MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 204
OCTOBER 1993, PAGES 539-567

UNIFORM INTERIOR ERROR ESTIMATES
FOR THE REISSNER-MINDLIN PLATE MODEL

LUCIA GASTALDI

ABSTRACT. Interior error estimates are derived for the solution of the Reissner-
Mindlin plate model discretized by mixed-interpolated elements. Precisely, it
is shown that the error in an interior domain can be estimated by the sum of
two terms: the first has the best order of accuracy that is possible locally for the
finite element spaces used, the second is a weak norm of the error on a slightly
larger domain (this term measures the effects from outside of this domain).
The analysis is based on some abstract properties enjoyed by the finite element
spaces considered.

1. INTRODUCTION

The Reissner-Mindlin model describes the deformation of a clamped plate
of moderate thickness subject to a transverse loading. The plate occupies, in the
undeformed configuration, a region Qx (—¢, t), where Q is a regular, bounded
domain in #? and ¢ > 0 is the thickness of the plate. Given a vertical load
F |, the problem consists in determining the rotation 6 of the fibers normal to
Q and the transverse displacement w , as the minimizers in [H}(Q)]* x H{(Q)
of the following functional:

3
1) 300, w)=5a6,0)+ 516 - grad wif - £(F, w),
where (£3/2)a(8, ) is the bending energy, 4|6 —gradw||3 is the shear energy,
and ||-]lo and (-, ) represent respectively the norm and the inner product in
L%(Q). Here, A = 2(115—4’:,,) , with E the Young modulus, v the Poisson ratio, and
k the shear correction factor. Moreover, note that the load has been scaled so
that the solution tends to a nonzero limit as ¢ tends to zero. See for instance
[3] for more details.

We consider the finite element approximation of the Reissner-Mindlin plate
proposed recently in [6]. The discretized problem is described by: find 6, € ©,
and wy, € W),, which minimize the following functional:

t3 At
(1.2) Jin(On, wh) = 5 a0y, 64) + = |[RO, —gradwy||§ — £ (F , wy).
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Here, ©, and W) are finite element subspaces of [H}(Q)]* and H)(Q), re-
spectively, and R is a linear bounded operator which takes values in a third
finite element space I'j, and satisfies Rgradw, = gradw;, Yw, € W, . Notice
that in the shear energy we used ||R6), — gradw||3 instead of |6, — grad wy,||3
in order to avoid the numerical locking phenomenon.

This finite element discretization is characterized by the choice of the finite
element spaces ©,, W, I';, and by the choice of the linear operator R. In [6]
a whole family is constructed combining known results on the approximation
of Stokes problems with known results on the approximation of linear elliptic
problems. This idea points to some properties which are such that if an approx-
imation satisfies them, then the discrete solution converges to the continuous
solution uniformly in ¢#. Moreover, in [8] and [9], the following optimal error
estimates were proved:

16 = Onlly + llw — wally < ch*([1B]ls+1 + lwlls+1)

with C a suitable constant, independent of # and ¢.

Unfortunately, these estimates are not uniform with respect to ¢, unless
s < 3/2. In fact, Arnold and Falk have investigated in [1] and [2] the structure
of the solution of the Reissner-Mindlin plate equations in its dependence on
the plate thickness, showing the existence of a boundary layer for ¢ small and
a uniform bound for ||@|s;> but not for more regular spaces.

This leads us to think that it is not useful to introduce finite element spaces
with improved properties of approximation, because such boundary layers limit
their accuracy anyhow. But, numerical experiments have shown good accuracy
away from the boundary and, on the other hand, the boundary layer does not
limit the regularity of the solution at a positive distance from 9Q nor does it
affect the smoothness of its restriction to Q.

Therefore, our aim is to obtain interior estimates which are uniform with
respect to ¢, so that they can take advantage of the richness of the finite element
spaces.

Using the technique suggested by Nitsche and Schatz (see [14]) of localizing
the problem by means of some cutoff functions, we prove that the error in a
compact subset of Q can be estimated by the sum of two terms: the first has
the best order of accuracy that is possible locally for the subspaces used, the
second is a weak norm of the error on a slightly larger domain which measures
the effects from outside of the compact subset in consideration. The analysis
will be carried out using essentially the abstract properties of the finite element
spaces, combined with some local approximability assumptions concerning the
subspaces containing the functions with compact support in Q.

2. NOTATIONS

We list here the basic notations used in the paper.

Let 4 be a bounded open set in #2?. For s > 0 any real number, H%(A)
and Hj(A) will denote the usual L2-based Sobolev spaces (H°(4) = L?(4))
and || ||s, 4 will stand for their norms. When no confusion may arise we drop
the subscript 4.

For s < 0 any real number, H*(4) will denote the dual space of H;*(4)
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endowed with the norm

(2.1) lulls.s= sup 42U
vEH;*(4) lvll—s, 4
v#0

where (-, -) represents the duality pairing between H*(4) and H,*(4). We
set
H(rot; 4) = {8 € [L?(4)]?, rotd € L2(4)},

endowed with the graph norm
18171, 4 = 1815 + || ot 813

In addition, let 7 be the unit vector tangential to 94 and oriented counter-
clockwise; then

Hy(rot; A) = {6 € H(rot; A): 6 - 1 =0 on 0 A4}.

The dual space of Hy(rot; 4) is denoted by I' and has the following charac-
terization:

I = (Ho(rot; A)) = {x € [H™(4)]?; divy e H"(4)},

with the graph norm
I2lIE = 12012, + [l div ]|,

Let s € % ; then for a triple (1, 8, q) with 5 € [H*(4)]*, é € H(rot; A) N
[H~1(4)]?, and g € H*~!(4) we introduce the following notation

(2.2) I, 6, OIF a = ll? 4+ 27" PUSIE, 4+ lali-y 4

We use a circle above a function space to denote the subspace of elements with
support contained in 4 CC Q. A circumflex above a function space denotes the
subspace of elements with mean value zero. Vector-valued functions, operators,
and spaces will be written in boldface.

Let Go and G, with Gy CC G CC Q be arbitrary but fixed concentric
sphere; then we make the following definition.

Definition 2.1. Let %, be a linear operator defined on a Hilbert space V' with
values in a finite-dimensional subspace ¥, of V. We say that %, is local if
there exists an /4y < 1, depending in general on Gy and G, such that for all
h € (0, hy) and for every u eV

(2.3) suppu C Gy = suppFuC G,

where Gy and G stand for the closure of Gy and G, respectively. Moreover,
there exists a constant depending on Gy, G such that

(2.4) Zhully 6, < Cllully G-
The letter C denotes constants which are not necessarily the same in any two

occurrences. The notation C(ay, ..., a,) means that the constant C depends
on the n known parameters a, ..., a,.
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Finally, we recall the following standard differential operators for any scalar
function r and any vector-valued function u:

ﬂ 5
_ (2 — Y
gradr = (3_’r‘>, rotr_( _a_,),

ay ax
. 0w  Ow _ 0wy Jy
divu = Ix + 3y’ rotu = Ix 3y

3. FORMULATION OF THE CONTINUOUS AND DISCRETE PROBLEMS

Let us introduce the Euler equations for J,. The minimizers of (1.1) are
then solutions of the following variational problem:

Problem 3.1. Find (6, w) € [H}(Q)]*> x H{(Q) such that

(3.1) a(@,n)+ (v, gradv —n) = (F,v) VY(n,v)e[HyQ)] x Hy(Q),
(3.2) y = At (gradw — 0),
where the auxiliary variable is the shear strain.

