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SECOND-ORDER ABSORBING BOUNDARY CONDITIONS 
FOR THE WAVE EQUATION IN A RECTANGULAR DOMAIN 

DONGWOO SHEEN 

ABSTRACT. We study finite element methods for the wave equation in a rect- 
angular domain with a second-order absorbing boundary condition imposed on 
the boundary. For this problem there seems to be no known finite element 
method, although many finite difference methods have been proposed. A third- 
order energy, however, will be introduced which will be utilized to reduce our 
original second-order problem to a first-order symmetric dissipative hyperbolic 
system. Then, for this first-order system a weak formulation will be given and 
continuous-time and discrete-time Galerkin procedures will be investigated. Er- 
ror estimates will also be given. 

1. INTRODUCTION 

We shall study the problem 

(l~~l~~i) Su =_ utt - Au = O on Q2 x J. 
(1.1.ii) on+x2utv+uv=0 onIxJ, 

(l~~l~iii) ~u(x, y, O ) = 0(x , y) on LI, 
(I.1.iv) Ut(x, y, 0) = V(x, y) on Q. 

where { = {(x, y) 10 < x < I O < y < 1 }, I = aQ, and J = [0, T] for 
T > 0, and v and T denote the unit outward normal and the unit tangential 
vectors on F. The subscripts t, x, y, v, and T of the variables will be used 
to indicate the derivatives of the variables with respect to the subscripts. Let 

v = rFO u rFX U r'O U r'F, 

where 
;J={(x y)eIFI=i}, C=xy, i=O, 1. 

The boundary condition (1.1 .ii) is a form of a second-order absorbing boundary 
condition suggested by Higdon [8] and Keys [10] independently. A general form 
of the Nth-order condition is given by 

[P (cosj + )1u=O onrxJ, 
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where ljl <7r /2, j = 1, ..., N. In the above boundary condition each factor 
perfectly annihilates wave components arriving at F with incident angle Oj . If 
the solution of (1.1) is smooth enough, an application of equation (1.1 .i) shows 
that the boundary condition (1.1 .ii) is equivalent to 

(1.2.i) Utt - UtX - I uyy = 0 on I0 X J. 
(1.2.ii) utt + utx - Iuyy = O on Px x J, 

(1.2.iii) Ott - uty - lu~xx=O on ryox J. 

(1.2.iv) Utt + uty - I uXX = 0 on ly, x J. 
which is given by Engquist and Majda [5], and earlier proposed by Claerbout [2]. 
Indeed, Engquist and Majda [6] and Bamberger, Joly, and Roberts [1] suggested 
modified forms of (1.2) to take into account corner instability. However, in 
this paper we shall use the boundary condition (1.2) or (L. .ii) for simplicity. 
Although many finite difference schemes have been proposed for the second- 
order absorbing boundary condition (see, for example, [3, 4, 5, 6, 8, 9, 10]), 
no finite element approach seems to be known. The main difficulty comes 
from the order of the boundary condition for which it is not easy to derive a 
weak formulation which provides a consistent energy estimate with a suitable 
choice of a test function in the weak formulation. Recently, HaDuong and 
Joly introduced higher-order energies [7], which will turn out to be useful to 
initiate the study of a finite element approach to problem (1.1). HaDuong 
and Joly actually used a second-order energy for problem (1.1) in a half-plane 
to show stability of the problem. However, we shall see that if the domain is 
rectangular, the corresponding energy should be of third-order. Using this third- 
order energy, we are able to reduce problem (1.1) to a first-order symmetric 
dissipative hyperbolic system, for which finite element methods can be applied 
without difficulty. 

The plan of this paper is as follows. We shall introduce a third-order energy 
associated with the system ( 1.1 ) in the next section. In ?3 we shall derive a first- 
order symmetric dissipative hyperbolic system from (1.1) using the third-order 
energy defined in ?2; the first-order hyperbolic system will be analyzed and a 
weak formulation will be given. In the following ??4 and 5, continuous-time 
and discontinuous-time Galerkin procedures will be studied for the first-order 
hyperbolic system. Error estimates will be obtained for these schemes. 

2. HIGHER-ORDER ENERGY 

In this section we shall use the original idea of second-order energy introduced 
by HaDuong and Joly [7] to define a third-order energy associated with our 
problem (1.1). See also [14]. 

