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FINITE ELEMENT APPROXIMATIONS 
OF NONLINEAR ELASTIC WAVES 

CHARALAMBOS G. MAKRIDAKIS 

ABSTRACT. In this paper we study finite element methods for a class of prob- 
lems of nonlinear elastodynamics. We discretize the equations in space using 
Galerkin methods. For the temporal discretization, the construction of our 
schemes is based on rational approximations of cos x and ex. We analyze 
semidiscrete as well as second- and fourth-order accurate in time fully dis- 
crete methods for the approximation of the solution of the problem and prove 
optimal-order L2 error estimates. For some schemes a Taylor-type technique 
is used so that only linear systems of equations need be solved at each time step. 
In the proofs we need various estimates for a nonlinear elliptic projection, the 
proofs of which are also established in the paper. 

1. INTRODUCTION 

In this paper we shall study finite element methods for a class of problems 
of nonlinear elastodynamics. In particular, we consider the following initial- 
boundary value problem: Let fl be a bounded domain in RN, N = 1, 2, 3, 
with smooth boundary aQ (Q is viewed as the reference configuration of a 
homogeneous elastic body), and let 0 < T < o0. We seek a displacement 
function u: n x [0, T] -* RN such that-index notation and the summation 
convention will be generally employed- 

&i(x, t) = &aSij(Vu(X, t)) + fj(x, t) in fl x [0, T], 
(1.1) u(x, t) = onaQ x [0,T], 

u(x, O) = uO(x), ii(u, O) = ul(x) in Q, 
where dots denote differentiation with respect to t and &,,, = a/&x. Further- 
more, S is a given smooth N x N matrix-valued function defined on RNXN 

which characterizes the material-the Piola-Kirchhoff stress tensor-and f is 
the body force. Also, u? and ul are given smooth functions which represent 
the initial displacement and the initial velocity, respectively. For a complete 
discussion of the physical background of the elasticity equations, cf., e.g., [15]. 

We shall discretize (1.1) in space using Galerkin methods. For the tempo- 
ral discretization, since (1.1) is a wave-type equation, the construction of our 
schemes is based on rational approximations of cosx and ex, cf. [1]-[3], [5]. 
We shall analyze semidiscrete as well as second- and fourth-order in time fully 
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discrete methods for approximating the solution of (1.1). Before describing the 
results in detail, we proceed to introduce notation and list our assumptions for 
the problem. 

We shall assume that the stress tensor S has the following properties, cf. 
[10]: 

S is the gradient of a scalar-valued "stored energy function". Hence, if 

A iaj,6 := Sia (7) ?I E R, 

we shall assume that the elasticities Aiajfi satisfy 

(Sla) Aia= Ajia, 1 < i, a, ], IB < N. 

In addition, we assume that a strong ellipticity condition is satisfied in an open 
set a in the domain of Aiajfi, i.e., that there is a positive constant M1 such 
that 

(Slb) Aiai(il)SCfl~i > M1 2g2 

for all r7 E a and 4, C E RN. Here, I X denotes the Euclidean norm on RN. 
Following standard notation, we let Ws p := Ws p (Q)N be the usual Sobolev 

space of vector-valued functions whose generalized derivatives of order up to s 
belong to LP(Q)N. We denote the corresponding norm by 11 * 11sp, by I sP 
the seminorm of order s, and put Hs := Ws 2 with norm I IIs . Also (. -), 
resp. 11 * 11, will denote the inner product, resp. norm, on L2 := L2(Q)N or 
L2(Q)NXN, while I * will be the norm on L?0 . In addition, let Ho' be the 
subspace of Hi consisting of the elements of Hi that vanish on aQ in the 
sense of trace. 

Assuming (Sla, b), Dafermos and Hrusa [10], and Chen and v. Wahl [8], 
establish the existence of a unique local solution to the problem (1.1). In par- 
ticular, the main result of [10] can be stated roughly as follows: Let Aiajfl 
and f be sufficiently smooth and let uV E Hm , U1 E Hm- I for some integer 
m > [N/2] + 3. Assume further that (Sla, b) hold, that the initial data satisfy 
the natural compatibility conditions of order m, i.e., that the initial values of 
time derivatives of u up to order m - 1 (as computed formally in terms of 
u0 and ul using (1.1)) vanish on an, and that Vu0[Q] c a. Then there is a 
T > 0 for which (1.1) has a unique solution such that 

m 
U Efn Cm-s([0, T]; Hs). 

s=O 

By the Sobolev imbedding theorem the solution will be classical provided m > 
[N/2] + 3. We shall therefore assume in the sequel that the above assumptions 
are fulfilled for m sufficiently large to allow a unique solution u of (1.1) to 
exist which is smooth enough for our purposes. Furthermore, we assume that 
there is an open convex set X, with X c a, such that Vu[Q x [O, T]] c X 
(see the proof of [10, Theorem 5.2]). If 3 is the distance of X from a&, and 
Yj :={a E RNXN: inflae Iq - 1 < d1}, we let 

Z:= {f E Loo(Q)NxNA (x) E ej # X E Q}. 



APPROXIMATIONS OF NONLINEAR ELASTIC WAVES 571 

We will need Z in the error analysis; this is the set which is expected to contain 
the gradients of the approximations of u; thus, (S2b) below will hold for these 
functions. 

We now define the following forms: 
N 

a(qyi)= E (Sia(V$),~ da/i), q, O EH', 

and 
N 

i(v; q, y/)= E (Ajfi6(Vv)fiqj,0jaVi), v, q, I/ E H1. 
E, a , J , =1 

Using (SI) and the definition of Z, we have 

(S2a) &(v; +, y /) = &(v; V/ , 0), v, V+I/ EH'. 

Further we assume that for MO > 0 we have 

(S2b) ?1(v; 2, q) >MolIVq$I2, v, q E HI, Vv E Z. 

(S2b) is a stronger assumption than (Slb). In particular (Slb) implies that 
&(v; q, q$) > MolVqII2 _ pu > ?0, v, q E H1, Vv E Z. We note, how- 
ever, that the techniques of this paper can be extended so that our results are 
valid under this weaker condition. A variational form of the problem (1.1) can 
now be stated as follows: Find u(., t) E Ho', 0 < t < T, such that 

(1.2) (u((t), v) + a(u(t), v) = (f(t), v), Vv E Ho', 
u(X,0)=u0(X), ii(X,0)=U1(X), X E Q. 

Finite element discretization. We shall approximate the problem (1.2) by the 
finite element method, using, for the discretization in space, the usual piecewise 
polynomial shape functions, cf. e.g. [9, ?2.2]. Specifically, for 0 < h < 1 
we assume that we are given a family Sh of finite-dimensional subspaces of 
WI 1'o n Ho' such that for some integer r > 2 and small h, 

(i) infXEsh{I1v - xl + hllv - xlli} < ChslIvIls 1 <s < r, v e Hs n Ho. 
Now let A: HI -* Sh be the nonlinear operator defined by 

(1.3) (Av, X) = a(v, x), VZ E Sh. 

Also, for given v E HI , we consider the linear operator L(v): HI -* Sh given 
by 

(1.4) (L(v)+$, ) = &(v; Xx), V E Sh, qE H. 

Further, we assume that the following inverse inequalities hold: 
(ii,a) There exists a positive constant Co such that for every x E Sh 

llVxll ? Coh-111xll and IVxloo < Coh- 1Ixo. 

Note that as a consequence of (S2b) and the definition of L(v) there exist 

positive constants Cl, C2 such that 

CiI vxII2 < (L(v)X, x) < C2h-211,x12 

holds for all v E H1 with Vv E Z and X E Sh. 



572 C. G. MAKRIDAKIS 

(ii,b) There is a constant C3 such that for every x E Sh 

IVxIoo < C3h N/2IIVXII and IxK10 < C3h N/211X11. 

Let P: L2 -* Sh denote the L2-projection operator onto Sh. Then, a con- 
sequence of the assumption (i) is that there exists a constant C such that 

(iii) 

IIv -PPvI < ChslIvIls, 1<s<r, vEHsnHoj. 

We define now a nonlinear elliptic projection of the solution u of (1.1), 
denoted by W(t) (or w(t) in ?4) as follows. For 0 < t < T, let W(t) E Sh be 
the solution of the nonlinear system 

(1.5) a(W(t) , X) = a(u(t) , X), VX E Sh. 