For every 6 and n belonging to [H)(Q)]* the bilinear form a has the
following expression:

(3.3)
__E 2, 20) 00 (20, 06) oms
a0, n) = 12(1—1/2)/9[(6x +V8y) ox + Y ox + oy ) Oy
1-v (06, 00\ (O0m  9om ]
+—2 (6y + ax) <6y + Bx dxdy.
Then Korn’s inequality
(3.4) a(n,n) > K|nll; for every n € [H}(Q)]?

and the theory of [3] give the existence and uniqueness of the solution and the
following a priori estimate:

(3.3) 101 + llwll + 17lir + dllyllo < ClIF |-

In our analysis, we shall also make use of an equivalent formulation of (3.1)
and (3.2), suggested by Brezzi and Fortin [7]. By applying the Helmholtz theo-
rem, we decompose the shear strain vector in the following way:

(3.6) y = grad ¥ +rotp

with w € H{(Q) and p € H!(Q); then the following variational formulation
for Problem 3.1 can be derived:

Problem 3.2. Find v € H{(Q), (8, p) € [H)(Q)]* x H!(Q), and w € H}(Q)
such that

(3.7) (grady , gradp) = (F, 9) Vg € Hy(Q),
(3.8) a(@,n)— (p, roty) = (grady, n) vy € [Hy(Q)P,
(3.9) (0, rotq) + A~ 't*(rotp, rotq) =0 Vg € H'(Q),

(3.10) (gradw, gradv) = (0, gradv) + A~ '3(F,v) Yv € H)(Q).
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Notice that this system of equations decouples in a natural way into a Poisson
problem, a perturbation of a Stokes-like problem, and another Poisson problem.
Hence, the analysis can be carried out sequentially. With the help of this for-
mulation, the following a priori estimate can be derived uniformly with respect
to t (see for example [7]):

(3.11) 16112 + llwllz + 1wll2 + 2 Il + 2~ 2¢lpll2 < CIIF o

When the regularity of F increases, the solutions of the two Poisson equations
become smoother, while the H*-norm of the solution of the Stokes-like problem
is not uniformly bounded with respect to ¢ for any s. In [1], Arnold and Falk
analyzed the structure of the boundary layer and proved the following best a
priori estimate for F € H!(Q):

(3.12) 101152 + lpll32 + A~ 2¢llp|ls/2 < C.

On the other hand, at a positive distance from 9Q the boundary layer does
not limit the regularity of @ and p. Thus, for Qy cC Q; cc Q the following
interior bound holds:

(3.13)

101542, 0 + wlls+2,00 + 1¥ls+2,00 + IPllss1,00 + A 22Plls+2,20 < CIIF s, -

We describe now the finite element approximation of (3.1), (3.2) that we
shall consider (see [6]).

We assume henceforth that the domain Q is decomposed by a regular and
quasi-uniform mesh .7, . As usual, we denote by /~ the diameter of the largest
element.

Let ©;, W, and T, be finite element subspaces of [H}(Q)]?, H)(Q), and
Hy(rot; Q), respectively, and let R be a linear operator with values in I,
related by the following conditions:

(3.14) RO, C T},

(3.15) gradW, cTy,

(3.16) (R—TI)(grad W},) = {0}.

Assume furthermore that there exists another finite element space @, such that
(3.17) rotI'y, C Oy,

(3.18) the pair (8, Q) is good for the Stokes problem,

(3.19) rotRy = Pyrotn, for every n € [H)(Q)J?

with Py: L?(Q) — Q) denoting the L2-projection,
(3.20) if 6, € I'y, is such that rotd, =0, then d; € grad .

Some comments are in order about these conditions. Condition (3.18) means,
more precisely, that there exists a linear operator I1: [H(l)(Q)]2 — O, such that
for every 7 € [H)(Q)]?

(3.21) (rot(n —Iln), q) =0 Vg€ Qy,
(3.22) x|, < Cllnl)-
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The condition (3.19) is nothing but the commuting diagram property for elliptic
problems. As a consequence of it, for every & € [H}(Q)]* one has

(3.23) RS ||z0t < C/|0]lrot-

Notice that the same space Q, is used to approximate both the pressure in the
Stokes problem and the scalar field in the elliptic problem. Hence, it is prefer-
able to consider elements for the Stokes problem with discontinuous pressure.
Examples of spaces satisfying (3.14)—(3.20) are reported at the end of this sec-
tion (we refer also to [6]).

The Euler equations of (1.2) can be written as follows:

Problem 3.3. Find (0, wy) € ©, x W}, such that
(3.24) a6, m)+ (v4, gradv —Ry) = (F,v) V(n,v)€ Oy x W,
(3.25) vn = At"%(grad w, — RO,,).
In view of the properties listed above for the finite element spaces, we can
introduce a decomposition principle similar to (3.6):
(3.26) yn =grad v, + oy,
with y, € W), and (ay,, pp) € Ty, x 0, such that
(3.27) (ap, 6) = (py, 10t6) V6 €.

We observe that (3.27) means that «y, = “rot;,”p, for an appropriate discretiza-
tion of rot.

Then Problem 3.3 is equivalent to the following set of equations (see for
example [8]):

Problem 3.4. Find y, e W), 6, €0,, p, € Q;, , ap €'y, and wy € W), such
that

(3.28) (grad y, , gradg) = (F, ¢) Vo e W),
(3.29) a(0y, n) — (p, rotn) = (grad y;,, Ry) Vi € 6,
(3.30) (rot8y, q) + A"t} (rotey,, q) =0 Vg€ Qy,
(3.31) (ap,0)—(py,10t6) =0 Vé €Ty,

(3.32) (gradwy, gradv) = (RO, gradv) + A~ '3(F ,v) Yv e W,.

As in the continuous case, this set of equations can be solved sequentially.
First one gets ¥, as a conforming approximation of the solution of an elliptic
problem. Then (6,, py, o) can be calculated by (3.29)-(3.31). Notice that
(3.29), (3.30) is, for ¢t = 0, a Stokes-like problem discretized using the pair
(©4, Q) . On the other hand, for ¢ # 0, (3.30), (3.31) is a mixed discretization,
by means of the pair (I';,, @),), of a Neumann problem, with datum rot 6, . At
the end, (3.32) is again the discretization of an elliptic problem by conforming
elements.

In order to get the interior estimates, we shall analyze this system; hence it
is better to write here the continuous problem corresponding to Problem 3.4.
For this we introduce in Problem 3.2 the mixed formulation of (3.9), setting
a =rotp. Then we have
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Problem 3.5. Find v € H)(Q), 0 € [H}(Q)]?, p € L(Q), a € Hy(rot; Q),
and w € H{(Q) such that

(3.33) (grad y, gradp) = (F, ¢) Vo € Hy(Q),
(3.34) a(0,n)—(p, rotn) = (grady, n) Vi € [Hy(Q)P,
(3.35) (rot@, q) + A~ 3 (rota, ) =0 Vg € L3(Q),
(3.36) (o, 0)—(p,r0td) =0 Vb € Hy(rot; Q),

(3.37) (gradw, gradv) = (0, gradv) + A~'2(F, v) Vo € H)(Q).

3.1. Examples of finite element spaces. We present now some families of
Reissner-Mindlin elements which satisfy the properties (3.14)-(3.20) (see [6]
and [8]).

For the sake of simplicity we assume that Q is a polygon. This does not
imply a loss of generality.

We denote by % the set of the polynomials of degree < k.

Triangular family. Let Q be decomposed into triangles 7 and for any integer
k > 2 define

(3.38) Wi = {v e Hy(Q)| vlr € Z(T), T € F},
(3.39) 8y, = {n € (HYQ)PInlr € [Sk(T)*, T € 94}
with

S (T)—{'%‘(T) for k > 4,
KET= {ve L (T)| vle € Z(e) on each edge e of T} fork =2, 3;

then
(3.40) T, = {6 € Hy(rot; Q)| 8|7 € [Z_1(T)P & (x, »)*F_(T), T €T}

I';, is a kind of “rotated Raviart-Thomas” space, and it satisfies the commuting
diagram property (3.19) for

(3.41) On={geLX(Q) qlr € %(T), T €T}

with the reduction operator R defined locally by the following degrees of free-
dom: for # smoothin T, Ry satisfies

Ry —n)-tpr_1(s)ds =0 Veedge of T, Vpy_y € Z_i(e),
(342) e
/T (R —M)ppsdxdy =0 Vpy_s € [Fa(T)I.

We recall that these choices for the pair (8, Q) correspond to well-known
stable elements for the Stokes problem. We refer to [8] and the references
quoted therein for the construction of the operator Il satisfying (3.21)-(3.22).

Other triangular families can be obtained for k£ = 2, 3, substituting in I,
the Raviart-Thomas space with the Brezzi-Douglas-Fortin-Marini one and con-
sequently % by S; in W,.
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Rectangular family. Let Q be decomposed into rectangles R, and for k =2, 3
define

(3.43) Wy ={ve H)(Q)| v|lr€ O NFy1, RE T},
(3.44) 6, = {n € [HY(Q)P*| n|r € [Qk]*, R€ T},
(3.45) T, = {6 € Hy(rot; Q)| 6|r € BDFM,, Re T}

I';, is now a kind of “rotated Brezzi-Douglas-Fortin-Marini” space defined by
BDFM; = {816 € Z\{x"}, 6 € A\ '}

It is known that I, satisfies the commuting diagram property (3.19) for

(3.46) On ={q € LX(Q)| g|r € Z_1(R), Re T}

with the reduction operator R defined locally by the following degrees of free-
dom: for # smooth in R, Ry satisfies

/(er —n)-tpk-1(s)ds =0 Ve edge of R, Ypi_; € Z_i(e),
(3.47) e
[ ®n-mpadxdy=0 vor; € (%R

We refer to [6] for the proof that these spaces satisfy the properties listed
above; we only mention that these choices for (0, Q), for k = 2,3, are
stable for the Stokes problem (see for example [8]).

