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SPECTRAL VISCOSITY APPROXIMATIONS TO 
MULTIDIMENSIONAL SCALAR CONSERVATION LAWS 

GUI-QIANG CHEN, QIANG DU, AND EITAN TADMOR 

ABSTRACT. We study the spectral viscosity (SV) method in the context of mul- 
tidimensional scalar conservation laws with periodic boundary conditions. We 
show that the spectral viscosity, which is sufficiently small to retain the formal 
spectral accuracy of the underlying Fourier approximation, is large enough to 
enforce the correct amount of entropy dissipation (which is otherwise missing 
in the standard Fourier method). Moreover, we prove that because of the pres- 
ence of the spectral viscosity, the truncation error in this case becomes spectrally 
small, independent of whether the underlying solution is smooth or not. Conse- 
quently, the SV approximation remains uniformly bounded and converges to a 
measure-valued solution satisfying the entropy condition, that is, the unique en- 
tropy solution. We also show that the SV solution has a bounded total variation, 
provided that the total variation of the initial data is bounded, thus confirming 
its strong convergence to the entropy solution. We obtain an LI convergence 
rate of the usual optimal order one-half. 

1. THE SPECTRAL VISCOSITY APPROXIMATION 

We consider scalar conservation laws in several space dimensions d, d > 1, 

(l-la) 0tu(x, t) +0x f(u(x, t)) = O f(U) _(fl (U), f2 (U), * f *, W()) 

subject to initial data 

u(x, 0) uo(x) E LL (Td[O, 27r]), 

and augmented with the entropy condition (cf. [12, 17]) 

(1.lb) atU(u) +Ox .F(u) < 0, VU convex, F(u) J U'(w)f'(w)dw. 

The following abbreviations are used throughout the paper: 

t at' ax ' jk =aXOXk' ax (a1 ,ad) 

We want to solve the 27r-periodic initial value problem, (l.la)-(l.lb), by 

a spectral method. To this end, we approximate the spectral/pseudospectral 

Received by the editor November 25, 1991. 
1991 Mathematics Subject Classification. Primary 35L65, 65M06, 65M12, 65M15. 
Key words and phrases. Multidimensional conservation laws, spectral viscosity method, spectral 

accuracy, measure-valued solution, total variation, convergence, error estimate. 

? 1993 American Mathematical Society 
0025-5718/93 $1.00 + $.25 per page 

629 



630 GUI-QIANG CHEN, QIANG DU, AND EITAN TADMOR 

projection of the exact entropy solution, PNu(., t), using an N-trigonometric 
polynomial, UN(X, t) = EZ<:?N u(t)eix X, which is governed by the semidis- 
crete approximation 

d 

(1.2a) OtUN(X, t) + ax PNf(UN(X, t)) = 8N E 0jkQN' (X, t) * UN(X, t). 
j,k=i 

Together with one's favorite ODE solver, (1.2a) gives a fully discrete method 
for the approximate solutions of ( 1.1 a). Discussion of the numerical advantages 
and actual implementation of this method will be made elsewhere. Our focus 
in this paper is on the convergence theory. 

The left-hand side of (1.2a) is the standard Fourier approximation of (1. la). 
Although this part of the approximation is spectrally accurate for the conser- 
vation law (1.1a), it lacks entropy dissipation, which is inconsistent with the 
entropy condition (1. Ib). Consequently, the standard Fourier approximation 
of (1.1 a) supports spurious Gibbs oscillations (once shock discontinuities are 
formed), which prevent strong convergence to the entropy solution of (1.1) (cf. 
[19, 20]). To suppress these oscillations, without sacrificing the overall spectral 
accuracy, we augment the standard Fourier approximation on the right-hand 
side of (1.2a) by spectral viscosity, which consists of the following three ingre- 
dients: 

* A vanishing viscosity amplitude, EN, of size 

(1.2b) EN N, 0 < 1. 

* A viscosity-free spectrum of size MN >> 1, 

N0 
(1.2c) MN6N2 0 < 1. 

iN(log N)d2 

* A family of viscosity kernels, Qrk(xJ t) = <IN QLktei4*x 1 < 

j, k < d, activated only on high wave numbers 151 > MN, which can 
be conveniently implemented in the Fourier space as 

d N 

EN Z }kQN' * UN(X, t) E ( x 
j,k=1 II=mN 

d 

(Qua, 4)- E Qek (t),,Xk 
j,k=1 

The viscosity kernels we deal with, Qj k(X, t), are assumed to be spherically 

symmetric, that is, nj k = Qk, V141 = p, with monotonically increasing 

Fourier coefficients, Q K that satisfy 

(1.2d) k onst 2 VP > mN 

The main purpose of the spectral viscosity is to achieve a compromise be- 
tween two conflicting requirements. We recall (cf. [7]) that the use of the 
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spectral/pseudo-spectral projections yields a spectrally small error in the sense 
that 

(1.3) I(I-PN)f(uN)ii ? ConstNsII>0UNII, Vs > 0. 