To begin, first observe that we can differentiate the equations (L. .ii) on 
'x0 U Fxt with respect to the t- and y-variables to get 

(2.1.i) Uttt - 2uttx + utxx = 0, Utty - 2utxy + uxxy = 0 onFox 

(2.l.ii) Uttt +2uttx + utxx = 0, Utty +2utxy + uxxy = 0 on . 
Similarly, on FYO U FYI, by differentiating with respect to the t- and x-variables, 

(2.1.iii) Uttt - 2utty + utyy = 0, Uttx - 2utxy + uxyy = 0 on "yo 
(2.1.iv) Uttt + 2utty + Utyy = 0, uttx + 2utxy + uxyy = 0 on Ij". 
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Throughout this work, (. ,*) denotes the L2-inner product over L2(Q) and 
(, )r the L2-inner product over the trace functions in HI (LI) on F. The 
corresponding norms will be denoted by 11*11 and I Ir, respectively. Also, for a 
nonnegative integer k, Hk(Q) and 11 Ilk will be used to designate the standard 
Sobolev space and its norm. 

In order to derive an energy identity, we recall that in the half-plane case 
HaDuong and Joly essentially added the L2-inner product of the t-derivatives 
of Yu and ut to the L2-inner product of the x-derivatives of Yu and ut. 
The x-direction in this case was the normal direction to the artificial boundary 
of the half-plane. Therefore, in the rectangular domain case we consider the 
following L2-inner product: 

202Yu Yu_ a2 02 
ut 

(2.2) 0= a2 Yu Yu ta2YUt a02 ut,! Mty axay t a xay 

for u satisfying (1.1). By the divergence theorem and the conditions (2.1) on 
the boundary F, one can get 

dlI 
0 = dt {(uttt, uttt) + (Vutt, Vutt) + (uttx uttx) + (Vutx, Vutx) 

(2.3) + (utty, utty) + (Vuty, Vuty) + (utxy Utxy) + (Vuxy, Vuxy)} 
+ 2{(uttx, uttx)r-xrx + (utxy utxy)rOurx 

+ (Utty , Utty)rour, + (Utxy 9 Utxy)rour}, 

Definition 2.1. A third-order energy En (u; t) at time t for the system (1.1) is 
a positive quadratic functional in the third-order derivatives of u given by 

EQ(u; t) = 2{(uttt, uttt) + (Vutt , Vutt) + (Uttx, Uttx) 

(2.4) +(Vutx, Vutx) + (utty, utty) + (Vutty Vuty) 

+(utxy, utxy) + (Vuxy, Vuxy)}* 

From (2.3) it follows that, for 0 < s < t, 

(2.5) En(u; t) - EQ(u; s) = - j Er(u; r)dr, 

where 

(2.6) Er(u; t) = 2{(uttt, UttV)r + (UtVT, UtVT)r}- 

With the aid of ( 1.1 .i), we can replace terms in (2.4) and (2.6) which contain 
more than two t-derivatives as follows: 

EQ(u; t) = 2(utxx utx) + 2(ut~xx utyy) + 2(utyy, utyy ) + 3(utxy Iutxy) 

(2.7) + 2(uxxx, uxxx) + 3(uxy uxxy) + 3(uxyy, uxyy) 
+ 2(uyyy, uyyy) + 4(u~xxx uxyy) + 4(uxxy, uyyy)}, 

(2.8) Er(u; t) = 2{(uvvv, uvvv)E + 2(uvvv, UVT)r 

+ (UVTI, UVTT)r + (UtV UtVT)r}- 

We thus have 
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Theorem 2.1. Let u satisfy the equations (1.1.i) and (1.1 .ii) with sufficient reg- 
ularity. Then the energy identity (2.5) holds for all 0 < s < t, and the energy 
EQ(u; t) dissipates in time: 

(2.9) EQ(u; t) < EQ(u; s), 0 < s < t. 
The boundary energy Er(u; t) corresponds to the absorption of energy through 

the boundary F. 

3. FIRST-ORDER SYSTEM 

In this section the energy EQ(u; t) of the form (2.7) will be used to give a 
first-order system related to problem (1.1) and then the first-order system will 
be analyzed. 