We end this subsection by stating the approximation properties of the finite
element spaces presented:

|ln — Mn|l; < Ch*~||n|

(3.48)
vp e [HS(QNH)Q)?, [=0,1, [<s<k+1,
(3.49) |6 —Ré|jo + A rot(6 — RE)lo < Ch*||6l;
Vé € [H(Q)]> NHy(rot; Q), 1<s<k,
(3.50) lv — Povllo < CA||v|ls Vv e H'(Q), 0<s<k,

v — Proll; < Ch |l
Vo e HS(Q)NHYQ), 1=0,1, 0<s<k+1.

Here, P; is an interpolation operator constructed locally via a local averaging
process such as that in [8] or [16]. Such an operator is often employed to
construct IT locally (see Proposition 2.9 of [8] and the examples quoted in
Chapter VI). The operator P; in [16] turns out to be more convenient in the
present setting because it preserves boundary conditions and is a projection
operator, i.e., Piv =v forall v € %4.

From the previous approximation properties the following error estimates
can be derived (see [8] and [9]):

10 — Onlly + lw — wllt + [|lv — walli + lp — Pallo + A~ 2tlla — apllo
< ChS(|10ls+1 + llwlls+1 + W lls+1 + I2lls + A~ 22|plls+1)
with s < min(k, 3/2).

(3.51)

(3.52)



ERROR ESTIMATES FOR THE REISSNER-MINDLIN PLATE MODEL 547

4. LOCAL ABSTRACT ASSUMPTIONS AND PRELIMINARIES

Let Q; be a regular bounded subset of Q. We denote by ©,(Q;) the finite-
dimensional subspace of [H!(Q;)]? built up by the same piecewise polynomial
functions as ©j, (clearly without boundary constraints on 9Q;). For Q, C Q;
we define

©;(Q) = {n € 6;,(Q)|suppn C Qo}.

Analogous meaning will have the notations W, (Q,), ﬁ/,, (Qo), Th(2)), Io“,,(Qo) ,

and Qy(Q1), Qn( ).

We make the following local approximability assumptions concerning
0,(Q21), Wh(Qy), T'(RQ1), and Q4(;). Let Gy and G, with Gy cC G cC
Q;, be arbitrary but fixed concentric spheres. We shall denote by G;, a union
of elements of .7, which contains Gy and is contained in G.

There exists an Ay < 1, depending in general on Gy and G, such that for
all 4 € (0, hy) there holds:

Al. The linear operators II, R, Py, and P, are local (see Definition 2.1)
and

llm — Inl; ¢ < Chs_lll'l”s,Go

4.1) o
Vp € [H(Go)]?, [=0,1, I<s<k+1,
|6 —Rd|lo,G + A rot(6 — Ré)|lo,¢ < Ch*||6]ls,q,
Vé € [H(Gy)?, 1<s<Kk,
(4.3) lv = Pywllo.¢ < CHlvlls.q, Yo € HE(Gp), 0<s<k,
lv =Pl ¢ < Chvlls. 6,
(4.4)

Yo e H(Gy), 1=0,1, 0<s<k+1.
Remark 4.1. In particular, if w € CP(Gp) and n € [H*(G)]?, then wn €

[Ic-’IS(GO)]2 , and we can apply Al relative to II, so that I[I(wn) € ©,(G) and
from (4.1)

lon — T (wm)ll,¢ < Ch M nlls,6,,  1=0,1, ISs<k+1.

Analogous remarks hold for the operators R, Py, and P, .
A2. Let w € C3°(Gy) ; then there exists Gj, such that Gy cC G, CC G and

(4.5)  llomy, — M(ony)lli,¢ < Chllnglli,c, Vi € On(R1),

(4.6) ||wdy —R(wdp)llo,¢ < Chllbnllo,c, Vor € Th(Q)),

(4.7)  |lwgn — Po(wgp)llo,c < Chllgrllo,c, Yan € Qn(Q),

(4.8) llwvy — Pi(wvp)li, ¢ < Ch* ! |oally,q, Yo € Wy(Qy), =0, L.
A3. Let G, be as in A2; then for all 4, € T',(Q,) there holds

(4.9) || rot(wd}) — rot R(wdy)llo, ¢ < Chlldpllo, 6, + Chllrotdpllo, -
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The Mindlin-Reissner elements introduced in the previous section enjoy the
local approximability assumptions A1-A3:

It is easy to see that A1 holds, since the operators I, R, Py, and P, are
defined locally, possibly through a local averaging process (see [16]). A2 is more
delicate, and we refer to [11] for the technical details of its proof in the case
of the triangular family with k = 2. For the proof of A2 with other choices of
spaces see also [4], [10], and [12], [15] in an analogous context.

We now verify A3 for the triangular family with k = 2 ; the proof is similar
for k > 2. The assumption (3.19) in conjunction with Remark 4.1 implies the
following bound:

1/2
(4.10) || rot(wd) — rot R(wédp)|lo, ¢ < Ch? (Z I rot(wtsh)II%,T) ;
T

where the sum is taken over those triangles of .7, whose union Gj, contains
the support of w. It remains to evaluate the L2-norm of the second derivatives
of rot(wdy,). Recalling that rot(wd;) = rotw - 8, + wrotd, , we get from the
Leibniz rule
2
I rot(wdp)3, 7 < C (1D’ (rot w) D>~ 8,3 1 + ||D’ (@) D>~ (rot ;)| 7).
j=0
Then, since w € C§°(Gyp) and rotdyr € Py, we obtain by the inverse inequality

(4.11) Irot(wn)l13, 7 < Ch=>(I84lIF, 7 + l| Tt 84113, 7) + CIID?84l13 -

To bound the last term, we recall that the elements of I', have on each triangle
the following representation:

op=a;+bix+cy+yldx+ey),
o=@+ byx+cy—x(dx +ey),

so that the derivatives 828,/0x?, 8205,/0y?, 20%8,,/0x 0y + 0202, /0x2,
0%8,,/0y* + 2026,,/0x 0y all vanish. This implies that we can write each
second derivative of the components of 6, in terms of a first derivative of
rot d;, , so that we have the following estimate:

ID?84llo, 7 < C||D 10t yllo, 7 < Ch™"|| r0t byll0, T
which inserted in (4.11) and back in (4.10) gives (4.9).

Remark 4.2. The assumption A3 does not hold for rectangular families. In fact,
suppose that the sphere Gy contains strictly the rectangle R = (—h, h)x (0, h),
divided into two elements. Next take

1 . .
O = 7z(v(y —h)signx, (2y — h)(xsignx — h))

in R and 8, = (0, 0) otherwise. Moreover, let w € C¥(Gy) be such that
w(x,y)=x for (x,y) € R and calculate rotR(wd;). Then it is easy to see
that || rot(wd;) — rot R(wédy)|lo,r = O(h), h||6xllo,r = O(h?), and rotéd, =0.

We now state some technical lemmas, whose easy proofs are based on differ-
entiation rules and integration by parts (see [11] for the details).
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Lemma 4.3. Let w € CP(G) and v € [HY(Q)]*, w € [IEP“Z(G)]2 for some
s> —1; then

(4.12) a(wv, w) =a(v, ow) — I(wv, w)
and
(4.13) (v, w) < C(@, G)|IV]-s-1,6lIWls+2,6-

Lemmad4d. Let w € CP(G), r e ﬁ”‘(G) , and v € [H\(Q)]? for some s > —1;
then
(rot(wv), r) = (wr, rotv) — ((rotw)r, v)
with
((rotw)r, v) < C(w, G)|IVll-s-1,6ll7lls+1,6-

Lemma 4.5. Let w € CP(G); then for every q € Qy, 1 € ©y, 6 €Ty, the
Jfollowing equalities hold

(g, rotIl(wn)) = (¢, —rotw - n) + (wq — Po(wq) , rotn)
+ (Po(wq), rotn),
(4.15) (g, rotR(wd)) = (q, ~rotw - 8) + (Po(wq), rotd).

(4.14)

5. AN AUXILIARY PROBLEM

Consider the following auxiliary problem: find (z, r) with f,r = 0 that
satisfy

(5.1) Az—rotr=f inQ,

(5.2) —rotz+A"'PAr =g+ A" 'rot¢ inQ,
ar

(5.3) z=0, b—n——O on 8Q),

where A is the second-order operator associated with the bilinear form a, that
is,
(Az, n) = a(z, n) Vz,n € [HyQ)P.