It is known, cf. Dobrowolski and Rannacher [12], and Rannacher [19], that 
the equation (1.5) has a locally unique solution W(t) E Sh for 0 < t < T. 
Furthermore, W has the following approximation properties: 

(iv,a) There exist constants Cs(u) that depend on u such that 

IIu(t) - W(t)ll < Cs(u)hs, 2 < s < r, 

and 
Ju(t) - W(t)loo < Cs(u)hsl loghlo(r) , 2 < s < r , 

where O(r)=0 if r>2 and O(r) =N+1 >0 if r=2. (Foraproofofthese 
estimates, cf. [12] for r > 2 and [19] for r = 2 with a different technique.) 

In addition, we shall prove in ? 5 that for the time derivatives of W there 
holds 

(iv,b) Iu(')(t) - WJ()(t)II ? Csj(u)hs, 2 < s < r, = 0, 1. 
Finally, we shall suppose that there exist constants Cj, independent of h, 

such that 
(V) IIWU(')(t)I1, o < Cj, j = 0, 1 
In ?5 we shall establish that (i)-(iv) imply (v) under the restriction that r - 

N/2 - 1 > 0. 

Summary of results. We consider first the semidiscrete analog of problem (1.2) 
on Sh, namely the problem of finding Uh: [0, T] -* Sh such that 

(1.6) (ih, X)+a(Uh, x) = (f, x) VX E Sh, 

given initial values Uh (0) and Uh (0) approximating u? and uI in Sh. 
In ?2 we shall show that the problem (1.6) has a locally unique solution and 

that the optimal-order L2 error estimate 

max 11U(t) - Uh(t)11 < C(u)hr 
O<t<T 

holds, under the assumption that r - N/2 - 1 > 0 and for an appropriate choice 
of initial approximations. 

For work on semidiscrete approximations to scalar nonlinear wave equations 
of the form Vtt + EN aiFiF(Vv) = g, cf. [11]. 

In ?3 we construct two two-step fully discrete schemes to approximate (1.1) 
in time as well, that are based on second-order accurate approximations to the 
cosine. They are both second-order accurate with respect to the time step k. 
Computing the approximation Un E Sh of u(tn), tn = nk, n = 0, 1, ..., J, 
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tj = T, with the first scheme requires the solution of a system of nonlinear 
equations for each n, while the second scheme only requires solving one linear 
system of equations for each n . Under certain smoothness assumptions on the 
solution of (1.1), we show in ? 3 that these approximations satisfy 

max IlU(tn) - Unli < C(hr + k2 
O<n<J 

under the restrictions: 
(a) k = o(h1/2) and hr-l/2 = o(k), when N= 1, 
,/) k = o(h), r > 2, and hr-l = o(k), when N = 2 and 

(y) k = o(h312), r> 3 and hr-312 = o(k) when N= 3. 
In [6], Bales and Dougalis analyzed fully discrete fourth-order accurate in 

time cosine schemes for the nonlinear scalar wave equation 
N 

(1.7) Vtt - E aj(aij(v)aiv) + ao(v) = g(v) 
i,j=l 

and proved optimal-rate L2 error estimates in space and time. Our general 
plan of error analysis in ?3 follows that of [6]. We shall consider only second- 
order accurate schemes since, owing to the special form of the equations of 
nonlinear elastodynamics, it is not clear how to construct useful fourth-order in 
time cosine-type schemes. Note that in [17] up to fourth-order accurate cosine- 
type schemes have been analyzed for the equation (1.7) in the more general case 
where the function g depends on ut and Vu as well. 

In ?4 we shall study single-step fully discrete methods for the approximation 
of u that have temporal order of accuracy 2, 3, or 4. In order to construct 
these schemes, we first write the semidiscrete problem (1.6) as a first-order in 
time system of ordinary differential equations, that we then discretize in time 
using methods based on rational approximations of the exponential, cf., e.g., [ 1, 
3]. With suitable choices we derive fully discrete schemes in which computing 
the approximations (usn) ("(tn)) needs only the solution of linear systems of 

U2 

equations at each time step. Moreover, in ?4, we prove that if the quantity 
k- 1 h- NI2 (hr + kv) remains small as k, h -+ 0, then 

(1.8) max (I1u(tn) -U 11 + Iii(tn)-U2niI) < c(hr + kv), v = 2, 3 or 4, 
O<n<J 

i.e., that an optimal-order in space and time L2 error estimate holds for the 
approximations of the displacement u as well as of the velocity u. (Note that 
the restriction that k-lh-N1/2(hr + kv) remains small as k, h -+ 0 follows, if 
v = 2, from the mesh conditions (a), (Iy), (y) stated previously. If v = 3 or 
4, it follows e.g. from the weak mesh condition that kv-1 = o(hN/2), hr-NI2 - 

o(k) provided that r > N.) 2) 
In [4], Bales considers the nonlinear scalar hyperbolic problem (1.7) and 

analyzes fully discrete schemes of up to fourth-order temporal accuracy that 
are generated by rational approximations of ex. Under the restriction that 
r > 3 and v > 3 for N = 2, 3 he proves optimal-order L2 error estimates for 
the approximations of v. The general plan of our error analysis in ?4 follows 
that of [4], and also that of Bramble and Sammon [7], in which fully discrete 
approximations for parabolic problems are analyzed. However, in our analysis 
we use a stronger norm for the estimates. This preserves the optimal order of 
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convergence, cf. Lemma 4.1 below, and also allows us to handle the effect of 
the presence of Vu in the operator S in a satisfactory manner. (Of course, 
we must require that k-1h-N12 (hr + kV) be small, a restriction inherent in the 
problem itself rather than in the techniques used for the error analysis, cf. the 
analogous restrictions in ??2 and 3.) Note also that, if one applies our technique 
in the case of Bales' schemes for (1.7) one can prove the analogous estimates, 
but without the restrictions r > 3, v > 3. 

2. SEMIDISCRETE APPROXIMATIONS 

As stated in the Introduction, the continuous-in-time finite element approxi- 
mation (semidiscrete approximation) Uh: [0, T] S- of the solution of (1.1) 
satisfies the following initial value problem in Sh 

(2.1) (h, X) +a(uhX)=(fX), VXESh, O<t< T 
Uh(O) > U Uh(O) = UESh. 

We have now the following result: 

Theorem 2.1. Let u be the solution of (1.1). We assume that r - N/2 - I > 0 
and that the initial values uO, uI E Sh have been chosen such that 

(2.2) |Iu - W(0)lli + ||u' - W(0)1I < chr, 
where W(t) is the solution of (1.5); then the semidiscrete problem (2.1) has a 
locally unique solution that satisfies, for a constant c independent of h, 

max I uh(t) - u(t)II < chr. 
O<t<T 

Proof. Let uh -u = (Uh - W)+(W-u) =: 0?+,. Then, using (1.2), (1.5), and 
(2.1), we have 

(2.3) (O, X) + a(uh,X)-a(W,X)=-(P.X), VXESh. 
In the sequel we shall use the following formula (Taylor's theorem): If 

Vv, Vw E Z, there holds 
N 

(2.4) Sic (Vv) = Sia (Vw) + i, afl (Vi-W j) A Sia (VW + T (V (V- -w))) d T. 
1,fl=1 

Since Z is convex, the term in the integral remainder is well defined. 
Let us assume for a moment that Vuh E Z. Then, since for h sufficiently 

small, VW e Z as a consequence of (ii,b) and (iv,a), we have, using (2.4), 
1 

a(uh, X) - a(W, x) = j (W + T(Uh - W); 0, X) dT, X e Sh. 

Hence, (2.3) takes the form 

. 1 
(2.5) ( X)j(W + T(uh - W); 0,X)d'r= -(PX x) 

Given W = W(t), we consider a form defined for q$, Ey, x E Sh (with 
VOb E Z) as follows: 

A(O; V/, X) =ja(W + T( - W); ,v, X) dT. 
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Consider the following subset of Y:= C([O, T]; H1) n C1 ([0, T]; L2): 

J= {y/: [0 ? T]-+Sh, 
where max (tlyv(t) - W(t)11j+1 ?II(t) - W(t)II) < C*(u)h, 

O<t<T 

and Vy/(t)eZ, Ot<T}, 

where C* (u) = C* is a positive constant which will be specified later. It is 
obvious that gJ is not empty, since W E >J. Also, if a sequence { f }n I C 
converges in Y to Yr e Y, we see easily that yi E >Y. Hence, gJ is a closed 
subset of Y. 

