MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 204
OCTOBER 1993, PAGES 629-643

SPECTRAL VISCOSITY APPROXIMATIONS TO
MULTIDIMENSIONAL SCALAR CONSERVATION LAWS

GUI-QIANG CHEN, QIANG DU, AND EITAN TADMOR

ABSTRACT. We study the spectral viscosity (SV) method in the context of mul-
tidimensional scalar conservation laws with periodic boundary conditions. We
show that the spectral viscosity, which is sufficiently small to retain the formal
spectral accuracy of the underlying Fourier approximation, is large enough to
enforce the correct amount of entropy dissipation (which is otherwise missing
in the standard Fourier method). Moreover, we prove that because of the pres-
ence of the spectral viscosity, the truncation error in this case becomes spectrally
small, independent of whether the underlying solution is smooth or not. Conse-
quently, the SV approximation remains uniformly bounded and converges to a
measure-valued solution satisfying the entropy condition, that is, the unique en-
tropy solution. We also show that the SV solution has a bounded total variation,
provided that the total variation of the initial data is bounded, thus confirming
its strong convergence to the entropy solution. We obtain an L! convergence
rate of the usual optimal order one-half.

1. THE SPECTRAL VISCOSITY APPROXIMATION
We consider scalar conservation laws in several space dimensions d, d > 1,
(Lla) Qu(x, )+ f(u(x,0)=0,  fw)= (1w, *W),..., W),
subject to initial data
u(x , 0) = up(x) € L®(T?[0, 2xl),
and augmented with the entropy condition (cf. [12, 17])

(1.1b) 8,U(u) + 05+ F(u) <0, VU convex, F(u)s/u Uw)f'(w)dw.

The following abbreviations are used throughout the paper:

0 0 2 62 s

= i = s = ———— — N S s
at 31 ’ J axj ’ ajk 8xjaxk ’ ax (al b 82 5 e 3 8d).

We want to solve the 2n-periodic initial value problem, (1.1a)-(1.1b), by
a spectral method. To this end, we approximate the spectral/pseudospectral
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projection of the exact entropy solution, Pyu(-, t), using an N-trigonometric
polynomial, uy(x, t) = st N a¢(t)e’¢"‘ , which is governed by the semidis-
crete approximation

d
(1.22)  Buun(x, 1) +8x - Pnfun(x, V) =ex Y. 0504 (x, 1) xun(x, 1).
Jj, k=1

Together with one’s favorite ODE solver, (1.2a) gives a fully discrete method
for the approximate solutions of (1.1a). Discussion of the numerical advantages
and actual implementation of this method will be made elsewhere. Our focus
in this paper is on the convergence theory.

The left-hand side of (1.2a) is the standard Fourier approximation of (1.1a).
Although this part of the approximation is spectrally accurate for the conser-
vation law (1.1a), it lacks entropy dissipation, which is inconsistent with the
entropy condition (1.1b). Consequently, the standard Fourier approximation
of (1.1a) supports spurious Gibbs oscillations (once shock discontinuities are
formed), which prevent strong convergence to the entropy solution of (1.1) (cf.
[19, 20]). To suppress these oscillations, without sacrificing the overall spectral
accuracy, we augment the standard Fourier approximation on the right-hand
side of (1.2a) by spectral viscosity, which consists of the following three ingre-
dients:

e A vanishing viscosity amplitude, &y, of size

(1.2b) en~N7?  6<1.

o A viscosity-free spectrum of size my >> 1,

NI

(1.2¢) mN~—N——¢, 0 < 1.
(log N)?2
e A family of viscosity kernels, Q{V’k (x,0)= Z%:m,\, Qék (e, 1<
j, k < d, activated only on high wave numbers || > my , which can
be conveniently implemented in the Fourier space as

EN Z N *uN( )= —én Z gf &) u¢ t)e’é"

J k=1 [¢l=mn

(0:E, &) = Z ()¢ &k

Jj, k=1
The viscosity kernels we deal with, Q};,’k(x , t), are assumed to be spherically
symmetric, that is, Qé’k = Q{,’k, V|| = p, with monotonically increasing
Fourier coefhicients, Q},"k , that satisfy

N 2
(1.2d) |QJ-F — 8| < Const%TN , Vp>my.