If ¢ # 0, we can introduce the additional variable y which satisfies
(5.4) x=rotr+¢ in Q, x:7=0 ondQ.
Substituting (5.4) in (5.2), we obtain the system

(5.5) Az —rotr=f inQ,
(5.6) —rotz— A" 'Proty =g inQ,
(5.7 x—rotr=¢ inQ,
ar
(5.8) z=0, _67_0’ x-7=0 ondQ.

In the following lemmas we state some a priori estimates for the solutions of
(5.1)=(5.3) and (5.5)-(5.8).
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Lemma 5.1. Let f e [H"1(Q)]* and g € L*(Q), with [,g =0, be given and
suppose that ¢ = 0. Then the solution of (5.1)-(5.3) satisfies the following a
priori estimate uniformly with respect to t:

(5.9) lzli,a+lIrlo.a + A~ 2|l 0 + A7 2|rll2,0 < CUIfll-1,0 + Igllo,0)-
If fe [LXQ)]? and g € HY(Q), then
(5.10) Izll2, + lIrlli, o + A7 2tlIrll2,@ < C(Iflo,@ + gl ,0)-

Lemma 5.2. Let f e [HX(Q)]*, g € H3(Q), with [,g =0, and ¢ = 0; then
there exists a positive constant C depending on f, g, Q such that

(5.11) Izlls/2,@ + Ill3/2,0 + A~ "2t||r]ls/2.0 < C.

Lemma 53. If f € [A(Q))?, g € B*/(Q), with [,g =0, and ¢ = 0, then
for every open subset Q' such that Q' cc Q, there holds
IZllss2, 00 + I7llse1, 0 + A7 2t llsaz, 0 + A7 PP llsas,

< C(flls, o + I1glls+1,0)-

The results of Lemmas 5.1-5.3 can be deduced from [7], [1] and by means
of standard techniques for interior a priori estimates (see, for example [13]).

(5.12)

Lemma 54. Let (z, x,r) be the solution of (5.5)-(5.8) with f = g = 0 and
¢ € [H(Q)]?; then

(5.13) |z, @+ lIrlls,0 + A7t rll2, 0 + A7 V24|x]l1 .0 < CA7V2t)| B -
If ¢ € [Hz]z, then

(5.14)  izllsj2, + I7ll32,0 + A7 2trlls )2, + A7 2t|xll32,0 < CATV22

Proof. The inequality (5.13) is a consequence of (5.10) in this case. In fact
since A is an elliptic operator with constant coefficients, we get from (5.5)

lzll2,@ < CllAz|lo,0 < Clirlli,a < CA~'2| @1 0.
Then it is easily seen that

lzlli,e < Cliél, -
The proof of (5.14) is similar. O

Lemma5.5. If f=¢g=0 and ¢ € [I?IS (Q)1?, then for every subset Q' such that
Q' cc Q, there holds

(5.15) |lzlls+1, 0 +I7lls, @ + A2t rlls41, @ + AT 2| F|ls42, 00 < CAT 3| D541, 0
and

(5.16) I2lls+2, 0 + A7 28l 2 541,00 < CA™' 21| @541, 0
Proof. The proof is analogous to the previous one. 0O
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6. THE MAIN RESULTS

In this section we describe the main steps to achieve the interior error esti-
mates, for both the physical variables, the rotation of fibers @, and the trans-
verse displacement w. Let Qp and Q; be two open bounded subsets of
such that Qo cc Q; cc Q. Following [14], we are going to show that the
approximation error in Qg can be bounded by two terms: the first has the best
order of accuracy possible in €, the second is the negative norm || ||_, o, of
the error (u being an arbitrary nonnegative integer).

We proceed by analyzing the difference between the solutions of Problems
3.4 and 3.5. We thus split our analysis into three parts: first we consider the
approximation of the Poisson equation (3.33) by (3.28), then we compare the
discrete solution of the Stokes-like system (3.29)-(3.31) with the continuous
solution of (3.34)-(3.36), and we evaluate the error for the Poisson equation
(3.37) discretized by (3.32).

6.1. Interior error estimates for the first Poisson equation. We bound the norm
lw—wnll1,q,- For the Poisson problem, estimates of such quantities are already
available. Namely, from [14, Theorem 5.1], we have, if ¥ € H(Q,),

(6.1) I = ¥alli, Qo < CENWls+1,0, + 1Y — Wall-p,9))
with 0 <s <k and u; a nonnegative integer.

6.2. Interior error estimates for the Stokes-like problem. We now focus on
the Stokes-like system. The first step is to prove a local version of the interior
estimates, considering two concentric spheres Gy and G, instead of Q; and
Q;. Next we apply such local estimates to a finite number of spheres which
cover Q. Therefore, we start by proving the following local error bound.

Theorem 6.1. Assume that the assumptions A1-A3 are verified. Let Gy CC
G cC Q be concentric spheres; then we have
(6.2)

N6 -6y, c—ay, p—puli,c
< C(Ilw— il + oy — Puow)l.¢

+ (w6 — I(w0) , we — R(wex) , wp — Po(wp))ll1,c
(grad (wy), n — Rn))
lnlli,c ’

+ 16 = 6r, & —an, p = Ph)ll-,c + sup
1€6,(G)

where 1, is a nonnegative integer and w is a cutoff function defined as follows:
(6.3) w€eCP(G') and w=1onGy,

with G} and G' such that Gy CC Gy cC G' cC G CcC Q.
Proof. We set

(6.4) 0=wb, p=wp, &=owa.

Then 6 € [H'(G)]?, 5 € LA(G'), and & € H(rot; G'), and owing to (3.34)-
(3.36) and Lemmas 4.3 and 4.4, they satisfy
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a(6, n) — (5, rotn) = (grad (0y), 1) — [(08 , 1)

(6.5) .
— ((rotw)p + (grad w)y , ) vV € [H'(G)P,
(6.6)
(rot@, q) + A~'(rot &, q) = —(rotw - (8 + A~'2a), q) Vg € LX(G),
(6.7) (&, 8)— (p, rotd) = —((rotw)p, 6) Vé € ﬁ(rot; G).

Let 8, € ©4(G), @ € Tw(G), Ty € Q4(G) with [,5; = J, 5, be the unique
solution of

a(0 — 04, n) — (5 —py, roty)

(6.8) o
= (grad (wy), n) — (grad P (wy), Ry) Vi € 6,(G),

(6.9)  (rot(8 —8y), q) + A~ 2(rot(& — @), g) =0 Vg € Q4(G),

(6.10) (&—a5,8) — (5 —Dr, 10t6) =0 V6 € Ty(G).

We recall that P(wy) € ch/h(G) in view of Remark 4.1. On the other hand,
we have from Problems 3.4 and 3.5 the following error equations:

a(@—0,,n)— (p—ps, rotn)

(6.11) =(grady, n) — (grady,, Ry) Vi € 6,(Q),
(6.12) (rot(8 — 8y), q) + A~ 2 (rot(a — ), ) =0 Vg € Qu(Q),
(6.13) (a—ay,8)—(p—pp,10td) =0 V6 € TH(Q).

We compare these two sets of error equations for all 7 € 8,(Gy), q € Qn(Gp),

and 6 € f‘h(G(,) , taking into account that, from (6.3) and (6.4), 6 =0, p=p,
and a = & in G;. Hence, subtracting (6.11)—(6.13) from (6.8)-(6.10), we
arrive at

a(6, — 6y, n) — (py — Dp, TOt )

(6.14) .
= (grad (v, — Pi(wy)), Ry) Vi € 6,(Gp),

(6.15)  (rot(8, — B4), @) + A~ 2 (rot(ay — @), 4) =0 Vg € Q4(Gh),

(6.16) (ap — @r, 8) — (P — Dr» T018) = 0 V& € T(Gh).
We split the error functions on Gy as follows:

(6.17) 0-0,=60-06,+6,-0,,

(6.18) P —DPn=D—Dh+Dr—Dhs

(6.19) a—a,=a—ap+a; — oy

The estimate (6.2) is now a straightforward consequence of the two propositions
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below. In fact the triangle inequality, (6.3) and Proposition 6.4 give
16 -6, a—an,p—p)l,c,
<6 —-6n,a-an,p—pnl,c
+ 16 — 64, @ — an, Br — Pl 6,
<8 - 64, &—az, 5 —Dn)lh.c
+ Clloy — Pil(wy)ll, 6, + Clly — ¥all1, 6
+CU(6 -6y, & —ay, b~ Pr)l-m.c
+ClO - 04, a—an, p — Pu)l-p,, 6,
<(A+ONO -6y, 8—an, p—Dn)l,c
+CH(0 —64, a—cn, p—Dp)ll-4,.6,
+ Clloy — Pi(wv)li,6,+ Clly — ¥l 6
Then we obtain (6.2) by applying Proposition 6.3. O

553

Next, the approximation properties of the finite element spaces considered

imply
Corollary 6.2. Under the same hypotheses as in Theorem 6.1, we have

N6 —6n, a—can, p—pu)li,c
(6.20) < C(lw = il 6 + W llesr,6) + CREIO , &, P)lk+1, 6
+ CI"(O - oh yX—Qp, D _ph)lll—/lz,G)

where u, is a nonnegative integer.
Proof. Applying Remark 4.1, we easily see that

(w8 - (w6), wa — R(we), wp — Po(wp))lh, ¢ < CHI(8, &, P)lk+1, 6

and
oy — Pi(wy)|1,¢ < CH*||Wllks1.6-

On the other hand, by (3.21), we have that for every # € éh(G) there holds
(rot(n —Rn), q) =0 Vg € Q.