With this notation, define a mapping X on >J as follows: If q E >J, the 
image X(+) =: u, is given by the relations 

(2.6) u (0) = u0, t>(O) = ul, for t = 0, 

and uO(t)ESh,for 0<t< T suchthat 

(2.7) (609 ) +A(0; 00 X) =-(P. X), VX eSh, 0 < t < T. 

where 06, = uo - W. In order to complete the proof of the theorem, it suffices 
to show that X has a unique fixed point in >J. Indeed, if Vh is this fixed 
point, then Vh satisfies (2.5) and VVh E Z; therefore Vh satisfies (2.3) too, i.e., 
is a solution of (2.1). Furthermore, since Vh E > , the approximation property 
(iv,a) implies that maxo<t<T PlOh(t) - u(t)I1 < chr. 

We will establish the existence of a unique fixed point in >J by showing 
that the pair J, satisfies the assumptions of Banach's fixed point theorem, 
namely that 

(a) (J)c J, 
(b) X is a contraction with respect to d(., *), 

where for q$, Y/ E >Y, d(4, vg) := maxo<t<T(II0(t) - Y1(t)III + Ikb(t) - @(t)II). 
(Note that we can show, by a similar argument as in the proof of (b) below, that 
if Uh and kh are two solutions of (2.1) with VUh, Viih e Z and llu - Uhll, 
IIu-h II < Chr, then Uh Uh.) 

For (a), we first observe that X is well defined. Indeed, if q e AJ, since 
VW belongs to Z, the element W + z(0 - W), 0 < T < I, is such that 
V(W + T(q$ - W)) E Z, and the bilinear form A(0; *, *) is symmetric and 
positive definite. Hence, the relations (2.6) and (2.7) describe use: [0, T] -+ Sh 
uniquely as the solution of an initial value problem of a second-order system 
of ODEs. 

Now putting X = 6?, in (2.7), we have for 0 < t < T 

(0X, k0) + A(G; 06, 0,) = -(P, 60), 

or 

I 
d- 1i2 +A A(0; 00 5 0,)l 

N 1,1 

=-(P , 0)? + E 2 X (Ot[Aiajif(VW+TV(0b-W))]Oj 0,fi, fif 0,a) dT. 
ia,j, f=l? 
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Since A(O; *, *) is positive definite, integration yields for 0 < t < T 
(2.8) 

e+00(t) 112 + M 4llVO9(t) ll2 

<C(IlOO(0)II2 + 1100(0)1112) + C | IIPI2 ds + |1100112 ds 

+ E 2 j j(Ot [Aiajl(VW + TV(q - W))]Oj ,x?, ai00,a) dTds. 
i,a,j,_=l_ 

From (iv,b) we have fo llp l2ds < ch2'. Also, (2.2) and (2.6) give 110,(0)ll2 + 

l00(0)lll2 < ch2r. Finally, to estimate the last term of (2.8), observe that 

at(Aiajfq(VW + TV(q - W))) 

- E a ' j" l (V W + TV(q( - W))aY( Wk + T(qk - Wk))) 

Using the fact that the values of VW + TV(q - W) lie in a bounded set of 
RNXN, the smoothness of Aiajpl, and (v), (ii,a,b), we have that 

ZE j (at[Aiajf(VW+ TlV(O- W))]OjPi0, ,9 Oi 00,a)dT 
i, a, j, fl 

< cIWIt ,ooIl0k112 + Ctu - WJV1 ,x110+111 

< C110t112 + ch-l -N/211kW1 110V112 < C|o00t| 
where in the last inequality we used the fact that, since r > 1 + N/2, p E 
we can choose an ho such that for h < ho we have ch-lN-N/21q - WVI < 1 for 
0< t < T. 

Combining the above estimates in (2.8), we have 
rt 

110t(t)112 + MAolt01VO(t)I12 < ch2r + C] (1100112 + 110112) ds. 

Hence, using Gronwall's lemma, we obtain that for some constant C1 (u) inde- 
pendent of h 

II06(t)III + 160,(t)II ' Cl(u)hr, 0 < t < T. 
Now tracing back constants through the previous estimates, we observe that the 
constant Cl (u) does not depend on C. (u) and on b. Consequently, setting 
C*(u) Cl(u) in the definition of >J, we have 

110(t)III + 110(t)II < C*(u)hr, 0 < t < T. 
From (iv,a), (ii,a), we conclude that there is an hi > 0 such that for h < hi 

we have IVu(t) -VW(t)lo < 5/2. Consequently, choosing h2 > 0 so that 
for h < h2, IVuo(t) - VW(t)Ioo < ch N/2II6100(t)Ii < cC*(u)hr-N/2 < a/2, 
we obtain that Vu4, E Z. Hence, we establish the validity of (a) by choosing 
h < h* = min{ho, hi, h2} E 

For the proof of (b) let R= b- b' and e = uO - uO,, where X, b'E J. 
Then (2.7) gives 
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Letting x = 9, in the same way as before we get 

(2.9) 

I1e(t)112 + MA01V9(t)112 
t rt 

< 116112 ds + c {A(0/; 0,, 9)-A(O; 0,, 9)} ds 

N t I 

+ c E 2 J j (Ot[Aiajj8(VW + TV(0 - W))]0fl9j, Oaai) dT ds. 

For h < ho and q E we have 

S 2 /J (Ot[Aiafjl(VW + TV(0- W))]Wflj, Phaai) dT < CII9(t)II2. 

Now using (ii,a,b) and the fact that Aiajfl are smooth (and in particular 
Lipschitz), we have 

IA(O'; 00+, 3) - A(O; 0+,, e 6) 

- E Z (Aiaj(VW + TV(O - W)) Ofl0s ,j, Oa i) dT 
i,a,j,f 

- 

N 

E Z (Aiaifi(VW + TV(0- W))afl0oqj, tOag) dT 

< cV(0-0')-11 / 0)I 611, IVe11 ? cy(h) IVRII 11611, 

where y(h) = hr-i-I2 . In the last relation we used that u0, E >f. 
Combining the above estimates, and applying Gronwall's lemma in (2.9), we 

have, since 9(0) = 6(0) = 0, 

max (II0(t)11, + 116(t) I) < y(h)C2(u) max IIR(t)111. 
0<t<T 0<t<T 

Since r - 1 - N/2 > 0 we can choose an h3 such that for h < h3 we have 
y(h)C2(u) =: L < 1; i.e., taking h < min{h*, h3}, we see that (a), (b) hold, 
and so the proof of the theorem is complete. 0 

3. TWO-STEP FULLY DISCRETE SCHEMES 
OF SECOND-ORDER TEMPORAL ACCURACY 

In this section we shall construct two fully discrete schemes for the approx- 
imation of the solution of (1.4). These schemes are based on second-order 
accurate rational approximations to the cosine, cf. [2, 5, 13]. For real x we 
consider a rational function of the form 

r(x)= + qIx2 q1 > O, 

approximating cosx. For accuracy purposes we assume that pi = ql - 1/2, 
which implies that in general r(x) = cos x + O(x4), as x -+ 0. We shall also 
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assume that ql > 1/4, which ensures that the stability condition Jr(x)l < 1 is 
satisfied for all x E R. Let k > 0 be the (constant) time step and t, = nk, 
n = O 1, ... , J, Jk = T. As a consequence of the second-order accuracy 
of r(x), for every smooth function y = y(t) on [O, T] we have (with y(i) 
djy/dti) 

(3.1) (I - k2q at2)(y(tn+1) + y(tn-1)) = 2(I - k2p, at2)y(tn) + O(k4y(4)). 

Motivated by the above relation and (1.4), we can now define the following 
fully discrete schemes. We first seek Vi E Sh, 0 < j < J, approximating u' = 

u(tj) for 0 < j < J by defining recursively Vn+I E Sh for n= , ...,J- 
as the solution of the nonlinear system of equations 

vn+l - 2Vn + vn-1, x) + k2qla(Vn+l , X) 

(3.2) - 2k2pla(Vn, x) + k2q a( V-I, X) 
= k2(q f n+1 - 2pIf n + qlf n-f, x), VX e Sh, 

where VO, VI will be given in Sh and f f := Pf(tn) 
We may also construct a scheme that requires solving only linear systems of 

equations for each n: Consider first the following Taylor formula for v, w e Z 
and each pair of indexes i, a: 

N as, 
Si,(Vv) = Si,(VW) + E oa(vj - Wj) 0z (Vw) 

j19i=1 1 7, 

N 

(3.3) + E afi(VI-Wj)Oy(Vk-W ) 
jfl ,ky= 

I a Baj k O (?7gf an (VW ? TV(V - w)) dT. 