The additional spectral viscosity is also spectrally small, since 

d 

(1.4) EN JkQN *UN(, t) < ConstN 2IIO>UN(, t)II, Vs > 2. 
j, k=i 

Thus, on the one hand the spectral viscosity is small enough to retain the formal 
spectral accuracy of the overall approximation, while on the other hand the 
spectral viscosity is sufficiently large to enforce the correct amount of entropy 
dissipation that is missing in the standard Fourier method, that is, EN = 0 (see 
?2). In fact, the smallest scale of the SV approximation (1.2a) is order EN. It 
follows that, because of the presence of the SV in (1.2a), the spectral decay of 
the truncation error on the left of (1.3) is independent of the smoothness of 
the underlying solution. In ?3 we show that the SV, although spectrally small, 
is only an LP-bounded perturbation of the standard vanishing viscosity. This 
fact enables us to show in ?4 that the SV solution remains uniformly bounded 
and that its weak limit is a measure-valued solution consistent with the entropy 
condition corresponding to (1. lb). Hence, DiPerna's uniqueness theorem [5] 
combined with the finiteness of propagation speed implies that UN converges 
to the unique entropy solution of (1. la)-( 1. Ib). For the reduction theorems for 
the measure-valued solutions to hyperbolic systems of conservation laws, we 
also refer the reader to [2, 3, 6, 16]. An alternative, independent convergence 
proof of the SV method is derived in ?5 from its total-variation boundedness, 
provided the total variation of the initial data is bounded. We conclude in ?6 
with an Li-convergence rate estimate of the usual optimal order one-half. 

2. SPECTRALLY SMALL TRUNCATION ERROR 

The SV method (1.2a) approximates the exact spatial fluxes in (1.1 a) by their 
(pseudo)spectral projections. This approach leads to the truncation error 
Ax * (I - PN)f(uN) . In this section we show that, because of the presence of the 
spectral viscosity, the truncation error is spectrally small independent of whether 
the underlying solution is smooth or not. 

Our discussion proceeds in three steps; detailed proofs are left to ?7. 

Step 1. We begin with the following two facts. 
* A straightforward a priori bound states that for all s > r > 0 there 

holds: 

(2.1) it o;. (I - PN)f(uN)ii = (z E rlfI7(UNx4I) < Ns-r 11x . f(UN)i11 
J4l>N 

* Consider the right-hand side of (2.1). Here we claim (and prove in ?7) 
that the derivatives of a sufficiently smooth flux, f(u), are bounded above by 
the derivatives of u . That is, there exist constants X (depending on IUNIL-- 
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IIUNIIL-o(x~t) and IfICk - |jAf(U)IILoo(ON) , where Q?N = {U: JUI < JUNK}), such 
that the following estimate holds: 

Ox* f(UN)f| < XsIItxOUN 11, 

(2.2) SfZfc.UI;, sl2 (2~~~~X 
1.2)0E |f|Ck 

* 
JUN 

Ikol 
S = I , 2, .. 

k=1 

Using (2.1) followed by (2.2), we conclude the first step with the estimate 

laX (I - PN)f(UN)II < Ns-r JJ0XUNNI, 

(2.3) s 

Xs E: |fICk - JUN LOO, 5 s > r > O. 
k=1 

Step 2. The inequality (2.3) is the usual spectral accuracy estimate associated 
with the (pseudo)spectral projections (see (1.3)). The inequality states that the 
truncation error (and its derivatives) decays as rapidly as the smoothness of UN 

permits. Of course, the derivatives of an arbitrary N-trigonometric polynomial, 
axsUN, may grow as fast as Ns, in which case nothing is gained from (2.3). In 
the present context, however, the spatial derivatives of the SV approximation 
axUN grow at the slower rate of e -S. This is the content of the main a prior 
estimate of this section, whose proof is left for ?7. We summarize the estimate 
in the following theorem. 

Theorem 2.1. Consider the SV approximation (1.2a) and (1 .2d) with SV param- 
eters (EN, mN), which satisfy, in agreement with (1.2b)-(1.2c), 

(2.4). eN . > 2Xs+N and CN . m2(logN)d < Const. 

Then there exists a constant Rs ([ Isk=lI k for s > 1) such that the following 
estimate holds: 

(2.5A) eN& 11 0XsUN(, t)I L2(X) + ENs2 Ixs+I UN IIL2(X, [0, tJ) 
Rs + Const e| axUN(, O) | |L2 (X) 

Remark. Theorem 2.1 with s = 0 is the usual a priori estimate on the entropy 
production rate 

(2.6) IIUN(, t)1IIL2(X) + V/NWIlXdUNtIL2(X [0tJ) ? ConsttIUN(., O)IL2(X). 

Step 3. Assume that our data (the flux, f(u), and the initial conditions, 

UN(-, 0)) satisfy the following conditions: 

* The flux f(u) is sufficiently smooth; that is, If cs < oo for sufficiently 

large s: 
* The smallest scale of the initial condition is of order EN; that is, 

(2.7) es IaXsUN(, 0)llL2(X) < Const. 

Then, Theorem 2.1 shows that the smallest scale of the SV approximation 

UN(-, t) remains of order EN. Together with (2.3), this implies that for o - 

N-(1-0) = o(l ), the truncation error of the SV approximation is spectrally 
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small, independent of whether the underlying solution is smooth or not. This 
extends a similar one-dimensional result of [15, 13]. For later reference, we 
state our final corollary. 