Integrating by parts, we get
(n—Ry,rotg) =0 Vg e Q.

This means that # —R# is orthogonal to the set of piecewise polynomials of de-

gree less than or equal to k—2. Let grad (wy)* be the interpolant of grad (w
in the set of piecewise polynomials of degree k — 2 ; then
(6.21)

- - * n_R
sup (grad(CITVIll),rl Ry) _ qup (BRad(@y) ﬁ;a"d(ww) , 1 —Ry)
1€6,(6) 1.6 1€64(6) e

< Ch¥y |k 6-

Inserting these estimates into the right-hand side of (6.2), we get (6.20). O

Y)
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Proposition 6.3. Let 0,5, & be given by (6.4) and let 0,, p,, aj be the
solution of (6.8)-(6.10). Let Al hold; then

16 —64,&a—ap, 5 —pi)li.c
< c(m<é _I6, &—R&, 5 - Pod)ll

(grad (wy), n — er))
lnlli, 6 ‘

(6.22)

+ lov - Pi(@y)l} g+ sup
n€6,(G)
Proof. The proof of this proposition is quite standard and relies on the assump-
tion Al and on the properties (3.19), (3.21), (3.22) of the finite element spaces
(see [11] for technical details). O

Proposition 6.4. Under the same assumptions as in Theorem 6.1, the following
estimate holds

(61 — 6n, &k — an, Pr — Pw)ll1 6o
(6.23) < Cligrad (P (wy) — wi)llo, 6,
+Cl(61 — 04, @i — an, Br — Pi)l—ps. G, »
where u, is a nonnegative integer.
The proof of this proposition will be given in §7.
We are now in a position to prove the interior estimates:
Theorem 6.5. Let A1-A3 hold, and let Qo CC Q, CC Q; then for h sufficiently
small we have
Ill(e - eh yx— Oy, D _ph)llll,ﬂo
(6.24) < CH(1Wllks1, 0, + 16, o, D)llk+1,0,)
+ C(lY — ¥nll—p .0, + 10 = 04, =y, p = Pp)ll-p,,0,)
where py and u, are two nonnegative integers.
Proof. Let Q) be such that Qy cc Q) cCc Q; cC Q. We cover Q, with
a finite number of sphe_res Go(x;), i=1,...,n, centered at x; € Qy, with
diam(Go(x;)) = 1dist(Qo, 8Q)). Then, let G(x;), i = 1,...,n, be corre-
sponding concentric spheres with diam(G(x;)) = dist(Qg, 0Q;). We apply
Corollary 6.2 to each pair of centered spheres and we have, for i=1, ..., n,
N0 — 64, a—an, p—pu)li,cox)
< Ci(lv — wallt, 6 + BV ks 1, 6x)
+ C(H IO, a, P)llk+1,6x) + CIO — 04, & — 0y, D — PA)ll—py, Gx))
< Cilly = walli, o + H*1Wllis1, 0)
+C(H(8, @, P)lks1, 0, + CI(O — 64, o — oy, p = D)l -y, -
Therefore, (6.1), written with Qf instead of Qo gives (6.24). O

Remark 6.6. As we have pointed out in Remark 4.2, rectangular families of
finite element spaces defined by (3.43)—(3.46) do not satisfy Assumption A3.
However, we can get the same results as in Theorems 6.1 and 6.5 also in this
case, by assuming that ¢ < Ch in the interior of the domain Q (see Remark
7.10 below), which is reasonable in a good number of applications.
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6.3. Interior error estimates for the last Poisson equation. It remains to analyze
the interior error estimates for the last Poisson equation (3.37) discretized by
(3.32). In this case the error equation can be written as follows:

(6.25) (grad (w — wy,), gradv) = (0 — RO, gradv) Yv e W

Let Qy cC Q) cc Qf cc Q; cc Q; we apply the results of Theorem 5.2
of [14] and get

(6.26) |lw —whlli, @ < CH*Wllks1, 0 + W — whll—ys, 05 + 10 = RO4ll0, 01),

where 43 is a nonnegative integer.
To bound the last term in (6.26), we use the triangle inequality and find easily
that

10 —ROxllo,0; < 16 —RO|lo,q; + [IR(6 — 6;)llo, -
From Al it then follows that
16 —ROllo, 01 < Ch*|16]lx,

and
IR(6 — 64)llo,0; < CI|6 — Oll1,ap-
Using (6.24) with Qf instead of €, we obtain
(6.27)
llw — walli, 00 < CAE(IWllks1,0, + lwllks1,0, + 100, @, D)+, )
+C(l¥ = ¥nll-py 0, + (0 — 64, @ —ap, 0 — Dp)ll-;, 0,
+ |lw — wpll—py ,0,)-

7. LOCAL INTERIOR STABILITY AND DUALITY ESTIMATES

In this section we shall discuss the properties of @), — 0,, 04 —ay, pp —
Dh which satisfy (6.14)-(6.16). Abusing notation, we replace in (6.14)—(6.16)
0, — 0y, o, — ay, pp — Di» and y, — Pi(wy) by 0, € B,(Q1), ap € Th(Q1),
Dr € Qn(Qy), and y,, € W,(Q)), so that we have the following system:

(7.1) a(64, 1) — (py, rotn) = (grady,, Ry) vy € O4(Q1),
(7.2) (rot By, g) + A~ A(rotay, g) =0 Vg € Oy(Q),
(1.3) (ap, 8) — (p, T0t8) =0 ¥ € T().

Then we analyze this set of equations in order to obtain interior stability
estimates for 0, a;, and p, interms of a negative norm of the same functions
on a slightly bigger domain. To do this, we shall need some interior duality
estimates for these functions.

Throughout this section we assume that A1-A3 hold.

Let Go CC G| CC G be concentric spheres all contained in Q; and consider
a cutoff function

(7.4) w € CP(Gy), with w =1 on Gp.
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Then we have
184llT, G, + 27" llenll§, 6, = |0OkI1E, 6, + A~ Pllwel} g,
= |04l g + 2~ Pllwenl§, 6:-
Owing to (7.4) and Remark 4.1, I1(w8;) € éh(G’l) and R(way) € Io“,,(G’l) if A
is sufficiently small. Then the triangle inequality and (4.5), (4.6) give
1641 6, + 27 Pllenl3, 6, < R4, + A~ Pllewl}, 61)
+ (@61}, g, + A~ IR(@an) ;-
We estimate the last two terms of (7.5) in the next lemmas.
Lemma 7.1. For h sufficiently small, there exists a constant independent of h
and t such that
(@612 g, + 4~ Pl|R(@ap)3, 6
< CR (1841 6, + 27 llewll3, g, + 12413, 67)
(7.6) + C(||9h||(2),G; + ||Ph||2-1,0; + ||grad Wh”%,G;)
+A712(wpy,, —Totw - ap) + A~ (py,, —rotw - R(way))
+e1llopill§, 6,
with &, > 0 arbitrary.
Proof. We apply assumption A2 and Lemma 4.3 with s = —1 and get
a(Tll(w8)) , T(w8})) + A~ 2||R(was) |5 6,
= a(ll(w6;) — w8, [1(w8;)) + A~ *(R(way) — way , R(way))
+ a(w8y,, I(w8;)) + A~ (way, , R(way,))
< Ch(||0xll1, ;I (B)Il1, 6 + A~ lewnllo, 61 [IR(wewn)lo, 61)
+ Cll6kllo, ¢ T8Iy, 61 + a(8 , 0IN(wB})) + A~ (), , WR(way)).