For a given function y(t) defined on [0, T] let 

( 3.4) -"+l 
- 2 2n - ne-Il 

(Then for y smooth enough, 9n+1 - yn+l = 0(k2).) 
Now putting v = un+ and w = + in (3.3), dropping the last term of 

the resulting equation (presumably of O(k2)), and using (3.1), (1.4), and (3.4), 
we arrive at the following fully discrete scheme: Seek Uj E Sh, 0 < i < J, 
approximating uj = u(tj), by defining Un+" e Sh as the solution of the linear 
system 

(un+l_ 2Un + un-I X) + k2q&(U n+1; un+I - 'n+l X) 

(3.5) + k2q a(Un+I, X) -2k2pja(Un, X) + k2qla(U-, X) 
- k2(qf1 -n+ - 2pf n + qlf n 5X)~ VX e Sh, 

with UO, UI given in Sh. 
In the sequel we shall first analyze the error of the method (3.5) and show 

that, if the initial values UO, U1 are chosen so that 

(3.6) JE' - E0112 + k2(IIE0I12 + lIE1ll2) < ck2(k2 + hr)2 
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where E' = U' - Wi, then 

max 11 un-u(t,) 11 < C(h' + k2), 
O<n<J 

under the assumptions (a), (fi), (y) of ? 1. A similar result, cf. Theorem 3.2, 
holds for the solutions Vn of the nonlinear scheme (3.2). 

For the error analysis we shall compare Un with the nonlinear elliptic pro- 
jection Wn of the solution u(tN) of (1.1), defined by (1.5). We shall need the 
following consistency result, the proof of which can be found in the Appendix 
of [18]; see also [16]. 

Lemma 3.1. For h sufficiently small and 1 < n < J - 1 there holds 

(Wn+ _ 2Wn + w 1 
k2qi-(W-n+; Wn+1 wn+1, 

+ k2qla(w-n+, , x) - 2k2pla(Wn, x) + k2qia(Wn- , x) 

- (An ,)+k2(qfln+1 -2p~fnl+qn-1f,), VX ESh, 

where An satisfies 

j(A, x)I < ck2(k2 + khr-l + hr)(IIxII + kII VxII) x E Sh. 

Now let En = -n W Wn. Then, using (3.5) and Lemma 3.1, we obtain for 

x E Sh 
(En+ - 2En + En-l %) 

(37) + k2qii(U n+; un+1 _ un+1 x)-i(Wn+1; wn+l - jn+1 x)] 

+ k2q-[a(Unl , X) -a(Wn+1, X)] - 2k2pi[a(Un, X) - a(Wn, X)] 

+ k2 q [atUn-, Z)- a(Wn- 
I 

)] =(An 1 < I < n<J-1. 

For purposes of easy reference, we rewrite Taylor's formula (3.3) as 

(3.8) a(0, Z) - a(V , z) = d(v; 0 - y ) + b(o - y , z), 

where we have assumed that V+, VVr E Z, 0, Vg E Sh, and where 
N 

b(0- VZ) 
= 

a,8(4- Y/i)ay (Ok - Vk) 
i,aj,fl,k,y=1 

x _ (VV + TV(q - y,)) d, aaX). 

Using the fact that Sia are smooth functions, we have that 

(3.9) lb(q - VMb x)I < cIV(b - V)IoIjV(q$ - y)jj IIVx jj. 

Let us assume that VUn+l, V7n+l E Z. Then it is easy to verify, using 
(3.8), that 

[C(U1n+; Un+1 '-n+1 x)- (Wn+1; wn+1 - jn+1 x)] 
+ [a(Un 1, x) - a(Wn~1 x)] 

(3. 10) =at --n+ l; Un+i - 
_Wn+ 1 (3.10) = iW~1U' -W1,x 

+ [ca(U1n+; Un+1 _ n, x) -(Wn+l; Un+1 - Un+l x)] 

+ b(Un+ -wn+l x). 
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Starting from (3.7), using (3.10), and applying (3.8) for q = Ui, VI = Wi, 
j = n, n - 1, we finally come to the following error equation, which holds for 
all x e Sh if VUI E Z, j = n, n- I, VUn+l E Z: 

(3.11) (En+1 - 2En + E 1, x) + k2 (Wn; q1En~1 - 2p1En + q1E 1, x) 
=(Bn, )+ (Bn, x) + (Bn, )+ (An ), 1 < n<J-1, 

where 

n= - qk2[a(Un+l; un+1 - &n+l x)-(Wn+1; un+1 U'n+1 x)] 

Bn = -k2[qlb(u ~-wn~ z)-2plb(un _Wn,%) + qlb(Un _ Wn ,)], 

n = - qk2{[C(Wn+l; n+1, x) - C(Wn; En+1 x)] 
+ Id( wn- 1; En-1 , X) -a CWn; En-, X )]j. 

Choosing x = En+1 - En-1 in (3.11), using the symmetry of d(q; *, *), 
Vq E Z, summing from n = 1 to M, 1 < n < M < J- 1, and estimating the 
Bn terms, we can prove the following proposition, whose proof is also given in 
[18], [16]. 

Proposition 3.1. Assume that the initial values U?, U1 E Sh are chosen so that 

(3.12) IIE'-EO|12 + k2(jjVE1 112 + 1jVE0j12) < ck2(k2 + hr)2. 

If Un, 0 < n < M+ 1 < J, exist in Sh and satisfy VUn E Z, 0 < n < M, and 
VU'n+ E Z, 1 < n < M, then, there exists a positive constant c independent of 
h and k such that 
(3.13) 

9'M+l < cMk(k2 + khr-1 + hr)2k2 
M 

+ ck Z{IIEn+1 - En-1 12 + k2(jIVEn+l 112 + IVEnIj2 + IIVEn-1 112)} 
n=1 

M 

+ C 17nk2(IvEn+l l + IVE 1I0 + 1 VEjnO + IVEn-o) 
n=1 

x (IIVEn+1112 + IIVEnII2 + IVEn-12) 1 < n < M, 
where 

(3.14) Fn = -En1jj2 + k2Ao(q, +pl)/211V(E -E 

+k Mo(q -pl)/211V(E +E 

and Mo is the constant appearing in (S2b). o 

We are now ready to state and prove the convergence result for the scheme 
(3.5). 

Theorem 3.1. Assume that the initial values U?, U1 E Sh satisfy (3.12), and 
suppose that k, h satisfy the mesh conditions (a), (,8), (y) of ?1. Then there 
exists a positive constant C independent of h and k such that 

(3.15) max jjUn - u(tN)j 
? 

C(hr + k2). 
0<n<J 

Proof. We observe that if the terms IVEjIoO, j = 1, ..., M, in (3.13) can be 

bounded by k, then applying Gronwall's lemma, we are led to (3.15). In order 
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to do this, we will use an induction argument. The induction hypothesis on M 
is 

(I) U' E Sh, j = 0, 1 ..., M, and VU' E Z, j = 0, 1, ..., M, and 
VU~j+' E Z. j = 1, 2, ..,M; 

(II) for j=1,..., M there holds IVEjljo < k. 
It is easy to see that (3.12) and (ii,b) give (I), (II) for M = 1. Suppose now 

that (I) and (II) hold for some M, with 1 < M < J - 1 . Then the hypotheses 
of Proposition 3.1 are fulfilled, and (3.13) gives 

M+1 

FM+1 < ck2(k2 + khr-1 + hr)2 + ck Z Enn 
n=1 

where 

En, n- I= IIEn - En-1 112 + k2 IIV (En + En-1)j12 + k2 1V(En - En-1)112. 

When q, > 1/4 it follows that p1 + q1 > 0 and q1 - p1 > 0. Hence, we can 
choose a ko such that for k < ko we have 

M 

EM+1,M < C*k2(k2 + khr-1 + hr)2 + C*k Enn1 
n=1 

where C* is a constant independent of h, k but also independent of M. We 
shall follow this convention in the sequel as well; i.e., C* will denote a positive 
constant, not necessarily the same at any two places, but always independent of 
h, k,and M. 