The main purpose of the spectral viscosity is to achieve a compromise be-
tween two conflicting requirements. We recall (cf. [7]) that the use of the
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spectral/pseudo-spectral projections yields a spectrally small error in the sense
that

(1.3) I(I — Pn)f(un)|| < Const N~%||05un|l, Vs>O0.

The additional spectral viscosity is also spectrally small, since
(1.4) ey Z Q4 * xun(-, t)|| < Const N~%||85un(-, )|, Vs >2.

Thus, on the one hand the spectral viscosity is small enough to retain the formal
spectral accuracy of the overall approximation, while on the other hand the
spectral viscosity is sufficiently large to enforce the correct amount of entropy
dissipation that is missing in the standard Fourier method, that is, ey =0 (see
§2). In fact, the smallest scale of the SV approximation (1.2a) is order ¢y . It
follows that, because of the presence of the SV in (1.2a), the spectral decay of
the truncation error on the left of (1.3) is independent of the smoothness of
the underlying solution. In §3 we show that the SV, although spectrally small,
is only an L?-bounded perturbation of the standard vanishing viscosity. This
fact enables us to show in §4 that the SV solution remains uniformly bounded
and that its weak limit is a measure-valued solution consistent with the entropy
condition corresponding to (1.1b). Hence, DiPerna’s uniqueness theorem [5]
combined with the finiteness of propagation speed implies that uy converges
to the unique entropy solution of (1.1a)-(1.1b). For the reduction theorems for
the measure-valued solutions to hyperbolic systems of conservation laws, we
also refer the reader to [2, 3, 6, 16]. An alternative, independent convergence
proof of the SV method is derived in §5 from its total-variation bourdedness,
provided the total variation of the initial data is bounded. We conclude in §6
with an L!-convergence rate estimate of the usual optimal order one-half.

2. SPECTRALLY SMALL TRUNCATION ERROR

The SV method (1.2a) approximates the exact spatial fluxes in (1.1a) by their
(pseudo)spectral projections. This approach leads to the truncation error
O - (I — Py) f(uy) . In this section we show that, because of the presence of the
spectral viscosity, the truncation error is spectrally small independent of whether
the underlying solution is smooth or not.

Our discussion proceeds in three steps; detailed proofs are left to §7.

Step 1. We begin with the following two facts.

e A straightforward a priori bound states that for all s > r > O there
holds:

1
2.1 o5 (I = Py)f(un)ll = (Z 121717 (un) l) < W ,Ilas - S(un)ll-
1>~

e Consider the right-hand side of (2.1). Here we claim (and prove in §7)

that the derivatives of a sufficiently smooth flux, f(u), are bounded above by
the derivatives of u. That is, there exist constants .Z; (depending on |uy|r~ =
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lunlleoie,sy and | flce = 1185 f ()]l Lo (@y) » Where Qu = {u : |u| < |un|oo}), such
that the following estimate holds:

103 - f(un)ll < ZsllOzunll,

2.2
22 Zma unlist,  s=1,2,....

Using (2.1) followed by (2.2), we conclude the first step with the estimate

105+ (I = Pn)f (un)l| £ 55 105unll,

s
Ns—r
Zlflck lun¥2t,  s>r>o0.
k=1

Step 2. The inequality (2.3) is the usual spectral accuracy estimate associated
with the (pseudo)spectral projections (see (1.3)). The inequality states that the
truncation error (and its derivatives) decays as rapidly as the smoothness of uy
permits. Of course, the derivatives of an arbitrary N-trigonometric polynomial,
Oiuy , may grow as fast as N*, in which case nothing is gained from (2.3). In
the present context, however, the spatial derivatives of the SV approximation
Ozuy grow at the slower rate of ¢°. This is the content of the main a priori
estimate of this section, whose proof is left for §7. We summarize the estimate
in the following theorem.