The idea is motivated by representing d ED(u; t) in the form 

(3.1) dfEQ(u; t) = (Aut, U), 

for a suitable positive-definite matrix A and a variable u. For this, write 

(3.2) u = (utXX, UtXy, Utyy, UXXX , uX yy, uyyy) ; 

then such a matrix satisfying (3.1) is easily found: 

-2 0 1 
0 3 0 0 
1 0 2 

A= 2 0 2 0 
0 0 3 02 

2 0 30 
0 2 0 2 

In order to construct a first-order system, we use the wave equation (1.1 .i) to 
get the following relations for Aug: 

,t(2utxx + uty = (2u~xx + 2uxyy) + Ty (Uxxy + uyyy) 

a 
(3utxy) = a (2uxxy + uyyy) + a (uxxx + 2uxyy), 

Bit (utxx + 2utyy) = ,0x(u~xx + uxyy) + a-(2uxxy + 2uyyy), 

a aa (3.3) -t (2uxxx + 2uxyy) = Ox (2utxx + utyy) + - (utxy) 

A (3uxxy + 2uyyy) = - (2utxy) + Ty (utXX + 2utyy) , 

a aa 
t(2uxxx + 3uxyy) = ax-(2ut~x + utyy) + T 

t (2 uxxy + 2uyyy) = <-(utxy) + Ty (utXX + 2utyy). 

These relations (3.3) can be written in matrix form as 

(3.4) Aut = Bux + CuY on Q x J, 
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where 

2 0 2 0 0 1 0 1 
0 0 2 0 1 0 1 0 2 0 

____ 1010 ____02 02 
B- 1 2 0 1 | C 0 1 0 

0 2 0 0 1 0 2 0 
2 0 1 0 2 0 

Similarly, the boundary conditions (2.1) can be expressed in matrix form as 

(3.5) MCu=0, J; xJ. 4=xy, i=0, 1, 

where 

-2 0 -2 0 -2 0]20 12 
Mo= 0 -2 0 0 2 0 1] M = 0 2 0 0 2 0 1] 

M [1 0 2 0 -2 0 -2] M [1 0 2 0 2 0 2] 

From the initial condition (1. l.iii) and (1. l.iv), 

(3.6) u to = =(o on Q, 

where 
o = (ixx, xy&, yxy, Vlyy f xxy xy pxyy X yyy)T 

If the solution u satisfying (3.4), (3.5), and (3.6) is known, then the solution 
u of problem (1.1) can be found by solving an initial value problem as follows. 

First step: find u~x and uyy by solving 

d UXX(x y, t = UtXX(X' y, t), UXX(X y, O ) = 9XX(X Y), 
(3.7) dt 

d Uyy(x, y, t) =Utyy(X, y, t), uyy(x, y, 0) = Pyy(x' y). dt 
Second step: find ut by solving 

(3.8) d tu(x, y, t) = UXX(X' y, t) + uyy(x , y, 0) ut(x, y , 0) = V(x, y). dt 

Third step: find u by solving 

(3.9) d u(x, y , t) = ut(x, y, t), U(X, y, 0) =4xy). dt 

In the following we shall show that the solution of (3.4), (3.5), and (3.6) 
is unique, which will imply that the problem (1.1) is equivalent to problems 
(3.4-3.9) if the data are sufficiently regular. 

Introduce a variable v(x, y, t) e R7 and write 

V = (VI, V2, V3, V4, V5, V6, V7)T. 

We are now interested in the hyperbolic system 

(3.10.i) Av =Bv +Cvy on x J, 

(3.10.ii) Mcv=0 onrxJ, 4=xy, i=0, 1, 
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We shall show that the system (3. 10.i) and (3. 10.ii) forms a dissipative sys- 
tem. For this, we define an energy EQ(v; t) associated with the system (3. 10.i) 
and (3.10.ii) for each time t: 

(3.11) EQ(v; t)= 2(Av(., *, t), v(0 , *, t)). 

Then we have, for every v satisfying (3.10.i) and (3.10.ii), 

?I(Av, v) j{(VTBv)x + (VTCv)Y} dQ 

= Jrr VLTBVVXdr 
+ v 

FVCvy dF 

--2 j{(V4 + V6)2 + V2} dI -2 j{(V5 + V7)2 + V2 } dF, 

where vx and vy designate the x- and y-components of v. Therefore, by 
defining a boundary absorption energy Er(v; t) by 

(3.12) Er(v; t) =h2 h {(V4 + V6)2 + V2} dF + 2 I (V5 + V7)2+Vd, 

we get 

(3.13) +-ED(v; t) + Er(v; t) =0. 

