue theorem, (3.2.13) 
implies 

(3.2.14) lim I|u - Uslw1 P(Q) = p E [1, [ c). 

Further, from the relations 

1uh- Ucldlp(a) =Uh Uh1lP P(Q-(0) + hUh Uch1~tp(T), 

(3.2.15) ||Uh - Uchtwl p(rh) ?Uh It W',P(rh) + jj UCj W1P(Th) 

(.Uh - UcI1wl p(Q-Wh) < luh 
- UIIW1sP(Q) 

< huh - U'|wlp(Q) + hIUh- UIWw1P(Q), 

(3.1.4), (3.1.5), (3.2.14), (3.1.29), (3.1.30), and (3.1.2) we obtain (3.2.7). 
(IV) Now we show that u is a physical solution of problem (2.2.16, a-c). 
(a) Let e > 0 be an arbitrary number. Then by (3.1.31) (where S2 := S1), 

there exists h6 E (O, ho) such that 

hhVuhLOO(<) < +e Vh E (0, h6). 
By virtue of (3.2.6) we can extract a subsequence from {Vu*} which converges 
to Vu a.e. in Q. Hence, we have IIVUIILO(a) < VSI + e for each e > 0 and 
thus, 

(3.2.16) 11,VU112.Q < SI. 

(b) Let v E ?+ (see (1.2.19)). Then rhV e Eh E, and by (2.2.20), (3.1.20, d), 
and (3.2.8, a), 

(3.2.17) Gh(v) < y(h) liv IILcX(Q) - 
Using the strong convergence Gh -+ G in (W1'P(Q))' (p E (2, ox)) and 

(2.2.21), we immediately get from (3.2.17) the relation 

G(v)=- Vu-Vvdx-Kjvdx<O, 

which is (1.2.22). Thus, u E (OadK. 
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(c) In order to prove that u satisfies (1.2.14, a-c), we observe that us - Ush= 
Zh E V, ul -+ us -+ u* and thus, Zh - = u- u* in W1'2(Q). Since V 
is a closed subspace of W1 2(Q), we have U - U* E V, which is (1.2.14, b). 

(d) For the verification of (1.2.14, a,c) we shall consider an arbitrary v E 7' 
and denote Vh = FIhV E Vh. Using (2.2.16, c), (1.2.11), (2.2.1), and (3.1.15, 
a-b), we can write 

(3.2.18) 
a(ut, Vh) + [a(u', Vh) - a(ut , h)] + [a(Tih, h)- a(u, Vh)] 

+ [I bp(IVuh 12)Vuh* VVh dx - Jh bp(I V-h 12) VUh * VUh dx] 
th ah 

+ [ah(Uh, Vh) - ah(Uh, Vh)] 

- LVhM) + [Lh (Vh) - L(Th)] + [Lh (Vh) - Lh (Vh )] + Xh (Vh). 

In view of Lemma 3.1.22, we have v*, Vh - v in W1 P(Q) for p > 2, and 
hence also in W1,2(Q). From this, Lemma 1.2.13, (2.2.14), and the fact that 

h- U, it follows that 

limha(t, Vh) = a(u, v), 

(3.2.19) limL(Jh) = L(v), limh(Vh) = 0. 

Using Lemma 1.2.13, (3.1.17), (3.1.30), (3.1.4), the boundedness of Uh, Vh 
in W1'2(Q U ih), (2.2.12), (2.2.13), and (3.1.3), we find that all terms in 
the square brackets in (3.2.18) tend to zero if h -+ 0. This, and (3.2.19), 
immediately imply that the relation a(u, v) = L(v) is satisfied for all v E Y . 
Now from the density of Y in V and the properties of a(u, *) and L we see 
that (1.2.14, a,c) holds. 5 

3.2.20. Corollary. If there exists only one physically admissible solution u E 
ad K of problem (1.2.14, a-c), then we do not need to confine ourselves to 

subsequences of thefamily {Uh}hE(O, h), and we have 

lim 1Uh' - UI1WIP(Q) = lim HUh - UcIW1,P(h) = 0 

for p E [1, x) . 