We proceed by analyzing the last two terms. We use again A2, the equations
(7.1), and (7.3) and obtain

a(0;,, oll(w8})) + A~ '3 (ay, , WR(way))
< Ch(||0xll1, ;T (BK)l1, 61 + 2~ Ellewallo, 6: IR(wewn)llo, 61)
+ (b, rotI(wIl(w6}))) + (grad v, , RII(wI1(w8})))
+27'2(py,, rot R(wR(way,)))
< Ch(||6ll1, 6 ITH(@B)Il1, 6 + 2" [lewnllo, ot IR(wexn)lo, 61)
+ Cligrad yiullo, ¢! T @84) |11, + T + A~ 2 T
We apply twice (4.14) to T} and we get
Ty = (pn , rotI(wIl(w8;)))
= (pp, —rotw - I(w8;)) + (wpy, — Po(wpy) , rotI(w6}))
+ (Po(@py) , rotI1(w8;))
= (pn, —rotw - I(w6})) + (wpp — Po(wpy) , rotI1(w6}))
+ (Po(wpy), —rotw - 0;) + (wPo(wpp) — Po(wPo(wpy)) , Tot O))
+ (Po(wPo(wpy)) , Tot Oy).

(1.5)

(1.7)

(7.8)
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To evaluate T, , we use first (4.15) and then (3.19); hence we obtain

T = (pn» rot R(wR(way)))

(7:9) = (pp, —rotw - R(way,)) + (wpy, , rotR(way)).

The last term in the right-hand side can be written as follows, thanks to the
commuting diagram property (3.19):
(7.10)

(wpy, , ot R(way,)) = (wpy, ,, ot R(way,) — rot(way,))

+ (wpy , —1OtW - ) + (wWpy, , WOt Opy)
= (wpy, , ot R(way,) — rot(way,)) + (wpy , —Tot W « o)
+ (wpy, wrotay, — Py(wrot o))
+ (Po(wPo(wpy)) , rot ap).
Putting together (7.8)-(7.10) and using (7.2), (4.7), (4.9) and the Cauchy-
Schwarz inequality yields
(7.11)
Ty +A7' 2Ty < Cl(|pall-1, 6, 1T @84)l11, 6 + Alpallo, 6 IITL(wO)]l1, 6;)

+ (hllpallo, 61 + ll@pallo,6,)10xllo, 6, + All6kll1,6;)
+ ha~ ' ?|lopllo, 6, (lenllo, 6 + I ot ewsllo, 6,)]
+ A7 (py, —rotw - R(way)) + A~ 2(wpy,, —10t @ - p).

Now recall that (7.2) states that A~'#>rotay, = —Py(rot@;) on each element;
hence,
(7.12) A7 | rotayllo, 6, = I1Po(rot84)llo, 6, < [104ll1,6;-

We insert (7.12) in (7.11), next (7.11) in (7.7), recall Korn’s inequality (3.4)
and obtain

ClIM(w84)l1F, ¢ + A~ | R(wa)ll§, g
< &llT(@85)l1F, 6 + oA~ £2(|R(wexy)IIG
+ CH(|64l1}, 6 + 27" Pllewlly, 6 + IPallG, 6))
+C(164l13, 6, + IIPall% 1, G, + llgrad Whll%,a;) +erllwpali§, 6,
+ A7 (wpy, —Totw - o) + A7 (py, —TOt @ - R(way)) s

whence (7.6) follows by choosing &, properly. O

We need to bound the last three terms in (7.6).
Lemma 7.2. Let &, > 0 be a real number; then
A1 (wpy,, —Totw - o) + A7 (s, —TOt @ - R(0ay))
< e 2[R(@e)I3 g + Cllgrad 3, g,
+ CHA(18411, 6; + 47 Pllell3, ;)
+C(1164113, 6, +'1_1t2||ah||2—1,01 +lpull?y 6,)-

(7.13)
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Proof. The estimate will be obtained by a duality argument. Consider ¢ €
C3°(Gy) such that fcl ¢dxdy = 1;then we can write
A\ (wpy, rotw - ay) = A1 (wypy, wa)) — A7 (wxpy, wad),
A7 (py, rot o - R(way)) = A7 (0,0h, R(way)') — A7 (@01, R(oay,)?).
Let @ be either w, or w, ; then setting
i = (o, a}), 81,i=wa, — 71,9,

ya.i= / R(way)dxdy,  g.i=R(@ay) — 72,6,
1
we have

i—ltz(wph ) wa;;) = 'I_ltz(aph » 81 ,i) + 'I—ltz(wph ’ yl,i¢) s
A2 (@py, R(way,)') = A 2(@py, £,i) + A~ 2 (@py, 12,i9).

We observe that g; ; for j,i=1,2 belong to L>(G;) and have zero mean
value; hence we can consider the solution of problem (5.1)—(5.3) on the domain
G, corresponding to the data f=¢ =0 and g = A"!¢2g; ; for j,i=1,2.
Integration by parts then gives

A"\ (@py, gj,i)) = — (@py, rotz) — A~ (@py, Totrotr)
+ a(@0y, , z) — (rot(@6,,), r).
After some calculations using Lemmas 4.3 and 4.4, properties (3.19) and (3.21),
and equations (7.1)-(7.3), we arrive at

A\ (@py, g;.;) = a(@z - 1(@z), 0;) — A~ '1*(ay, R(@ 1ot r) — @ ot r)

— (wr — Py(wr), rot 6;)
+ (grad v, , RI1(®z)) — (rot® - z, py)
— A7 '2(rot@ - rotr, py) — (@6}, z)
— A2 ((rot@)r, ap) + (r, rot@ - ;).

Then we bound all the terms using A1, (4.13), and duality estimates; one obtains

A7 (@py, gj,i) < CLhIOkI, 6 (212, 6, + I7ll1,6,) + A" hllenllo, 6lI7]l2, 6,

+ llgrad wllo, ¢ llZll1, 6,
+ 1all=1,6,(Izll1, 6, + A7 2l7]12,6,)
+ A7 Pl =1, 6,071, 6, + I7llo, 6,118k ll0, 6, ]-

From the a priori estimates (5.9) we have

Izll1, 6, + Irllo,6, + A~ 2tlrllt, 6, + A lrll2,6, < CAT'22 &5, ill0, 6,

Moreover, since A is an elliptic operator of second order with constant coeffi-
cients, we obtain from (5.1)
lzll2,6, < CllAzllo,q, < ClIrlly, 6, < CA™tlg; illo, -
Hence, we conclude that
A"\ (wpy, g),1)
< CA7 1), illo, 6, (Rl1Okllr, 6; + hA™"*tl|lewnlo, 6
+ A7t igrad wiyllo, 6 + 1040, 6,

+ A7 P \logll—1, 6, + 1PRll-1,6,)-

(7.14)
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Furthermore, we have
(7.15) AN (@py, j,i0) < CATYE s il all-1, 6,118l 6,

It remains only to bound |y; ;| and ||gj,illo,q, for j,i=1,2.
Since w € C(G), we have

71,1l = (@, a})| < Cllegli-1,6, < Cllaxll-1,6,

and
mi <| [ Rway)' dxdy| < CIR@aw'lo.g; < CIR@alo.g;
1

Then
lg1,illo,6, < Cllwagllo, 6, + Clr1,il8llo,6, < Cllwanllo, ¢, + Cly1,il ldllo.q,
< C(hllagllo, ¢, + IR(@an)llo, 6, + llenll-1,6,) s
and
lg2,illo, 6, < ClIR(@es)'llo, 6, + Clya,illigllo, 6, < ClIR(wew)llo, 6:-

Putting these estimates in (7.14) and (7.15), we obtain the desired inequality
(7.13). O

Lemma 7.3. The following estimate holds:
lwpallo, 6, < ClIN w1, 6 + Ch(104ll1,6; + IPllo,c:)
+ Cllpall-1,6, + Cligrad ¥y lo, G;-

Proof. Let &/ = (1/meas(G1)) [; wppdxdy; then || < C||py|-1,6, » since
w € C(G1). Then we have |wpullo,q, < llwpn — 0,6, + Cllpall-1,6, » and
we apply the continuous inf-sup condition as follows:

(7.16)

(wpy —H , Tt 1)
nll1, e,

lwpy — lo,6, < C sup
€M (G
(wpy , Totn)