The discrete Gronwall lemma now gives 

(3.16) ~En+, n < C*k2 (k2 + khr- I + hr)2 exp(C*kn) 

*3.16) < C k2(k2 +khr-l +hr)2, n = 1, 2,..., M. 

Since IIEnII < Z7n IjE' - Ei-'11 + IIE01 , taking square roots on both sides of 
(3.16), and using (3.12) once more, we have 

(3.17) IIEnII < C*(k2 + khr-l + hr), n = 0, 1, 2, ...,M+ 1. 

Now (ii,b) and (3.16) give 

IVEM+lK| < C h-N/2IIVEM+lII < C*h-N/2(k2 + khr + hr) 

and 
IVEM+2I < C*hN/2(k2 + khri + hr). 

From our hypotheses we have IVEM+lKoo IVEM+2K < a/2 for sufficiently 
small h and k. Taking h small enough so that IWM+1 - uM+lI, ,I 
| J M 11 0 3/2, we have VUM+ VUM+2 E Z, i.e., that (I) is 

valid for M + 1. 
For the proof of (II) we observe first that (3.16), (ii,b) give (C3 is the constant 

in (ii,b)) 

IVEM+lK| < C3h-N/2IIVEM+l II < C3C*h-N/2(k2 + khr1 + hr), 

and we distinguish the following cases: 
(1) When N = 1 , then from our assumptions it follows, for sufficiently small 

k and h, that IVEM+l K < km i. e., that (II) holds. 
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(2) When N = 2, the assumption (,6) of ? 1 yields 

3C3C*kh-1 < 1, 3C3C*h-2hr < kh-' and r> 2, 

and therefore that I VEM+l loo < k . 
(3) When N = 3, for IVEM+1 > < k to hold, it suffices that 3C3C*kh-312 ? 

1 and 3C3C*hrh-312 < k or 3C3C*h-3hr < kh-312 < (3C3C*)-'. This rela- 
tion is a consequence of assumption (y) of ? 1 for small h. 

In conclusion, therefore, we have proved that (I), (II) hold for M + 1, and 
thus (3.17) holds for any M with 0 < M < J - I ; the proof of the theorem is 
complete. Cl 

Remark. A possible choice of the starting values UO, U1 is: Let U0 = WO 
and U1 = WO + kPu1 + k2Pu(2)(0)/2 , where P is the L2 projection on Sh, 

and u(2) (0) is computed using (1.1). This choice requires the solution of one 
nonlinear system. One can verify that the U0, U1 defined above satisfy (3.12). 

A completely analogous result holds for the nonlinear scheme (3.2). In par- 
ticular, we have the following theorem whose proof is given in [18], 116], and 
is carried out using Banach's fixed point theorem. 

Theorem 3.2. We assume that the initial values VO, V1 E Sh for the scheme 
(3.2) satisfy (en = Vn _ Wn) 

(3.18) 1k1e6-0112 + k2(lIIVe1 112 + 1lVegOl2) < ck2(k2 + hr)2. 

If k, h satisfy the mesh hypotheses (a), (/B), (y) of ?1, then for every n, 2 < 
n < J, the solution Vn of (3.2) exists in Sh . Moreover, there exists a constant 
C independent of k, h such that 

(3.19) max j Vn - u(tN)jI < C(hr + k2). 0 
0<n<J 

4. HIGH-ORDER SINGLE-STEP FULLY DISCRETE SCHEMES 

In this section we shall construct high-order in time single-step fully discrete 
schemes to approximate the solution of (1.1). To motivate the construction, 
consider the semidiscrete approximation of u, Uh: [0, T] -- Sh, which satisfies 
(1.6) with given initial values uh (0) and i (0) in Sh . If 

h(t) = (uh(t))' F = 
i 

- ky(t)J = 

the semidiscrete equation can be written as a first-order system 

(4. 1) (94, t D) - (,VZ h, 5 ?) = (F.5 D), 5V( E Sh X Sh, 

where V: Sh x Sh -* Sh x Sh is the operator defined by 

V (/ I = 2 (-~ tVI) E Sh x Sh, 

and A has been defined by (1.3), and where by (,*) we denote the L2 x L2 
inner product as well. 

The fully discrete schemes which we are going to construct are based on up to 
fourth-order accurate rational approximations to the exponential. Following [ 1, 
3, 4], we consider the rational function r(z) = P(z)/Q(z), where P and Q are 
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relatively prime polynomials of degree up to two, given by P(z) = 1 +PI Z+P2Z2, 

Q(z) - 1 + q1z + q2z2. We suppose that r has the following properties of 
accuracy and stability: There exists an integer v, 1 < v < 4, such that 

(Ri) JP(z) - ezj < clzlv+l , lZI ?- 0 

(Rii) I (z) I< 1 forz E iR. 

An immediate consequence of (Rii) is that 

(Riii) Q(z) :# 0 for z E iR. 

It is easy to see now that for any smooth function y = y(t) and k > 0, there 
holds 

(4.2) y(t + k) + qlky'(t + k) + q2k2y"(t + k) 

= y(t) +?pky'(t) +P2k2y",(t) + O(kv+ly(v+l)). 

Motivated by (4.2), we proceed to the construction of the scheme. The first 
derivative Wh, t is given by (4.1). For the approximation of the second deriva- 
tive we have 

(Zh htt D) (( iiAh) )D (( )D D t_ Sh X Sh. 

The definition of A yields for X E Sh 
N 

ai 
(at(Auh), X) = Z_ 

(0j (V Uh)aflUhj 
O 
aXi) 

i,a,j,fl= 

=ua(uh; Uh, x) = (L(Uh)ih , x) 

From the above relations we have for in := (tn) tn=nk, k=0, 1, ... J, 
Jk= T. 

(4.3) Z/n+ kql eVZ /n+ 1 k2q /Zn+l - Zn + kp,.V Z/n + k 2 aZ/gn + Fn 

where we denote 

(4.4) Fn ( + - 
k2(q2 f n+1-P2 

f n) 
( * - V~~~k(qlf n+1 p1 f n) + k2 (q2f (1)n+1- P2 (1) n)J 

f n := Pf(tn), f(l)n := pJ(tn), and s': Sh x Sh -* Sh x Sh is the operator 
defined by 

Jg (>t- (-A~1)2)7 ( ) E Sh X Sh 

Let Un E Sh be the approximation of u(tN) which we shall compute from our 

scheme. Also let Un1+l be a linear combination of previous values Uli, n - m < 

j < n, which approximates U(tn+I); for the specific formula cf. (4.6) below. 
Starting from (4.3), putting v = Un+l and w = Un+l in the Taylor formula 

(3.3) and dropping second-order terms with respect to V(U1n+l - Uln+j), we 
finally obtain the following linear fully discrete scheme to find approximations 
Un (U(tn)) Un E Sh x Sh: Let Ui E Sh XSh, 0<j<n<J-1,begiven. 
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Then define Un+1 E Sh x Sh as the solution of the following linear system 

+ kqI2~l U'~1 + k2q2 21 U 

(4.5) -(k2q2AUrnl (k2q2L(Uln+l)Uln+l) 

VkqIA~~ I VkqL(Uln+ )Uln+l 

-(Un + kp1VWUn + k2p2P'Un) = Fn) 

where 

Our aim, now, is to show existence, uniqueness, and convergence of these 
approximations to the solution u of (1.1) as k, h -- 0. In particular, we shall 
prove in this section that if k-lh-N/2(hr + kv) is small then, cf. Theorem 4.1 
below, 

max (Hju) - UN1I + 1j U(tn - U2nIj) < c(hr + kv). 
O<n<J 

We first introduce a family of norms to be used in the error estimations. If 
w(t) := W(t) is the elliptic projection of the solution u(t) of (1.1), defined by 
(1.5), we denote 

>(t) := (2t) E Sh x Sh 

and f7n := (tn). We define now the following inner product in Sh x Sh: 
Suppose that h is sufficiently small to ensure that Vwn E Z, and let 1 = 

(02) + T (#2) E Sh X Sh . Putting 

(((D T))n = (L(wn)0/), , VI) + (0/2 < VW2) 0 < n < J. 
we observe, since Sh C Ho and L(wn) satisfies (ii,a), that ((., *))n is an in- 
ner product on Sh x Sh with corresponding norm IjjjDI12n := (L(wn)0q, q,) + 
(02 , 02) = IjL1/2(wn)01 112 + Il2 112, 0 < n < J. Define now two operators of a 
form similar to n: 

(n = L(un) o) and -+1=(L(wn+I) ;) 
We observe that (Y(D, (D))n = V 4t? E Sh X Sh. 