(2.3)

Theorem 2.1. Consider the SV approximation (1.2a) and (1.2d) with SV param-
eters (ex, my), which satisfy, in agreement with (1.2b)-(1.2c),

(2.4). en > 2'/61%.“ , and ey-m%(logN)? < Const.

Then there exists a constant B; (~ [Ix-, % for s > 1) such that the following
estimate holds:

+
exllosun (-, Hllra + ey %”a;HuN”LZ(x,[O,t])

(2.5)
< % + Const ey [|05un (-, 0)|| 2(x)

Remark. Theorem 2.1 with s = 0 is the usual a priori estimate on the entropy
production rate

(2.6) lun(-, Oll2x) + Venlldzunliaix o,y < Constllun (-, 0)|l L2(x)-
Step 3. Assume that our data (the flux, f(u), and the initial conditions,
un(-, 0)) satisfy the following conditions:

e The flux f(u) is sufficiently smooth; that is, |f]cs < oo for sufficiently
large s:
e The smallest scale of the initial condition is of order ey ; that is,

(2.7) enllozun(+, 0)|l2(x) < Const.

Then, Theorem 2.1 shows that the smallest scale of the SV approximation

un(-, ) remains of order ey . Together with (2.3), this implies that for gi- ~

N-(-=6) = (1), the truncation error of the SV approximation is spectrally
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small, independent of whether the underlying solution is smooth or not. This
extends a similar one-dimensional result of [15, 13]. For later reference, we
state our final corollary.

Corollary 2.2. Let uy denote the SV solution of (1.2a)-(1.2d), with initial
conditions satisfying (2.7). Then the following spectral decay estimates of the
truncation error hold:

(2.82) |0y - (I = Pn)f(un(-, ))ll2x) < Const BN, s, =(1—-60)s—r;

(2.80) 1105 - (I = Pu) f(n)llzae 0,y < ConstBEN~6+8, vs> 1.

Remarks. 1. Using the Sobolev inequality, one can convert this L2-type esti-
mate (2.8) into a spectral decay estimate in the uniform norm, for example,

(2.9) 185 « (I = Pn) f(un)|lLoox. (0.7 < Const BN+,

2. Observe that the polynomial decay rate in (2.9), s, = (1 —8)s — r, can be
made as large as the C*-smoothness of f(u) permits. For example, we have

B,
10x « (I = Px) f(un)lLoo(x, 10,7 < Const==,

(2.10) 24d
S
VfecCs, s22(1—0)'
The smoothness requirement on the right of (2.10) will be sufficient for the
estimates derived throughout the rest of the paper.

3. The critical Sobolev exponents s, in (2.9) are not optimal; careful L?-
iterations enable one to obtain (2.9) with s = (1 —0)s+1 -6 — % > 0.
Thus, for example, in the one-dimensional case, one may use the basic entropy
production bound (2.6) (corresponding to s = 0), in order to conclude that
the truncation error tends uniformly to zero with viscosity amplitude ey ~
N=9, 6< 4 (cf. [13,21]).

3. SPECTRAL VISCOSITY VERSUS VANISHING VISCOSITY

In this section we show that the spectral viscosity &x Zf, kel c‘)jz,c Q% x uy—
though spectrally small according to (1.4)—is only an L”-bounded perturbation
of the standard vanishing viscosity, exyAuy .

We begin by taking a closer look at the SV operator on the right of (1.2a).
We set

o . Il < my,
(3.1) RP*F =R = .
G- 0Lk, 18> my,
and note that the corresponding smoothing kernel, R{v’k = Ye< Nﬁé”‘eif"‘ ,
complements the SV kernel, Q{v’k = Eg,=m~ Qé’ke"f”‘ , to the full Laplacian,
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that is,
d i,k d k
(3.2) Z 31-2ka\,’ * + Z %Ry * =
J, k=1 Jj. k=1

The following lemma provides us with an upper bound on the L!-size of the
smoothing kernel, Zj, ket OTOSTTRY (-, 1)

Lemma 3.1. Consider the real, spherically symmetric SV kernels,

N
Ok (x, 0= 30 O 3 e

pzmy [|=p

with monotonically increasing Fourier coefficients, Q{,"k , satisfying (1.2d). Then
the following estimate holds:

d

Z ras—ervk( )

i k=1

< Constmiy(logN)¥, 0<r<s<2.
Ll(x)

(3.3)

Remarks. 1. Lemma 3.1, which is the multidimensional generalization of
Lemma A.l in [13], shows that derivatives of the smoothing kernel,
Ef, k=1 R{V’k( -, t), grow like those of a trigonometric polynomial of degree my .