By integrating in time over [s, t], we obtain 

rt 
(3.14) EQ(v; t) - EQ(v; s) = Erv(; r)dr. 

Since Er(v; r) > 0, the energy dissipativity 

(3.15) EQ(v; t) <EQ(v; s) O< s<t, 

follows; therefore, the solution of (3.10) is unique. 
We have thus proven 

Theorem 3.1. Suppose that v satisfies (3.10.i) and (3.10.ii). Then the energy 
identity (3.14) holds. Moreover, the solution of (3.10) is unique. 

By the uniqueness of Problem (3.10), if the solution of (1.1) exists and sat- 
isfies a certain regularity, this solution can be obtained by solving the problems 
(3.4-3.9). 

For a formulation of a weak form of problem (3.10), consider the space 

WI(Q) = {w E [H'()] i I; =I.rS ,y i = o, I}. 

Then the weak formulation of the problem is to find a differentiable map v: J 
W1 (Q) satisfying 

(3.16.i) (Av-0Bv) -Cvw)= WE WI(Q), 
(3.1 6.ii) (v(0), w) = ((Do, w), w E WI (Q)- 
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It can be shown by a similar transformation as in [14] that the boundary 
condition (3. 10.ii) leads to a well-posed condition so that the symmetric hyper- 
bolic problem (3.10) is strongly well posed. This also provides the existence of 
a solution to (3.16). 

4. THE CONTINUOUS-TIME GALERKIN PROCEDURE 

We shall study the continuous-time Galerkin procedure for the resulting first- 
order system derived in the last section. For this, a more convenient first-order 
system will be derived. 

By the change of variable z = Al/2v, problem (3.10) can be equivalently 
given as 

(4.1.ii) Zt=9z onQxJ, 
(4. L ii) q~z =0 on F x J. 

(4.1.iii) zlt = ( on Q, 

where J = [0, T] for T > 0 and 

=z Bj,z + CY 

,qz =MC4-l2 onI r C;=x, y9 i = o 19 

(DI = A 1/2(Do 1 

with B1 = A-l/2BA- 1/2 , C, 
- 

A- /2 CA- "/2. We observe that for all w satis- 
fying (4.1.ii) 

(4.2) (Bjwx + Cwy, w) < 0. 

Furthermore, notice that (4.1 .i) is a symmetric hyperbolic system such that 
(4.1) is well posed. The boundary F = aQ is uniformly characteristic. Indeed, 

rank (BI v, (x, y) + C 1V2(X, y))-=4 < 7, (x, y) E F. 

For the theory of well-posedness in the uniformly characteristic case, see [12, 
13]. Such problems arise also in many physical phenomena, for instance, 
Maxwell's equations. 

A modification of the subspace WI (Q) of [H' (Q)]7 is given by 

Z(Q)= {we [H'(Q)fI MfA-"/2w=Oon rv, 4=x,y, i=0, 1}. 
Then a weak formulation of (4.1) is to find a differentiable map z: J -- ZI (Q) 
such that 

(4.3.i) (zt -,9z, w) = 0, w E Z(Q) 

(4.3.ii) (z(0), w) = ((,, w), w E Z(Q). 

The following proposition is an easy consequence of dissipativity. 

Proposition 4.1. Suppose that z(t) E Z, (Q) satisfies (4.3). Then 

(4.4) I~z(t)II < II(D, I. 

In order to discretize (4.3), let h be a quasi-regular partition of Q into 
triangles or rectangles with diameter bounded by h. Let k > 1 be an integer, 
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and let 0 < h < 1. Choose a standard finite element subspace Zh of Z1 
associated with g such that 

(4.5) inf [I1v - Xli + hllt - Xlii] < Consthrilvilr, 1 < r < k 
X'EZh 

- 

for all V E Hk(Q) n Z1 (Q). Throughout the paper, Const will be used to denote 
generic constants. 

By the continuous-time Galerkin approximation to the solution z of problem 
(4.3) we mean the differentiable map U: J -' Zh satisfying 

(4.6.i) (tU- qDU w) =O~ WEZh, 

(4.6.ii) (U(O) -(Di , w) = 0, w E Zh. 