3.2.21. Remark. The assumptions on approximate solutions may seem rather 
strong, but they are necessary to guarantee their physical admissibility. In the 
following, Theorem 3.2.5 will be used as a tool for proving the convergence of 
solutions of the minimization problems. 

3.3. Convergence of solutions of the minimization problems. In this subsection 
we shall deal with the convergence of the solutions of the minimization problems 
(2.3.5). For this purpose we must introduce the Ritz projection Ph: WI '2(Q) 
uh + Vh defined by 

(a) PhuEXh, 

(3.3.1) (b) PhU-lU E Vh, 

(c) j VPhU VVh dx= Vuc VVh dx VVh E Vh. 
Qh 
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3.3.2. Lemma. Provided u E U* + u U* E W1I ' (K2), and us = rh u*, we have 

(a) lim IPhu - UcIw1 2(0,) 0, 

(3.3.3) (b) lim IPhu - UIw1,2(Q) = 0, 

(C) IlPhUIIWI,2(U,), 1lPhUIIWI,2Q) < C Vh E(0,ho). 
Proof. Let u E u* + V. Then we have u = u* + z with Z E V, PhU =Us + Zh 
with Zh E Vh, and for any Xh E Vh we obtain 

IWhu- 1,2( V(Ph- =uJc) * V(u* -u ) dx 

Qh 
V (Ph U- zig). 'V(Zh -Xh) dx 

+j 'V(Ph-Uc) V(Xh - zc) dx. 
Qh 

This, the Cauchy inequality, the fact that Zh - Ah E Vh, and (3.3.1, c) yield the 
relation 

IPhU - UcIw1,2(Qh) < jU* - u*IW,2(h) + inf IXh - ZcIw1,2(Uh). (Oh) h (Oh) + 
A ~XE Vh 

By (3.1.20, a), the density of 75' in the space V, and the property (3.1.23, a) 
we get the assertion (3.3.3, a). The result (3.3.3, b) is obtained on the basis 
of (3.1.2), (3.1.4), and the absolute continuity of the Lebesgue integral (cf. 
(3.2.15)). 

Further, using the relation PhU = Uh + Zh, Zh E Vh, (3.3.1, c) with Vh 
Zh, (3.1.8), the boundedness of the family {us}, and (3.1.4), (3.1.5), we get 
(3.3.3, c). 0 

We now formulate our second fundamental convergence result. 

3.3.4. Theorem. Let the following assumptions be satisfied: 
(a) Problem (1.2.14, a-c) has exactly one solution u E K for some K > 0. 

No other solution of (1.2.14, a-c) satisfying the entropy condition (1.2.22) exists. 
(b) There exists a constant S2 > S1 such that 

(3.3.5) IIVPhulj2Oo(Q*) < S2, h e (0, ho). 

(c) We choose E[1, 4 ). 
(d) The family {A}hE(o, ho) is quasiuniform. 

Then the solutions {Uh} of the minimization problems (2.3.5) converge to u in 
the following sense: 

(3.3.6) lim 1Uh - uIIW P(A) = 0, 
h--+O 

(3.3.7) lim Huh - uC1lW1"P(nh) = 0, 

where uh was defined in (3.1.25) and pE[1, x) . 
Proof. (I) We shall show that all Uh, h E (0, ho), satisfy (2.2.16) with an 
appropriate choice of the functional h with property (2.2.14). Let us put 

(3.3.8) Xh (Vh) = ah(uh, Vh) - L(Vh) , Vh E Vh- 
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By (2.3.3) we have 

(3.3.9) Xh(Vh)=j Vh(Uh) * VVh dx, Vh E Vh, 
Qh 

and in order to prove (2.2.14), it suffices to show that 

(3.3.10) I1h(Uh)WIW,2(Qh) 0 if h -* 0. 

From the definition of the minimization problem (2.3.5) and assumption (3.3.5) 
we obtain the following inequality: 

0 _<gY (Uh) = 'IWh(Uh)IW1,2(2h) +Ah (Uh) =-h mm h(h) --"h 2 42h) 'P~~~~~~(hEuh+Vh 

(3.3.1~~~~~~~~~~~~~~~~1VP 11 )- lf {LQS2 

<J(Ph U) = 2I h(PhU)Iwl,2(Q2) + h (Ph U). 