2. The extra logarlthmlc factor on the right of (3.3) can be avoided ; if the
SV Fourier coefficients, Q’ k , satisfy the concavity condition, Q;, +’f - 2Q Jok

Ql-k <o.

Proof of Lemma 3.1. Let Dpy(x;) = ﬂrx—;’iﬁ . Then we have

> e = Dy(x) = Dyt (),

[l=p
where Dy(x) =Y <, e’¢* is the multidimensional Dirichlet kernel, D,(x) =
1, D,(x;). This fact enables us to write (with D_;(x) = 0)

N N
Ry e, )= RPK() Y €% =3 REM(OID,(x) = Dyt (1))
p=0 [¢l=p p=0
Setting RN +1 = 0, we use summation by parts of the right-hand side (recall
that R’ =djk, p < my) to obtain

DTSRy (x, 1) = Z RIKQIHST[Dy(x) — Dpey (x)]
p=0
(3.4)
Z (Rj k R} k ras D (x).
p+1 p

p=mn
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Next, since

&(logp), s=0,
L é’(ps)a S=1,2,...,

we have (070, Dp(x)||pt < Constp’(logp)®, di=d -1+ (1-s)*. Using
this and the fact that ﬁ{;’k are monotonically decreasing, we conclude from (3.4)

18785~ R (-, D)l
N-1 N
< Const LZ (R)* — R):)p*(log p)* + |Rj*| - N*(log N)ds] .

=mN

One more summation by parts on the right of the last inequality yields

1870 " Rigk (-, )|

N
< Const LZ Ry* [ (10g p) — (p — 1) (l0g(p — 1))%] + e} (log N)‘*J :

=my
Finally, since by (1.2d), RJ'* = 8, — 0J% < m%/p?, we conclude

N
S 2
10785~ Ri* (-, )|l 1 < Constm3 (log N)% - 3~ P

p=mpy

< Constmy(logN)?, Vs<2. O

Young’s inequality followed by Lemma 3.1 with (r, s) = (1, 2) implies our
final corollary, which confirms the statement at the beginning of this section.

Corollary 3.2. Consider the real, spherically symmetric SV kernels,
Qlkxt ZQ}kZezéx
pzmy I€l=p

with monotonically increasing Fourier coefficients, Q{,"k , satisfying (1.2d). De-
note

(3.5) cy ~ eym% (log N)? < Const.

Then the following estimate holds:

Z *uN , b)

(3.6) <cnllun(-, Ollr, Vo 2 L

Lr

4. CONVERGENCE OF THE SV METHOD

In the first part of this section we prove that the SV approximation, (1.2a)-
(1.2d), is uniformly bounded.
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Lemma 4.1 ( L>-stability). There exists a constant such that
(4.1) lun(-, t)llLoo(x) < Const ||un(+, 0)||zoo(xy, VELT.

In the second part of this section we show that the SV solution is consistent with
the entropy condition (1.1b) for all convex entropy pairs (U, F).

Lemma 4.2 (Entropy consistency). There exists a vanishing sequence, ey, such
that

(4.2) U(uy) + 05 -F(uy)<ey—0 in9'.

The detailed proof of Lemmas 4.1 and 4.2 is postponed to the end of this
section. Granted the L°°-stability and the entropy consistency, we can combine
DiPerna’s uniqueness result for measure-valued solutions [5] with the finiteness
of propagation speed (see also [18] for the case of bounded domains) to conclude
the following theorem.

Theorem 4.3. Let uy be the solution of the SV approximation (1.2a)-(1.2d),
subject to bounded initial conditions satisfying

llun (-5 0)llLoo(x) + enllOzun(-» 0)lL2(x) < Const.