Let Nh be the dimension of Zh. If Uj, j = 1,..., Nh, forms a basis for 
Zh, then U can be put in the form 

Nh 

U(t) = aj(t)Uw, 
j=1 

where the aj(t) are differentiable functions of t. By choosing w = Ej, i = 
1, ... , N, in (4.6), an ordinary differential system for the aj(t) is obtained. 
The initial approximation U(O) can be found, since the matrix (Ui, Uj)h.=, 
is invertible (positive-definite). Also, iLU(O)11 is bounded by 11iI1i; indeed, 
from (4.6.ii) it follows that 

11 U(0) 112 = (U(O), U(O)) = ((Di, U(?)) < 1101l 1111U(O) 11. 

The stability of the procedure (4.6) follows from Proposition 4.1, by replacing 
z by U in (4.4). An error estimate similar to that of Layton [ 1 1 ] can be derived 
as follows. 

Theorem 4.2. Let z and U be the solutions of (4.1) and (4.6), respectively. 
Assume that z(t) E Hr+l(Q) and zt(t) E Hr+l(Q), t E J, for some r, 0 < 
r < k - 1. Then there is a constant C > 0 independent of h, (DI, and t that 
satisfies 

(4.7) IIz(t) - U(t)II < Const[hr+I{IIJII1Ir+l + lIz(t)llr+l + II ZtIIL1(O,t;Hr+1(U()) } 
+ hr IZIILI(0,t;Hr(a))] 

Proof. Let 11 be the L2(Q)-orthogonal projection from Z1 onto Zh. Choose 
w(t) = [Iz(t) and set 11(t) = z(t) - w(t), C(t) = U(t) - w(t) . By (4.5), 

(4.8) laqp(t) < Const hr-i |z(t) r =0, 1. 

From (4.3.i) and (4.6.i), we have 
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for v E Zh . By Proposition 4.1, (4.5), (4.8), and the triangle inequality, 
rt 

lic(t)Il < 11I(0)II + Ift II t(s) - 9i(s)II) ds 

? 11(0)II +I {Iljt(s)jj + ConstIIuiIi}ds 

? 11Z(?) - U(0)11 

+ Const [hr+1IJZ(O)Ijr+I + j{hr+1IIlZt(S)Ilr+l + hrIIZ(S)Ijr+l}ds] 

? IIZ(?) - U(0)11 

+ Const [h r+1 II Z()Ir+I + hr+ jj IIzt(S)Ijr+IdS + hr j IIZ(S)Ilr+l ds] 

Hence, again by (4.5), 

(4.9) 
zIt) - U(t0ll < 111(t0ll + 11-CMt) 

< IIZ(?) - U(0)1 
+ Const[hr+l{ IIz(t)Ilr+l + IIZ(0)Ijr+I + I1ZtIL'(0,t;Hr+1(n))} 

+ h rI ZI|IL1(0,t;Hr+i(nj)).] 

According to (4.6.ii), for any X E Zh, 

IIZ(0) - U(0)112 = (z(0) - U(0), z(0) - X) < IIz(O) - U(0)II IIz(0) - XII, 
which implies 

11 Z(?) - u(o) 11 < 11 Z(?) - X 11 
Thanks to (4.5), taking the infimum of the last inequality over X E Wh yields 

(4. 10) 11 z(O) -U(O) 11 < Const hr+I 11 z(O) 11r+1 

The estimate (4.7) then follows by the combination of (4.9) and (4.10). This 
completes the proof. O 

5. THE DISCRETE-TIME GALERKIN PROCEDURE 

In this section we shall define the discrete-time Galerkin procedure and derive 
stability and suboptimal error estimates. Also, the existence of the solution will 
be proved. The scheme is stable independent of the choice of time step. This 
differs from the case of semibounded operators treated in [1 1, 15]. 