Consistency. Assume that for a smooth function y = y(t), the approximation 
yn+l yfyn+l is defined for n > 3 by 

(4.6) n+ = aly + a2Yn1 + a3Yn-2 + a4Yn-3 

where the numbers al, a2, a3, a4 are chosen such that I9n+1 - yn+l j < ckv 
for every n, 3 < n < J- 1. (Obviously, we may take a4 = 0 if v = 3, 
a4 =a3 =0 if v =2, etc.) 

We have now the following result. 

Lemma 4.1. For 3 < n < J - 1 and h sufficiently small, we have 

7/n+1 + kqI5f+ l nf1 + k2q2 n -nf l 

_k2q2Abn+ 1 (k2q2L(7bn+1) Wn+1 

(kq1Azbn+l + kqIL(qn+I)1n+J 

- (ln + kp152 /fn + k2p2V' 1n) = Fn -Fn 
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where IF, E Sh satisfies 

IIIj111H < ckv+l(k2h-1 + k2hr-3 + k3h-2 + 1) + ckhr(1 + kh-1). 

Proof. For the terms of first order in k we have, choosing h small enough to 
ensure Vw(t) E Z. O < t < T. that 

kq11n+ln - (kqjAJ n+l ) + (kq1L(? n+l)w n+) - kpl.W 7ffl 

(7kq).V 7,n+l - kp'.V / n + (kqB(wn+l , wjn+ 1)) 

where the operator B: Sh x Sh -* Sh is defined as follows: For every x E Sh, 

(4.8) 
N 

(B(+,~~~ afl(O 
- ) V d j-Y a0y ()k -f k) 

i,a,j,fl,k,y=1l 

x 0a k (yv + TV7($ - V)) dT, aXi). 

For the estimation of B(wn+l, jn+1) we use (v), (iv,a,b), (4.6), and the 

smoothness of Si, so that 

I(B(wn+1 , _xn+-)), J)) 

N 

< z (aO[(Wn+_ Ujn+) )(-tn+ _ fn+1))] 
i,a,j,fl,ky=1 

x - u~~1 - (~j~n+1 - Ibnfl+)]Jf aaZi) 

X aY (Wk Wk )inZ 

N 

+ 
( 

-a)u ( Un+)1 - l+J 1 

ia, aj, ,k,y=l 

X ay[(Wnk - n+1) _(,pn+l-U ]n aaX ) 

N 

+ (a, (Un+l _ f4n+I)a9y(Un+l _ fn+1)Ijin aaRi) 

i,al,j,fl,k,y=1 

<ckv+1hr-lIjvx ?V+ckv+2IIVxII forX E Sh, 

where 

Jin :1 | f a0 ny (1+jTV(Wn+1_n+l))dT and i:= (i, a, j, 8, k, y). 

Using (ii,a), we conclude 

(4.9) kIlIB(Wn+l j, n+l)ll < ckv+l(khr-2 + k2h-1). 
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In order to complete the estimation of the right-hand side of (4.7), we just 
substitute kql.W 2rn+l - kpl. 7/fln by 

kq1.W 7fn+l - kp1.W 7ffn 

(4.10) - kql)(+)f-kpl tbn) ( 0 p 
-kql pin+l -kpl pin J kql f n+1 - kpl f nJ 

where we have used that Awn = Aun and (1.1) (Aun = f n - pin) 
For the estimation of the terms with coefficient k2, we observe, using (3.3) 

and (4.8), that 

(4.11) 

- (k2q2Adbn+l - k2q2L(Dn+l)z + ) _-k2p2,_ 

=2 -n+ - k2p2-W 'in + (k2q[L(Wn+l )-L(7n+ l)]7n+l 

From (ii,a), (4.9) we have 

(4.12) k2IIL 12(wn+1)B(wn+l , djn+l)ll < ckv+l(k2hr-3 + k3h 2). 

Also, the definition of L(.) and relations (4.6), (iv,b), (v) give 

I([L(Wn+l) - L(zbn+l)]zbn+l , x)I < cIIwn+1 - bn+l 11 , l I 1 , 00 IVX 

? C(II(Wn+l _ u n+1) _ (dwn+l _ fn+1)11, + IIUn+1 _ fn+ll|l,)IV 

? c(kvhr-I + kv)IIVx II1 

Hence, using (ii,a), we obtain 

(4.13) k2 1 [L(wn+l) - L(zbn+l)]bn+l 11 < ckv+"(kh-'). 

For the other terms of (4.1 1) we observe that differentiating Aw = Au with 
respect to t and using (1.1), we obtain 

2 / //-n + 2 /7/(-n q2q2i nl+ k2 P2AWn k q2-W - 
-k P25W - k2q2L(Wn+1)7wn+lI + k2pLw ) ) 

(4.14) (k2P2P(an+l - n+l) - k2p2P(an - zf)) 

+ ( k2q2Wpk2P2 )) - ( k2(q2f - P2 
Vk2q2pU(3)n+l-k2p2 pU(3)n J kk2(q2f (1)n+1 - P2f (1)n)J 

Using (ii,a), (iv,b), we have 

(4.15) k 2IIL112(Wn+ )[p(in+1 _ g)n+l )]II < ckhr(kh-l). 

Note also that 

Wn+l -Wn 0 

(p(un+l - .)) (p[(wn+l - Ul) - (Wbn - )] 

where (iv,b) again gives 

(4.17) Ilp[(zbn+l _ an+l) - (zbn _ un)]Il < ckhr. 
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Summarizing, we need finally an estimate for 

Fn _ Wn+1 - Wn + k q,,bn+l _pbn 

(4.18) ( ;P(2n+l 
- 1n)) + qp[qn+f-plun]) 

+ k 2 q2'd)- P2 )n 
+ 

q2Pu(3)n+l-;P2u(3)n) 

Using (4.2), (ii,a) and (iv,b), we obtain, putting p(t) = w(t) - u(t), 

JILll2(Wn+l)[(Wn+l + kq,~n+l + -2q2n+l) -(wn + kp,,a'n + k2P2wn)]jj 

? cII(un+l + kqlijn+ + k2q2iin+l) - (Un + kpii'n + k2p2an) 11I 

+ cII(pn+1 + kqlpn+l + k2q2pn+l) - (pn + kpipn + k2p2pn)I1i 

? ck+(+ hr-i). 

Also, from (4.2) we have 

Ilp[(un+l + kqlijn+ + k2q2U(3)n+l) - (fn + kpliun + k2p2u(3)n)]II < ckv+1. 

Therefore, we obtain 

(4.19) 111I 111n+1 < ckv+". 

Now combining (4.7)-(4.19), we obtain the desired result. 5 

The basic error equation. Let En = un - ln . Using the fully discrete scheme 
(4.5) and Lemma 4.1, we have for 3 <n < J - 1, 

En+1 + I( nlZ~ n+1 ) + k q2 ,i2+ un+ 1-n2+ 1n+1 

(k2q2[(AUl1 -L(Url)U,) - (Azn~l - 

k kq,[(AU n+l -L(Urn+l )Ur) - (Azbn+l -L(zbn+l)zbn+l)] J 
= En + kpl (sVU _- s 7/) + k2p2(V' Un _ _7/tn) + rn. 

In the sequel we assume that VUfn, VUI 
' E Z. Then it is easy to verify that 

-( -1&l+I)Uln+l-L(dn+I)Wn+l) _ UAnl _ An+l -(L(Url)U' -Ltb1)~) - (A"'r1 -A 

+ (L(Urn+) U+1 L- 

-=-L(tln+l)(Urn+l - WU) n-B(Urn+l, bn+l) 

- [L(Ulr~)(U1n1l - Ul~1) - L(7bn+l)(Un+l - +)] 

and 

&n+l ) un+l_ L(bn+l),bn+z - L(tbn+1)(Un+1 -_ in+l) 

+ (L(Urn+) - L l 2))U2~l 

Noting also that A Urn-Awn = L(wn)(Uin-wn)+B(Ur, W n) and L(Uln) U2 
L(Wn)tbn = L(wn)(Un - bn) + (L(Ur) - L(wn))Ujn, we come to the basic error 
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equation: If VU1n, VUn+ e Z, then there holds 
(4.20) 

En+l + kq15n+1E n+1 + k2q2 n2 E 

= En + kpYnEn + k2P2Yn2En 
2 ~ ~ -Un~) {kq2 -L(U n+ 1 ) ( Un+ 1 _&+ 1 ) - L( 

^ n+ 1 ) ( Un+ I I n 
+ kqi[L(Un+l )(U1n+l - un~1) - L( n+l 

)(Uln+l - +)] 

(k2[q2B(Uj&n+l, in+l) W-p2B(Ujn), w] 

+ k[qlB(UWn+1, wb+1)-pIB(U1n, wn)]) 

1' 0 
+k2[q2(L(Uln+1) - L( n+1))U1n+ -P2(L(Uln) - L(wn))Un] + rn) 

En + kp5fnEn + k2p25n2En + An + A n + An + rn 3 < n < J- 1. 