(1) First, we shall deal with the term 9'h(Phu). By (2.3.4) we have 

(3.3.12) h(Phu) i [( VPU VWh, dx- Kj Wh, dx)]. 
Pi E&h 1 

For Pi E nh let us consider the expression 

(3.3.13) i:= - VPhU* VWhI dx- K jWh dx. 
Qh Qh 

If FD $ 0, then Whi E Vh, and by the definition of Ph we have 

(3.3.14) Ii = - j VU VWhI dx- K Whi dx. 

However, the same is valid if ID = 0, because 

Wbh := Whi - mea(h) h Whi dx E Vh 

and Vtbhi = VWh, . 
Now, in view of (3.3.14), we can write 

(3.3.15) il= i + i + i3, 

where 

ii = - Vu* VhidTihI dx- K jIhdThi, dx, 

i2= VU V(IdThi - Wh,) dx + K J (Ihdh -Wh,) dx, 

(3.3.16)I 
Ji3 = VU * V!h h dx+ K | h, dx 

(h (Xh 

- |VU, VWh, dx- K Whi dx. 
Th Th 

It is evident that Wh, E Eh+ for Pi E 6ih and, by (3.1.14), Id'Wh, E E+ . Hence, 
since u E (psdK, we have 

(3.3.17) Pi <0. 
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Further, from the quasiuniformity of the family {19h}hE(O, ho) (2.3.7), (2.3.8), 
(3.1.13), and the assumption that IIVUIILOO(2) <? si, it follows that 

(3.3.121 < Vj IV(IhdTh- Whi)I dx + K jIIhdwhi -Whi dx 
(3.3.18) f 

< chlWhi 1 W.IwI (n) < ch ? < ch2, h E (0, ho). 

Using (2.2.4), we deduce that 

(3.3.19) meas[(wOh U TO) n suppwhJ] < ch3, 

which together with (2.3.7) yields the estimate 

(3.3.20) Ii3 < ( + c) meas[(Wh Urh) n supp 2h.] <ch2, h E (0, ho). 

Of course, if Pi is not a vertex of a triangle T E 9h adjacent to a 9h, then 

(3.3.21) 12= 130= 

By (3.3.15)-(3.3.21) we have 

It < (Iil)+ + (1i2)+ + (13)+ 

(3.3.22) ch2 if Pi E nh n T and T e gh is a triangle adjacent to a9Kh, 

{ 0 otherwise. 

Set Nh* = card{Pi E ah; Pi E T, where T E h is a triangle adjacent to a9h} . 
As {1JhE(O, ho) is quasiuniform, there holds 

(3.3.23) N* < . 

Now, from (2.3.8), (3.3.12), (3.3.13), (3.3.14), (3.3.22), (3.3.23), and assump- 
tion (c), we obtain the estimate 

(3.3.24) 3vh(Phu) < CuNh*h 2eh4 < ch3-2E, - 0 if h -* 0. 

(2) In the following we shall consider the expression 

IWAh(PhU)IW1,2( 2h) as h -O 0. 

Using Lemma 3.1.7, (2.3.3, a-b), (1.2.14, a-c), (1.2.11), and (2.2.1), we get for 
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Xh = ch(Phu) the estimate 

Ik I|W1, 2(oh) <?C W =2(Q) Vh * V dx 

= ah(Phu, h) -Lh(4h)-a(u, h) + L(Wh) 
2 

Ih(P Uh) -h ? *(Ph U , I + bp(IVPhuI2)VPu V4 dX| 

(3.3.25) 3__ 4 

+ j bp(jVPhuI2)VPhu. V~h dx + Ia(Phu, h) - a(Phu, 'h)I 

5 6 

+ Ia(Phu, 4;)-a(u, Ih)I + ILh(Wh) -Lh(Wh) 
7 8 

+ ILh(Wh - L(4Q )I + IL(4h) - L(Wh)I. 