Let us introduce the following notations: 

gn+ =gn + gn+1 gn+1 _ n 
_ 

__2_t g - g 
2 At 

where gn(.) = g(., nAt) for a given time step At. Set L = T/At. The discrete- 
time Galerkin approximation is then defined as a sequence (Un )0<n<L C Zh 
satisfying 
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If U , j = 1, , Nh, forms a basis for Wh as before, (U!)O<n<L can be 
expressed in the form U' = ENh ajnUj for some an 

The above scheme is called the Crank-Nicolson-Galerkin scheme, and it is 
unconditionally stable. Indeed, from (5.1 .i) we have that, if (UnL)o<n<L is the 
solution of (5.1), then 

(5.2) II.Un II < IIiULII 

for n > 1. As an immediate consequence of (5.2), the existence and uniqueness 
of the solution of the scheme (5.1) is established: 

Theorem 5.1. There exists a unique solution (Un)o<n<L of the scheme (5.1), 
regardless of the choice of At > 0. 
Proof. We know that a0 can be found by the argument immediately following J 

the definition of the scheme (4.6). The uniqueness of the an+1 for n > 0 
I 

follows at once from (5.2). Since the algebraic equations are linear, uniqueness 
implies the existence of the n+1 . 0 

Note that our problem has a solution independent of the choice of the time 
stepsize At, while this is not generally true for the semibounded case [11 , 15]. 
For the convergence of the scheme (5.1), we have the following theorem. 

Theorem 5.2. The solution (Un)o<n<L of the procedure (5.1) satisfies the fol- 
lowing error estimate if the solution u of (4.3) is sufficiently smooth: 

max jjzn- U || 
0<n<L 

(5.3) < Const [hr+1 111011r+1 + hrIIZIIL (o, T;Hr+I(a)) 

Iaz + (At)2 I3 
1at IL2 (0, T; HI+ I (a)) at I L2 (, T; L2 (a)) 

Proof. Let 11, w, , 4 be defined as in the proof of Theorem 4.2. Subtraction 
of the equation 

(dtzn W) w) = (dtzn n+ W 

from (5.1) gives 

dtn W)_(,Cn+t W) = (dt qn n+ w) - (dtzn - n+ 

Applying (5.2) for Un = 4n, one obtains 

I I nI11 < 11 C11 + A2t ?| dt q n _ gv ?1n+ + dtz n + - zn+ l| at 
(5.4)n= 

? II4C0II +AtZ{IIdt/nII + Iin+4III + dtzn - zn+1 } 
n=0 
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But, by the Holder inequality, 

IIdt,1nII = (n+1)At 0 ~ [(nZ+1)At 29,2 
tnil 

- A|t/t *!; it () [m,, | < (s) ds] (,At) 2 

[f(n+ ))At 29,1 2s] 2 

Il ~~~(s) dsl 
(A) [Jntt 

which implies, by (4.8), 

L-1 [~~~~ ~~T 2 ]2 ( A ) tE it l<4A) t ||(S)| ds] T2 |8| 
(5.5) n=0 '(tO ~ s L2 (0,TL2 (f)) 

<Const T hr+ | | 
L2 (0, T; Lr+ l (Q2)) 

Next, 
L-1 L L 

( 5.6) At E |6+2 |< Att E 1n i < At E Const h' II Zn IIr+, (5.6) ~n=0 n=0 n=0 

= Const ThrIIZIIL?(O T;Hr+l(Q)). 

Now, by the Peano kernel theorem, 

dtn =+ 1 (n+1)At 

(5.7) dt2 - 2A 't 1 ( Z(t){(n + 1),At-t}{t-nAt} dt. 

By using (5.5), (5.6), and (5.7), IICnII can be estimated further as follows: 

K1I ? II411'?II + Const [T h'+ |z| a 
L2 (0, T; LI+ I(U)) 

+ Thr ILZIIL-(O, T; H+l (S)) + T'2 (Att)2 tIIL2(0, T; L2(Q))] 

Therefore, again by (4.8), 
11IZn _ UnII1 < II SnII + Ig nIIl 

< Conlst [hr+lizi II Zn U - rl~l+ h+l 11 '9 || 
< Lr+l(, T;L2(Q)) 

+ ThIlZ IIL-(O, T; Hr+l((), + T" (At) II~tttIIL2(0, T;L2(0))] 

Since 

11U0 - Flzo11 < 11U0 - z 11 + 1lzo - Flzo11 < 11U0 - Z011 + hr+l IIZOIIr+1 

using the estimate (4.10), we arrive at (5.3). 5 

6. CONCLUSIONS 

A finite element approach has been established in order to treat second-order 
absorbing boundary conditions for wave propagations in a rectangular domain. 
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This is based on the concept of a third-order energy, which generalizes that of 
the second-order energy of HaDuong and Joly. Once a good energy is obtained 
for a given problem, a decent first-order system can be obtained, for which 
standard Galerkin methods are applicable. 
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