Now letting 

Qn+i = Q(kfn+I), Qn = Q(k~n), and Pn =P(kin), 
we can give the error equation (4.20) the form 

(4.21) Qn+,En+i = PnE n +A n +A n +A n + rn 3 < n < J-1. 

Properties of the operators Qn , Qn,, Pn . In what follows we shall show some 
properties of the operators occurring above. First note that 

(I) IIVDIIIn+i < (1 + ck)IIIFDIII, V E Sh x Sh. 
Indeed, from the definition of III IIIn+1 we have jIjj(DII12 = (L(wn+,)Ol/, q1) + 

(q2, 02); hence (v), (ii,a), (S2b), and the definition of L(v) give 

III(z}II12+ 
_ 
liII(DII2 = ([L(Wn+1) -L(wn)]?O1 . ?1) 

< ck sup Itb(s)I1,0011VqI12 < ck(L(wn)q$', q1)) < ckIIIIIIIj, 
sE[tn-l ,tn+ll 

or IIIjj11n2 < (1 + ck)IIVI(II < (1 + ck/2)2IIIDII2n , which gives (I). 
An immediate consequence of (I), of the fact that 5n has purely imaginary 

eigenvalues, and of the stability assumption on r is that 

(II) IIIPn(IIIn+1 < (1 + ck)IIIQn(DIIII , V(D e Sh x Sh. 

We also need an estimate for DV(Qn+1 - Q6n+l)Illln+l . For this, first observe 
that 

l- Qn+i)d = kq1 ([L(wn+l) - L(wn+1)]qOl) 
([L( '~ ) 

+ k 2q2 ~[L(Tbnfl+) - L(wn+l)]q2,k k 
[L(7bn+l )-Lw l )12 [wn -L(Wn+1 )]02} 

Relations (-v), (ii,a) give 

l([Lw ~ - L(wn+1)]q$1 ,X)I < ck sup wjz(s)jIOjVO$1 II IIVxII 
sK[tnhltn+l) 

< ckh- 1(L(wn+,)l )?' 01 ) 1/2 l11X 
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and k2I([L(zbn+l) - L(wn+l)]02, X)I < ck(k2h-2) 110211 llXII . Similarly, using 
(ii,-a), (v), 

k21 1,l2 (W n+ I )[(n+l ) _ W L n+l ]bX 

< ck3 sup Izb(s)I 1,oI VVO III I IVL112(wn+1)XII 
SE[tn- I, tn+l I 

? ck(k 2h -2) (L (Wn+1)0, , Obl)II211XI 

Since now ((YnD, D)) n = 0, V E Sh x Sh, we have for any D E Sh x Sh 

IIIQn+ iI(III2 + = JIL /2(Wn+1)0i 12 + (q2 - 2q2)k2JIL(w fW+)q$ 1i2 
+ q4k4 IL3/2((Wn+1>/ 112 + 1102 112 + (q2 - 2q2)k2JILl/2(wn+l)02 112 

+ q24k4 lL(Wn+l 112. 

Note that if v > 3, then (4.2) implies that q2 = - 6. Hence, a straightfor- 
ward computation shows that if q2 = 0 for v = 2 (no real restriction), then 
q - 2q2 > 0 for v = 2, 3, 4. Therefore, we have 

(III) 1ll Qn+ 1 DII1n+ 1 > III oDII2+ 1 ,V8D E Sh x Sh. 
Consequently, we have proved the relation 

(IV) III(Qn+1 - Qn+iAIIIn+l < ck(kh' + k 2h 2)IIIQn+lIIIln+l, VCD E Sh x Sh. 

Now using (4.21) and (I)-(IV), we finally obtain 

III Qn+ En+l IIIn+l = IIIPnEn IIIn+l + III(Qn+l - Qn+i)En+l IIIn+ 
(4.22) + 111An + An + An + rnFII+1 

< (1 + ck)IIIQnEn IlIn + ck(kh-' + k2h-2) IIIQn+lEn+l IIIn+l 
+ IIIAln + A~n + A~n + FnIlnl 3 < n < J -1. 

Convergence. At this point, to complete the first phase of the error estimations, 
we need estimates for I1An IIInn+l , i = 1, 2, 3. This is done in the following 
proposition, the proof of which can be found in [18], [16]. 

Proposition 4.1. Assume un, UnlU&n1 E Sh x Sh and VUn, 1+ E Z. 
Then for 3 < n < J - 1 there holds 

111 Qn+,1En+ 1 111n+l1 < ( 1 + ck)I111QnEn 111n 
+ ck{kh-1 + k2h-2 + (h-I + kh-2)1E "n+ I 

I }IIIQ n+E IIIn+l 

(4.23) + ck{kh-l + k2h-2 + (h- + kh2)(IEln1Iio + IEEIil) 
x (IIIQlEEIIIn + IIInn-2E 

2 
+ En-2_ 

+ IIIQn-3En-3 IIIn-3)} 

+ ckv+'(1 + kh-' + k2hr-3 + k3h-2) + ckhr(l + kh-1). E 

We are now ready to state and prove the following convergence result. 

Theorem 4.1. We assume that Uj E Sh x Sh, j = 0, 1, 2, 3, have been chosen 
in such a way as to satisfy IIIQjEjII1j < c(kv +hr). Then for every n, 4 < n < J. 
the element Un E Sh x Sh exists uniquely as the solution of the linear system 
(4.5). Let kh <ca for some a >0 and k-lhIN2(hr+k)hC, where C is 
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a sufficiently small constant and suppose that the rational function P(x) satisfies 
(Ri), (Rii). Then, there exists a positive constant c independent of k, h such 
that 

max III QnEnIIlIn < c(kv' + hr), 
O<n<J 

and consequently 

max (2 u -U< + Ibn- U2II) < c(kv' + hr). 
O<n<J 

Proof. We shall show the desired result by induction on M, 0 < M < J - 1. 
The induction hypothesis on M is 

(a) Uj exist in Sh X Sh, = 0, 1, ...,M, and VUj E Z. j = 0, 1,... , M, 
and VU'+' E Z, j = 1, 2, M+ 1; 

(b) for j =1, . .. M there holds IVE < kk. 
Since II QjEI IIj < c(kv + hr), j = 0, 1, 2, 3, we have the validity of (a) for 

M = 3. Also, using (ii,b), we see that IE I, ? < ch-N2 (hr+kv), j = 0 ... ., 3, 

which gives (b) for M = 3, taking k- I h -N/2 (hr + kv) sufficiently small. 

We observe first that if (a) holds, then (ii,a) gives that YM+1 has purely 
imaginary eigenvalues. Therefore, by (Riii), UM+1 exists in Sh as the unique 
solution of the linear system (4.5). 

Suppose that (a) and (b) hold for some M with 3 < M < J - 1. Then the 
assumptions of Proposition 4.1 are fulfilled and (4.23) takes the form 

IIIQn+lEn+lIIIn+, < (1 + C*k)lllQnEnIlIn + C*klllQn+,En+l IIln+ 

+ C*k(IIIQn-1E 'IIln-1 + + IIIQn-3E 3IIIn-3) 

+ C*k(kv +hr), 

where the constant C* is independent of h, k but also independent of M. In 
the sequel, C* will denote a positive constant, not necessarily the same at any 
two places, independent of h, k, and M. 

Letting Tn = jjjQnEn' IInk we have for sufficiently small k that 

T~n+1 - Tn < C*k(Tn + . . . + Tn-3) + C*k(kv' + hr) , n = 3, . .., M. 