Then uy converges strongly to the unique entropy solution of (1.1a)-(1.1b).

We now turn to the promised proofs of the L°-stability and the entropy
consistency.

Proof of Lemma 4.1. Using (3.2), we can rewrite the SV approximation (1.2a)
in the form :
d .
(4.3a) By + x - Py f(un) — enAuy = ex Y, 0% Ry  xuy
i, k=1
or, equivalently,
d .
(4.3b) Oy + 0y - f(un) —enAuy = ex Y OZRY* xuy +0x- (I - Py)f(un).
i k=1

Integrating against 11714’5’\,'l and letting p T oo, we are led to the maximum
principle associated with the parabolic left-hand side of (4.3b), which reads

d

E““N(’s Dllzooxy < 10x « (I = Pn) f(un(+, O)llLeo(x)

(4.4)
+ EN

d
S 2R xun(-, 1)
Jk=1 L (x)

It remains to bound from above the two expressions on the right of (4.4).
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We now fix s = 2(21“‘_‘10) . Corollary 2.2 implies, consult (2.9), that the first
term on the right of (4.4) does not exceed

B, 2 2
”ax ¢ (I - PN)f(uN(°a t))”L°°(x) < 'ﬁs s «@s ~ H'%k < Const "uN”;?-w(x,(O,l])'
k=1

By equation (3.6) with p = oo, the second term on the right of (4.4) does not
exceed

Z OFRN  xun(-, 1)

<cenllunllLwx,10.0)
Loo(x)

cn ~ eym%(log N)? < Const.

Equipped with the last two upper bounds, we return to the inequality (4.4),
which tells us that the growth of |un(#)|eo = [[Un||lLo(x,[0,1) 1S gOVerned by

d Const 5
‘_i;IuN(t)Ioo < enlun(tloo + ——lun()|& ,
which in turn implies that
-3
cyt 0 . ‘22- s
[un(t)]oo < € |un(0)]co - (l - Iulegzv)l ) ) .

We conclude that for ¢ < &(InN), the SV solution remains bounded by
Conste*|un(0)lo. O

We close this section with the following proof.
Proof of Lemma 4.2. Multiplying (4.3b) by U’(uy), we obtain
O U(un) + Ox - F(uN) — enAU (un)

< enU'(uy) Z OLRY  «uy + U'(un)dx - (I — Py) f(un)
Jj. k=1

) d
(4.5) = '(8NU’(uN)RJ’ *8ku1v —8NU”(14N z uNR *6ku1v
J. k=1

- (U (un) (I - PN)f(uN))_U”(uN)axuN (1 Py) f(un)

“QFM“

= Y 0j(T(un)) — M(un) + 0y - M(uy) — IV(un).
J, k=1

We claim that the four terms on the right of (4.5) tend to zero. Below, we
abbreviate ||U’||Le = |U’(4)||Lo(qp) > €EC.
First, from (2.6) we have

-
(M)l x,0 < 8N||U'||L°°lfglli<i§|Ré | 18kun iz (0

<en||U’ ||l L= ||8xuN||Lz 2 (x,0) S < Const /ey — 0.
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Next, since [(R:&, &)| < Const|¢]?, we find

1

2

IM(@m)llrz x,0 < enllU"||zo0 (/t > I(Re(0)E, €)1 - lué(t)lzdt>

0 <n
< ConstlelU"HLoo”BxuN”Lﬁm(x,,) < Const /ey — 0.
The inequality (2.8b) with (r, s) = (0, 1) implies
I @m) 22 x,) S WU Mz < I = Po)f (um)ll 2 x, 0

<UL - %naxuivn%(x,,) < Const N-(1-% — 0.