=C su
(7.17) A T

nEH! (G2
(Po(wpy) , Totn)
"7’”1 , Gy

< Chl|pallo,¢; + C  sup
n€[HY(G)P

From (3.21) and (4.14) we have for the numerator
(Po(wpy) , rotn) = (Po(wpy) , rotIly)
= (pn , rotIl(wlln)) + (py , rotw - In)
+ (Po(wpn) — wpp, rotIly).
Therefore, (7.1) and Lemma 4.3 yield
(Po(wpy) , rotn) = a(0y, II(wlly) — wlly) — (grad v, , RII(wIly))
+ (b, rotw - Iln) + (Po(wpp) — wpy, rotIly)
+a(Il(w6y) , Iln) + 1(w8; , In) + a(w6) — [1(w6;) , In).
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We insert this equality in (7.17) and use (4.5), (4.7), and (4.13). Then, recalling
also that by (3.22) [|In|l1,¢: < Clinll1,c, for every n € [H'(G)]* and that by
(3.23) |IRvllo,¢; < Cllvll1, g, forevery v e éh(G’l) , we obtain (7.16). O

We collect the results of the previous lemmas and we get:

Proposition 7.4. Let Gy CC G| CC G| be concentric spheres; then there exists
a constant independent of h and t such that
0(6n . an, Pr)l1, G, < C(AN(On, ans PA1, G, + N (Ons ans PA)llo,G1)

+ Cligrad w40, 6:-
Proof. We put together (7.6), (7.13), and (7.16) and choose &, and &, properly
to obtain

(8T, 6; + 2" IIR(wes) 13, 6;
(7.19) < CH (164111, 6; + A7 Cllenllf, ¢ + IPall§, 1)
+ C(I04l13, 6, + 47" PllewllZy, 6, + IPall2 1 6, + lgrad wyll§ c:)-

Hence, the estimates regarding 0, and «; in (7.18) are obtained; it remains
to bound ||psllo,q, - Using (7.4), we have ||pxllo,c, < ll@wpnllo,c, - Then from
Proposition 7.3 and (7.19) we get also the bound for p;, and the proof is
complete. 0O

(7.18)

We introduce here some interior duality estimates which will be used later
on to bound the second term in the right-hand side of (7.18). We give only the
idea of the proofs and refer to [11] for the details. R
__ From now on we assume that G and @1 are concentric spheres with G CC
G, ccQ.

Lemma 7.5. Let G and G, be as above and let s >0 be an integer. Then for

p=min(s+ 1, k) we have
(7 20 Iloh”__s,a < Clll(oh s Qtp ph)lll_s_l ’6]
+ChP(164ll, 5 +2"tlaully 5) + Cligrad wyll, 5 -

ProoAf. Suppose thatA@ cc G cc @1 are concentric spheres and that w = 1
on G and w € C§°(G’). Then we can write

10nll_; & < llwsll

_ (@85, 1)
T SR e

fe[H (G))P? Il 2,

We consider the solution of (5.1)—(5.3) with G = G, and g=¢ =0 and we
work as in the proof of Lemma 7.2. Then we apply Remark 4.1 to estimate
the approximation errors and Lemma 5.3 to bound the solution of problem
(5.1)-(5.3) in terms of ”f”s,@. . o

Lemma 7.6. Let @, Gl , 8 and p be as in Lemma 1.5; then
1all_s_y 5 < CNOh> an> P _,_, 5,

(7.21 -
+ Ch*(64ll, 5, + 4™ tllenlly ) + Cligrad wll, 2 -
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Proof. Let G, G', G, and w be as in the proof of the previous lemma. Then

we have © f)
wpy
IPall_,_; g < llwpall_;_; 5 = sup ’

’ o [

fe Hs+1 G)

We consider now the auxiliary problem (5.1)-(5. 3) with G = Gy, f= ¢ O
and g = f —y$, where y = [5f and ¢ € CP° (Gy) is such that fG
Then with the same duality argument as before, we obtain (7.21). O

Lemma 7.7. Let G, Gl ,S,and p be as in Lemma 1.5; then we have
A tall 1.6 S ClOns ans A, 5,
(7.22) +ChP(||6all, 5 +4~ l/2t||0th||0,51)
+ Cllgrad yl, &
Proof. The proof is similar to the preceding ones. Let G, G’', G;, and @ be
as before. Then we have

i 1/2t(wah, ¢)
I, &

APl g < AP tllway|

—-s—1,G — Sup

L-1,6, = Sup_
PE[H(G)P

We consider the auxiliary problem (5.5)-(5.8) with G = G, and f= g =0 and
proceed as before, but using Lemma 5.5 instead of Lemma 5.3. 0O

We collect the results of Lemmas 7.5-7.7 in the next proposition.

Proposition 7.8. Let G and G, be concentric spheres with Gl cc Qy, and let
s >0 be an integer; then for p =min(s + 1, k), we have
(7.23)

8n> an, il 5 < Cligrad |, &

+ C(?N(8ns ans oy G + 1 (Ohs ans PAI__, 3,)-

We are now in a position to prove the following propos1t10n which glves
Proposmon 6.4 when we substitute ), oy, py, and y, by 6, — 0, aj, —
ay, Pp —DPh, and Pi(wy) — y, , respectively.

Proposition 7.9. Let Gy, Gj be concentric spheres; then for h small enough and
Jor u >0 an integer, the following estimate holds:

(7.24) 1(8n, an, Pu)ll1, 6o < CN(Bn s ans P-4, 6, + Cllwallr, Gy

Proof. Let G; cC G, CcC --- CC G, CC G| be concentric spheres; then we
have from Proposition 7.8 with p=1 and s =0

1(6n, an, pr)llo,G, < C(AI(O, an > Pu)ll1, 6, + I(Oh s an, PR)I-1,6,)
+ Cligrad w0, 6,
Iterating this argument for s = -1, ..., —u+ 1, we get
I(On ar, br)llo,6, < C(hll(On, an, Pu)lli, 6 + Ok, ans PA-4,G!)
+ Cligrad w40, 6.
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Then we insert this inequality in (7.18) and obtain

0(6n, an, ba)ll1, 6o < C(hI(Ok, ans DAL, 61 + WOk s s PR, G!)

(7.25)
+ Cligrad w4lo, G-

Consider now a new sequence of concentric spheres G} cC G5, CC --- CC

GL +2 = Gy ; applying (7.25) with Gy and G} replaced by G’ and GJ >
obtain
1(6n, i, )li, 6 < C(hl(Oh, on> b1, 61, + WOk > @ns PWN-p,G7,,)

+ Cligrad w4llo, G, -
Starting with Gy and iterating for j=1,..., u, we get

185, cn, pi)llt, 6o < C(H** (O, an, b1)lli 61, + N (O, ens PW)-4,G1.,)
+ Cllgrad ¥, llo, 6,

Now, let G, be a union of elements of .7 such that G, CC G, CC G),,;
then by the inverse inequality we arrive at

(85 ons PR, < BEYY(Ok, ans PRI 6,

w1

< Cl6n, ans b)l-4,6, < CU(Bh > ans D4, G5
The last two inequalities give (7.24). O

Remark 7.10. The only point in this section where A3 has been used is the
estimate of 75 in the proof of Lemma 7.1. If A3 is not true (for example, this
happens when rectangular families (3.43)-(3.46) are considered), we assume
alternatively that ¢ < Ch at the interior of Q. Then we can proceed as follows
in order to get the bound of T : in view of (3.19) we write

T; = (pn, —rotw - R(way)) + (Po(@Po(wpp)) , rotap)
+ (Py(wpy) — wpp,, —r0tw - ap) + (Wpy,,, —TOt W - ).
Then, since ¢t < Ch, we obtain
AT, < CR*|pallo, ) + CH*A™"' Pllanllo, ) + (Po(wPo(wpy)) , Tot )
+ (pp, —10tW - R(0ay)) + (wpy, —T0t O * ),
and inserting this inequality in (7.7) instead of (7.11), we arrive at (7.6).

8. INTERIOR ASYMPTOTIC RATES OF CONVERGENCE

In this section we shall apply the abstract results of §6 to the families of finite
element spaces introduced in §4 and state the asymptotic interior estimates. To
this end, we need to evaluate the rate of convergence of the negative norms of
the errors which appear in the second members of (6.1), (6.24), and (6.26). As
in §6, we proceed by analyzing separately the two Poisson equations and the
Stokes-like system.

It is easy to obtain from (6.1), by means of a duality argument with u; = k—1
and s = k + 1, the following bound:

(8.1) v — Wil 00 < CAE(1W llks1,0, + 1¥ll1,0)-
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More delicate is the estimate of ||[(6 —6,, a—ay, p—pi)ll-4, @, » because of
the presence of the boundary layer in the solution of the system (3.34)—(3.36).
We carry out the proof of the estimate of such a quantity by duality arguments.