Usingnow Tjl< C* (kv+hr), j=0,... 3,andsummingfrom n=3 to M, 
we get 

M 

TM+1 < C* (kv + hr) + C*k E Z i. 
j=O 

The discrete Gronwall lemma therefore gives that 

(4.24) TPM+1 < C* (kV + hr) exp(C*kM) < C* (kv + hr). 

Now (4.24) and (ii,b) give (a) for sufficiently small h, k. Choosing C small 
enough, we get, using again (4.24) and (iib), that IEm+'ij,1Ii < k, i.e., that (b) 
holds for M + 1 . Consequently, (a) and (b) hold for every M, 3 < M < J. 
Hence, (4.24) holds for every M, 0 < M < J - 1. Now using (III), (ii,a), 
(iv,a,b), and the Poincare inequality, we complete the proof. Dl 
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Remark. We may choose the starting values as UO = w0, U2? = Pul and for 
j= 1, 2, 3: 

u w 0+PZ (jk) u ()(0) U, =P (jl 0+0(0). 
1=1 1=0 

The terms u(m) (0) are computed in terms of the initial data, using the equation 
(1.1). With this choice we have III QEjlIlj < c(kv + hr) . We omit the proof. 

5. APPROXIMATION PROPERTIES OF THE ELLIPTIC PROJECTION 

In this section we shall justify, under certain assumptions on Sh, the prop- 
erties (iv,a,b), (v) of the nonlinear elliptic projection W(t), which has been 
defined in ? 1 as the function in Sh satisfying 

(5.1) a(W(t), X) = a(u(t), X), VX E Sh, 0 < t < T. 
For the existence and uniqueness of W and the validity of (iv,a), we refer to 
Dobrowolski and Rannacher [12] and Rannacher [19]. Also, it can be proved, 
Rannacher [20], following the analysis of Rannacher and Scott [21], that 

(RS) Ilu - WI11,0 < ch'-1. 

In the sequel we shall use (RS) to avoid the restriction hypothesis r- N/2 - 1 > 0 
in the proof of (iv,b) for j = 1 . However, our proof of (iv,b) for j > 2 needs 
this assumption. 

We proceed now to show (iv,b), (v) for j = 1. Differentiating (5.1) with 
respect to t, we get 

(5.2) i(W(t); W(t), X) = i(u(t); 1t(t), X), VX E Sh, 0 < t < T. 

For the HI norm estimate we first assume that h is small enough to ensure 
that VW E Z. Using (5.2), (ii,a), (S2b), and (iii,a), we obtain 

MoIIV(W _ ii)112 < &(W; W _ ii, W _ il) 
= (W ; W - u , pi, - il) 

+ [&(u; 1a, W - Pza) - a(W; i, W - pi,)] 
< chr-1IVW - il I + chr-lIlP(JW -)Il 1. 

Hence, since IIPv 11 I < cllv 11 l and Sh C Ho , we have 

(5.3) IIV - ulli < chr, r > 2. 

The relations (iii,a) and (ii,a) give (v) for j = 0. For j = 1 we have, cf. [6], 

IIWl 1,ooI < 11 W - lIl , oo + IlIull 1,Do I < 11 W - X111, oo + Iliu - Xl, oo + C 

< ch-Nl2(IIW - ulll + liXlll %1) + lillu-%1,0,,+ c for any %E Sh. 

If the element q$ e Sh satisfies lq$-z1 , oo<chr-l, putting in the above relation 
X = +, we have 

II W ||,1 < chr-N/2-1 + C 

Hence, (v) holds for j = 1 if r - N/2- 1 > 0. 
In the sequel we consider the following linear boundary value problem: For 

given g E L2(j2)N let v E Ho be the solution of 

(5.4) d(u;v,q$)=(gq0), VqOeHo, 
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where u is the solution of (1.1). The problem (5.4) has a unique solution 
V E Ho, which satisfies the elliptic regularity conditions, cf. [14], 

(5.4a) IIVIlk+2 < C11911k, k > O. 

Now let Vh be the solution of the following discrete problem in Sb: Find 
Vh E Sh such that 

(5.4b) a(u; Vh, X) = (9, X), VX E Sh; 
then it is known that we have, cf., e.g., [12], 

(5.5a) I|V -Vhll + hllv -Vh l < ChrllVllr, 

(5.5b) lIV - VhIloo + hllv - Vhl loo < Ch' log l V , 
where 6(r)=O if r>2 and 6(r)=N+1>0 if r=2. 

We return now to the error ui - W. For the proof of the L2 estimate, let ' 
be the solution of the boundary value problem 

(5.6) a(u; T, 0) = (ui- W, 0), V1O E Ho'. 
Then we have 

IliU _ W112 = a(u; ui - W). 
Also, (5.2) gives a(u; u- W, X) = a(W; W, X)-a(u; W, X), X E Sh . Hence, 
if Th is the solution of the discrete problem in Sh corresponding to (5.6), we 
obtain 

(5.7) Iiu - W112 = a(u;P - TIh, U - W) + [a(W; W, Th) - a(u; W, JTh)]. 

From (5.3), (5.5a), and (5.4a) we see that 

(5.8) ja(u; ' - 'Ph, U - W)j < chITI'P2hr-l < chr 1jj - _ Wd 
For the estimation of the last term of (5.7) we first observe that 

a +u; W, JO W- a(W; WTO I 

< ja(u; W - ui, Th) - a(W; W - ui, Th)I + ja(u; ui, Th) - a(W; ui, Th)I 

< ja(u; W - ui, ~h - T) - a(W; W - ui, Th- -) 
+ jii(u; W - ui, T) - a(W; W - ui, T)I 
+ jj(u; ut, 'h -'P) -a(W; iu, 'Ph -)I + ja(u; iU, T) -a(W; iu, T)j 
a, +a2+ a3+ a4. 

Since Iu - WI,, < c, we have as in the proof of (5.8), 

a, = Ia(u; W - i, 'Ph - T) - a(W; W - i, 'h - T)I < chrIiju - WII. 

For the term a2 we distinguish the following cases: 
(a) N = 1; then JITII, oo < CIITP112, and hence 

a2 = jj7(u; W - ui, T) - a7(W; W - u~, T)1 < chrliju _ WII. 

(b) N = 2, 3; then, using (RS), we obtain 

a2 = l7(u; W - it, 'P)- a(W; W - it, ')I < ch2r-21IPll < chri_ W- 

Since jijiclo < c, there holds 

a3 = jj(u; it, 'Pb -') - a(W; it, 'Pb -')j < chrlIl112 < chrjjit_ Wjj. 
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For the estimation of a4 we shall use the following Taylor formula: For 
v, w E Z there holds 

a(v; q,/) - c(w;q$, q/) 

E (Oy(Vk-Wk)Of6j ajfl (VW), 1ai) 

N 

+ E ad (V1l- Wi)1Y(Vk - Wk)O/ff8k 
iat j 8 i k 9y1 I,==1 

x ,/0 a, jfam (VeW + TV (v - w)) dT, aa qi) 

=b(v, w, Q. V) +d(v, w, X, v/). 
Taking h sufficiently small to ensure that V W E Z, we apply the above formula 
for W, i, 'P and u, it, T: 

a4 = I (W; zt, T) - d(u; z, 'P)I = Ib(W, u , zI ' ) + d(W, u , , 'P)I. 
For the estimation of b(W, u, t, UP) we use the Gauss-Green Theorem and 

the fact that Sh C Ho, and obtain 

Ib(W, u, iiu T)I= E {Y[flij arfl( (Vu) aTij (wk Uk)} dx 
i~~~lky=1 

< CII1II2,1ooIIuII2,c1oIITII2IIW - ull. 

Since u is smooth enough, using (5.4a) and (iii,a), we obtain 

Ib(W , u, z, ')I < chrlls -W. 

In the same way as before we estimate the term d(W, u, zt, I): In partic- 
ular, if 

(a) N = 1, then, since ITIPIi, o < CIITP12, we have 

Id(W, u, ii, T)l < chrllj _WII, 

and if 
(b) N = 2, 3, using (RS), we see that 

Id(W, u, iU, P)I < ch2r-2IIPI1 < chri- _W 

Summarizing the above estimations for a1, a2, a3, and a4, we obtain 

(5.9) I&(W; W, Ph) - a(u; W, Th)I < chrilt - _WII. 
Combining (5.7), (5.8), and (5.9), we finally conclude 

(5.10) Ili(- WII < ch, 

which is (iv,b) for j = 1 . The proof for j > 2 is given in [18], [16]. 
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