Repeating the previous arguments, we conclude the proof of (4.2) with
VML e, < N0 zeo = 118xunllr2ce g0,y * I = Pr).f(un)l 2, 10, 11

f—o;,/l—lfc’)xuNHLz .y < Const N-0-6 0. g

5. TOTAL-VARIATION BOUNDEDNESS

Consider the SV approximation (4.3b)

(5.1) Beun + By - f (un) — enAun = 05 - (I = Py) f(un) + &n Z Ri* « 0fun.
J, k=1

On the left we have the usual L'-stable viscosity approximation of (1.1a)-
(1.1b). The first and second terms on the right represent, respectively, the
spectrally small truncation error and, by Corollary 3.2, the L?-bounded per-
turbation of the SV operator. It follows that the SV approximation shares the
L!-stability and, consequently, the total-variation boundedness of the usual vis-
cosity approximation. Details of the one-dimensional case can be found in [22].
To demonstrate the above claims in the multidimensional case, we now turn to
a direct proof of the latter total-variation bound.
Spatial differentiation of (5.1) yields

OOiun + Oy + (f' (un)Biun) — enAdiuy

= 0,0+ (I — Py)f(un) + en Z OF R  * djun.
Jj, k=1

Integrating this against signd;uy and using (3.6) with p = 1, we obtain

d
EH‘?WN(' s Dz < Const |02 - (1 = Pu) f(un)llLixy + enlldiun (-, 8)llLixy

Integration of the last inequality implies that the total variation of the SV solu-
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tion, [[un(-, H)llaye = Sy 10iunllLi(x) » does not exceed

(e, Ol < e [lun(-, O)llsve + 102 - (I = Pu)fm)llzice, 0.9 -

By taking into account the spectral decay of the truncation error (2.8a), we
conclude the following theorem.

Theorem 5.1. Let uy be the solution of the SV approximation (1.2a)-(1.2d),
subject to initial conditions (2.7). Then uy has a bounded variation, and the
Jollowing estimate holds:

lun (-, Dllsr e < e [||UN(°, 0)llav(x) +ﬁ(\/fN‘s2)] ,

(5.2)
s=(1-0)s—2>0.

6. CONVERGENCE REVISITED WITH ERROR ESTIMATE

In this section we revisit the question of convergence of the SV approximation
to the unique entropy solution of (1.1a)-(1.1b). An affirmative answer to this
question was already given in §4, where we used the L°°-bound together with
the entropy consistency of the SV approximation. Alternatively, one may use
the L°°-bound together with the total-variation boundedness to conclude the
convergence of the SV approximation. Moreover, in this section we show how
one can use the total-variation boundedness to obtain an L!-convergence rate
estimate of the usual optimal order one-half. We proceed along the lines of the
one-dimensional argument in [15].

It is well known that the solution of the usual viscosity approximation

(6.1) G,V + Oy - f(V) = eyAVEY
satisfies an L!-convergence rate estimate of order one-half (cf. [11, 4, 14]):
(6.2) v (-, ) = u(-, Dllpx) < Const /&y,  0<t<T.

We claim that the L!-error between the SV approximation, u#y, and the vis-
cosity approximation, v*" , is of the same order @ (,/ex). Indeed, subtracting
(6.1) from the SV approximation (4.3b), we find

O(un — v) + 0x « (f(un) — f(v™)) — enA(un — V™)
6.3 d .
( ) = &N Z 3jR{V’k*akuN+8x-(I—PN)f(uN).
Jok=1
Integrated against sign(uy — v®), the last equality gives us

(6.4)

d d :
Ziun (s ) = v (L Dl Sew || D0 GREEC ) * dun(-, 1)
Jok=1 L'(x)
+10x « (I = Pn) f(un(, O)llLix)-
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Using (3.3) with r = s = 1, we have that the first term on the right does not
exceed

d
Z QRN (-, 1) x Beun (-, 1)
Jj. k=1

Li(x)
d

v 3 amite,

k=

(6.5) »
NOun(-, OllLix)

L(x)

< Consteymy(log N)? - [lun(-, t)||v(x) < Const /zy.

With this in mind, we can integrate (6.4) to obtain
"uN(' ’ t) - IU:N(' ’ t)”L‘(x)
< Const ey + V2at||0x - (I — Pn) f(un)llL2(x, 10, 1)

According to (2.8b), the second term on the right is the spectrally small trunca-
tion error

(6.6)

185 + (I = Pw) S ()l 2.0, < Const BN —G1+8)

(6.7) si=(1-60)s—1,

which does not exceed @ (y/ey) for s large enough (s > l—l—y).