First we prove the following lemma, which will be useful in the remaining
part of the section.

Lemma 8.1. Consider the solution (z,r, y) of (5.5)—(5.8); then for s+ 0o <k
there holds

(0 =04, )+~ (e —an, @)+ (P~ 1, 8)
(8.2) < Ch*7(16]]ss1 + 1lls + 2~ 22lpllsar + 2~ tlleels + W llso+1)
% (l2llos1 + I7llo + A2l lloss + A2 2l0).

Proof. We multiply (5.5) by 6 —6,,, (5.6) by p—p;, (5.7) by a -, and add
the three equations. Then we use (6.11)—(6.13), integration by parts, (3.19) and
obtain

0 —6,,H)+i'P(a—an, d)+ (P —Dis 8)
=a(0 — 0,,z—Iz) — (rot(0 — 0;), r — Por) — (p — pp, rot(z — I1z))
— A1 (rot(x — Ry), p — Pop) + A '3 (x — Ry, a — ap)
— A" (rot (r — Pyr), o — o) + (grad v , 1z — RITz)
— (grad (v — y) , Rllz).
Applying the approximation properties of the finite element spaces and the error
estimates (3.52), we get
(6 =04, )+ 27 (e -, §)+(p —Pi, &)
< ChH*(||8]ls41 + Iplls + A~ 22l|plls+1 + A~/ ?tl|exlls)
x (Izllos1 + Irlls + A7 2elirllosr + A7 2l 2ll0)
+ (grad y, [1z — RIz) — (grad (v — ), RIlz).
The last term can be bounded using the standard estimates for the approxi-
mation of the Poisson equation by conforming elements as follows:
(8.3) (grad (v — y3),, RIz) < CA||Y|[s10+1ll2ll1 5

while for the next to the last term we can use the same argument already em-
ployed in the proof of Corollary 6.2 (see (6.21)): let (grad y)* be the interpolant
of grady in .%_;; then

(8.4) (grad y, [Tz — RIIz) < CA** ||y |l 12l|o41-
Then (8.2) is obtained. O

Now recalling the definitions of the norms (2.1) and (2.2) and the a priori
estimates for the dual problem (5.5)-(5.8), see Lemmas 5.1, 5.2, and 5.4, it is
easy to obtain the following asymptotic rates of convergence.

Theorem 8.2. Let k = 2 or 3 in (3.38)-(3.41) and (3.43)—(3.46); then for F
sufficiently smooth,
(8.5)

16 -6, a—an, p—pr)li,0

< CHA(|101lks1. 0, + 1PNk @, + A7 2 Dllks1, 0, + 1Wllks1, 0, + C(F)).
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Proof. It remains to evaluate ||(0 -0, a—ay, p—pp)ll-4,, o (see Corollary 6.2
and Remark 6.6). Let us fix kK = 2. We choose u; = 0 and estimate separately
the three terms entering the norm by means of a duality argument. We have

6-6,,
16— 64lo= sup @000
rerzpe fllo

Therefore, we consider the solution of (5.5)-(5.8) correspondingto g =¢ =0
and f € [L?(Q)]* and apply Lemma 8.1 with s = ¢ = 1. By the global error
estimate (3.11) and the a priori estimate (5.10) it follows that

(8.6) 160 = 64llo < CH?|IF lo.

Analogously, if we consider (5.5)—(5.8) with f=¢ =0 and g € I?I(l)(Q) and
apply Lemma 8.1, (3.11), and (5.10), we get

(8.7) Ip-palloi = sup P28 < cp2ipy,.
gemy@)  llglh

The next term we must bound is

1 —142 (a —Qyp, ¢)
——— Sup AT —
A2t e q)p lollo

Hence, in (5.5)-(5.8) we take f= g =0 and ¢ € [H}(Q)]* and apply Lemma
8.1, (3.11), and Lemma 5.4 to arrive at

AP to— a1 =

(8.8) A7Vt — eyl -1 < CH2||F .

The estimates (8.6)—(8.8) inserted in Corollary 6.2 imply (8.5).

For k = 3 the proof is similar. The only differences consist in choosing
U =2,s=0= % in Lemma 8.1 and in applying (3.12) instead of (3.11),
(5.11), and (5.14) instead of (5.10) and (5.13), so that

(8.9) (6 - 6x, & — s, p— pi)ll-2 < C(F)h?
with C(F) depending on the H'-norm of F. O

Finally, we have the following asymptotic error estimate for the displacement:

(8.10)
lw — will, 0, < CA*(1Wllks1, 0, + IWllks1,0, + 10, a, P)llks1,, + C(F)),

for k=2,3.
This bound can be obtained from (6.27) and (8.1), (8.6)—(8.9), using again a
duality argument to estimate ||w — wy|—,,,o . More precisely, we have

(w - wh ) f)
8.11 W—Wy|—p. = sup ——12"2,
®.11) I =will-ws = SUP 7Tl

Let u be the solution of the Dirichlet problem —Ax = f in Q and ¥ =0 on
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0% ; then the numerator in (8.11) becomes (see (6.25) and (6.21))

(w—wy, f) = (grad (w — wy) , grad (u — Piu))
+ (60 — RO, grad (Piu — u)) + (6 — RO, grad u)
= (grad (w — wy,), grad (v — Piu)) + (0 — RO, grad (Piu — u))

+ (R(0 — 6,), grad (Pu—u))+ (0 — 6, grad u)

+(0,—-6 —R(6,—0), gradu — (gradu)*)

+ (6 —RO, gradu — (gradu)*),
where (gradu)* is the interpolant of gradu in .%,_,. Then, using appropri-
ately the approximation properties of the finite element spaces together with
(8.1), (8.6)—(8.9), the inequality (8.10) follows for suitable choices of u3 in the
two cases k =2 and k = 3.

This method of proof cannot be extended to obtain the estimates (8.5) and
(8.10) for all the values of k greater than 3. In fact, in order to use the duality
argument as before, we should have an a priori estimate for the solution (z, r)
of problem (5.1)-(5.3), with g = ¢ =0 and f € [H}?]?, of the form ||z],41 <
C|fll., with ¢ > 3/2. We show that this is impossible.

Since rot(z + A~ !#*rotr) = 0, we have for some element # of H} that

A~2¢2rotr = gradn — z.

Substituting this in (5.1), we obtain the following equivalent formulation:

(8.12) Az = At ?(gradn —z)+f inQ,
(8.13) div(gradn —z) =0 in Q,
(8.14) z=0, n=0, ondQ.

Following Arnold and Falk [2], we obtain that z and 5 can be well approxi-
mated by the following expansions:
n=no+A" " tm+ A0+,
z=120+ APz + 2732825+ + (A2 Brot Qs (p/A VPt ) + - -),
where p and 7 denote the boundary-fitted coordinates and yx is a cutoff func-

tion (see [2]). The interior terms in the expansions can be constructed as follows,
setting C = E/12(1 —v2):

—divf, i=0,
CAZ”’:{O, i>0,
grad7;, i=0,1,
z,-={grad(n2+CAno)+f, i=2,
grad (n; + CAni_p) +---,  i>2,
while for the boundary terms we have (set p = p/A~1/2f)
2
_%EQZL + Qi =,

where in the right-hand side appear the preceding terms of the expansion. To
these equations suitable boundary conditions have to be added according to
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(8.14). These boundary conditions are such that the boundary terms Q; have an
exponential decay as p tends to infinity, that is, Q; = g;(t)e=?/*" """ . Recalling
that |le=#/*""*|jo < Ct'/2, we see that ||z|l,,; is bounded uniformly for ¢ >
3/2 only if Q3 =0. But Q3 solves

02Q; ~

__8—/)“T+Q3=0’ p>0,
003 0 s o
8/3 _aTA"Oa P—O,

hence, we must find out for which f e [H{)‘Z(Q)]2 it is true that the solution of
CA%ng = —divf, in Q,

M0 =0, on 9Q,
%’7,{1=0, on 0Q,

satisfies the additional condition ZAn, =0.

This is equivalent to describing the set whose elements are A%v, when v
belongs to

V={veH3(Q):v=O 9y 0,%Afu=00nm},

"on 9
which can be characterized as
V = H3(Q) @ span(p?y).

Now we observe that if v € H}(Q), then A%v is orthogonal to all functions ¢
such that A2¢ =0 in Q and ¢ =0 and 9Q. Therefore, the set {A%v|v € V'}
is not dense in any Hj-space. This proves that for arbitrary f vanishing on
0Q, Qs is different from zero, so that ||z, = O(t~°+3/2).
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