The terms in (3.3.25) denoted by 1-4 and 6-8 are bounded by chjlhlIIw1,2((h), 
as we can prove on the basis of the following table with the relations which yield 
the particular estimates: 

1. (2.2.12), (3.3.3, c) 
2.,3. (1.1.8, c), 1.2.3(A), Cauchy inequality, (3.1.4), (3.3.3, c) 
4. 1.2.13 a, (3.1.17), (3.3.3, c) 
6. (2.2.13) 
7. (3.1.3) 
8. 1.2.13 d, (3.1.17). 
We next estimate the fifth term. In view of 1.2.1 3c, this term is bounded by 

CIPhU- UIwI2(Q)I~Iw 12(0). 

Further, 

I~hIW1,2(Q) < k1h - 1h W1,2(Q) + 1hIW1,2(Q), 

I 12 (Q) ? WIhw1,2(Oh) + I|hIWI,2(Wh)* 

From this, (3.1.17) and (3.1.4) we get a bound of term 5 in the form 

CjPJU - U|W1,2(Q)IIlhI1 W,2(Oh). 

Summarizing the above results, we have 

IIghIw12(1,2 < c(h + jPhU U W- ,2(Q))||4h||W1,2(Qh) 

and hence, by virtue of (3.3.3, b), 

(3.3.26) J!Xh(Phu)IIw1,2(Qh) 0 if h -O 0. 

(3) The relations in (3.3.11), (3.3.24), and (3.3.26) imply that 

(3.3.27) 1IX*(Uh)Iw1,2( 2) + h(Uh) 0 if h -O0. 

This means that (3.3.10) is valid and thus, {Uh }hE(Oh), is a family of solutions 
of (2.2.16, a-c) with h satisfying (2.2.14). 
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(II) Now we come to the entropy condition. From (3.3.27), assumption 
(c), and Theorem 2.3.10 it follows that the functions Uh satisfy the entropy 
inequality (2.2.20) with the function 

y(h) := h(uh)h, 

which has property (2.2.2 1). Finally, we apply Theorem 3.2.5 (where we substi- 
tute sI := S2) and Corollary 3.2.20, and we immediately get (3.3.6), (3.3.7). 10 

3.3.28. Remark. By a more involved technique it is possible to extend Theo- 
rem 3.3.4 to the case of a regular family of triangulations, provided it satisfies 
the conditions Nh z 1/h2 and Nh* ; 1/h. 

In the case FD = 0 the main results remain valid if instead of the spaces 7 
and Vh defined in (1.2.7, b) and (2.1.6, b) we use 

Y = {v E C(T);hj v dS = 0} 

and 

Vh = {V E Xh; jVhdS=O} 
aOh 

respectively. 

3.3.29. Remark. Concerning assumption (3.3.5), we refer to the result of Ran- 
nacher and Scott [33], where they prove the stability of the Ritz projection in 
W1 P(Q) for all p E [2, oo]. According to the authors of [33], it is possible 
to extend this stability result to more general boundary conditions and to the 
case of a piecewise smooth boundary, provided the corner angles do not exceed 
some critical values. 

3.3.30. Remark. In the proof of Theorem 3.3.4 it has been shown that the 
limit case e = 1 is still allowed. This is an improvement of the results of 
Berger [3] achieved by our refined analysis. Nevertheless, since the function 
y(h) = VG(uh)he-l determines how well Uh satisfies the entropy condition, 
the choice e > 1 seems to be more suitable. For e > 1 the convergence 
y(h) -+ 0 is faster than for e = 1, when y(h) can tend to zero very slowly. 
On the other hand, owing to the variational crimes, it is not possible to choose 
e > 1.5 in domains with curved boundaries. 

The numerical experiments in calculations of transonic flow past NACA 0012 
profile are in agreement with our theoretical results. They show that the choice 
e = 1 gives a too flat velocity distribution along the profile. If we take e > 1 , the 
results are better and closer to the results obtained by finite difference methods 
(cf., e.g., [3]). However, the choice e > 1.5 leads in some cases to instabilities 
and slow convergence of the iterative process for obtaining an approximate 
solution. If we choose e E (1, 1.5), these problems disappeared. 
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