We summarize what we have shown in (6.2), (6.6), and (6.7), by stating the
following theorem.

Theorem 6.1. Let uy be the SV solution of (1.2a)-(1.2d), subject to the initial
conditions (2.7). Then uy converges to the unique entropy solution of (1.1a)-
(1.1b), and the following error estimate holds:

(6.8) lun(-, 1) = u(, Dllprey < Const ey,  0<<T.

7. PROOF OF THE MAIN A PRIORI ESTIMATES

In this section we collect the promised proofs for the main a priori estimates
associated with the SV approximation (1.2a), which we rewrite as

(7.1) Bun + dx - f(un) — enAuy = ey Z Rigk 03 uy + 0y - (I — Py)f(un).
Jj. k=1

An upper bound on the first term on the right was provided in §3. We now turn
to estimate the second term on the right of (7.1). Here, we first prepare the
proof of (2.2), which we state as follows.

Theorem 7.1. The following estimate holds:

(7.2) 1|65 - f(un)ll < Z|05unll, Elflck lunli=',  s=1,2,...
=1
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Proof. By the chain rule we have

85 f(u) = > @M whi@pwh . (07w,
{Cl,ﬂ>0 I a'ﬂ=s}

d
cp~ O f(u), r=Y Br.

k=1

The Holder inequality follawed by the Gagliardo-Nirenberg inequality implies
that a typical term on the right does not exceed

165" (@)% .. (0] u)|

d
a . _ )
< k];[ o7 ul%,,,, (wnh O = P ﬂk)

d
(1=46)Be | 119514114 B . _ Q%
< ConstH e 2B 1120 B (wnh =2 )
, d
< Const |u|7 IIBSuII r=3Y B<s,
k=1
and hence (7.2) follows with % ~ S5_, |flce - [ult!. O

Equipped with Lemma 7.1, we are now ready for the proof of the main result
of §2, claiming that the smallest scale of the SV approximation is of order &y,

(7.3) exlloxun(-, t)”Lz(x)+8s+7”as+1uN”L2(x 0,0 < %s +enllozun(:, 0)llra)

Proof of Theorem 2.1. Spatial integration of (7.1) against uy(x, t) yields

d
d
3 ol + exldeun? < lu) - en > OfRy" xuy
Jj, k=1

d
+ > 10junll - 1T = Pu) £/ (un)|l-

j=1
Using (3.6) with p = 2 for the first term on the right, and (2.3) with (r, s) =

(0, 1) for the second term, we find

1d )
3 ilt? + (o = 2 ) H0cun? < exllunl?,

cn ~ ey - my(log N)? < Const.

Hence, (7.3) follows for s =0 (with % = 0).
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The general case follows by induction on s. Spatial integration of (4.3a)
against 0Zuy(x, t) yields

1d d .
(7.4) 5 g I0guNI? + exllog un | < 10gunl] - ox Y 0% Ry xoun

. J k=1
+ 105+ unll - 105705 - Pw f(un)l-

Using (3.6) again and the Cauchy-Schwarz inequality to bound from above,
respectively, the first and second term on the right of (7.4), we end up with

d & 1
(7.5)  ZI0%unl + 105 unll® < Const [03u|> + 51105 - Pu.f (uw)*

It remains to estimate the spatial derivatives of Py f(uy). To this end, we use
(2.2) and (2.3) to obtain
105 « Pnf(un)l| < 1105 + f(un)ll + 1105 - (I = Pw) f (un)ll
Fs
< Zllozunll + %llai“uzvll-

Together with (7.5), we find

d 2 Z2
E||a;uN||2+ (8—” - —Sﬂ) 05 un||? < (Const-f— s ) asun|?.

2 N2£N EN

In view of the SV parametrization in (2.4), temporal integration of the last
inequality yields

1 F?
logun (-, I + ZEN”a;H“N”iZ(x,[o,t]) < ﬁ"a,éuN”iz(x,[o,t]) +185un(-, 0|12,
and the result (7.3) follows by induction on 5. 0O
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