Corollary 2.2. Let UN denote the SV solution of (1.2a)-(1.2d), with initial 
conditions satisfying (2.7). Then the following spectral decay estimates of the 
truncation error hold: 

(2.8a) 11axr* (I -PN)f(UN(, t))IIL2(X) < ConstgsN-sr, Sr _(1 - )s - r; 

(2.8b) jax (I - PN)f(UN)11L2(XEot]) < ConstqsN (Sr+ ), VS > 1. 

Remarks. 1. Using the Sobolev inequality, one can convert this L2-type esti- 
mate (2.8) into a spectral decay estimate in the uniform norm, for example, 

(2.9) 1ia9 * (I - PN)f(UN)1Lo((x[ot]) < Const~sN-sr+2. 

2. Observe that the polynomial decay rate in (2.9), Sr = (1 - 6)s - r, can be 
made as large as the Cs-smoothness of f(u) permits. For example, we have 

1lax 0 (I - PN)f(uN)1L-((x[ot]) < Const-' 
(2.10) f 

'f E Cs. 5S> 2( 
+ 

The smoothness requirement on the right of (2.10) will be sufficient for the 
estimates derived throughout the rest of the paper. 

3. The critical Sobolev exponents Sr in (2.9) are not optimal; careful LP- 
iterations enable one to obtain (2.9) with so (1 - 6)s + 1 - 0 -d > 0. 
Thus, for example, in the one-dimensional case, one may use the basic entropy 
production bound (2.6) (corresponding to s = 0), in order to conclude that 
the truncation error tends uniformly to zero with viscosity amplitude EN 
N-, 0 < I (cf. [13, 21]). 

3. SPECTRAL VISCOSITY VERSUS VANISHING VISCOSITY 

In this section we show that the spectral viscosity EN Zd k= 1 jk -Nk * UN- 

though spectrally small according to (1.4)-is only an LP-bounded perturbation 
of the standard vanishing viscosity, C6NAUN . 

We begin by taking a closer look at the SV operator on the right of (1.2a). 
We set 

(3.1) RJ,k RJ4, (t)_ 

tack - u 4 > MN, 

and note that the corresponding smoothing kernel, Rijk N R' kei~x 

complements the SV kernel, k = ZE mN ke*X, to the full Laplacian, 
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that is, 

d d 

(3.2) S Qilk * + E 
d 

2k* A. 
jk=1 j,k=1 

The following lemma provides us with an upper bound on the LI-size of the 
smoothing kernel, Ed k=1 OrOqSkrRJ k( ( t). 

Lemma 3.1. Consider the real, spherically symmetric SV kernels, 

N 

QNk (X t) = E Q',k ei -x 
pNmN I'l=J 

with monotonically increasing Fourier coefficients, Q k, satisfying (1 .2d). Then 
the following estimate holds: 

(3.3) Z arak-rRN (. t) < Constms(logN)d, 0< r <s < 2. 
j,k=1 I x 

Remarks. 1. Lemma 3.1, which is the multidimensional generalization of 
Lemma A. 1 in [ 1 3], shows that derivatives of the smoothing kernel, 

k=1 RJ k , t) , grow like those of a trigonometric polynomial of degree MiN. 
2. The extra logarithmic factor on the right of (3.3) can be avoided if the 

SV Fourier coefficients, p k, satisfy the concavity condition, QK k 2QPJk + 
QJ, K < 0 P-1 -~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~+ 

Proof of Lemma 3.1. Let D2(x ) = !Zx. Then we have sin Ix 

5 ei~x X Dp (x) - lp_ I (X) 

where Dp (x) = E pe *x is the multidimensional Dirichlet kernel, Dp (x)= 

Hd I Dp (xi). This fact enables us to write (with D- I1 (x)- 0) 

N N 
Rj (X, t) = 5ki k(t) ei-x - Z ,k(t)[FP (X) (X)] 

P=O W=P P=? 

St k Setting RN+1 - 0, we use summation by parts of the right-hand side (recall 
that Rpk =k jk, P <mN) to obtain 

N 

aj rak s- r k (X, t) =j E Ek araks-[2p (X ) p1()] 

p=O 
(3.4) 

N 
,("~, k _ R, k )Oars-rD X p= 5(RJ RP) D 

p 
+ 

ikN 
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Next, since 

ds &6~(logp),I s =0, 

xi LI 6(Ps) s = I1, 2, ....5 

we have Il k s-T p(x)IILI < Constps(logp)ds, ds = d - 1 + (1 - s)+. Using 
this and the fact that Rp k are monotonically decreasing, we conclude from (3.4) 

larasrRJNk( t)kIIL 
- N-1- 

<Const (Rik_ RJilk)ps(logp)ds + IRk* Ns (log N)ds 

One more summation by parts on the right of the last inequality yields 

a0r as - r R ik(. t |L 

< Cost L ENRp-k [ps(logp)ds - (p - l)s(log(p -_l))ds] + m2 logN)ds] 
P=MN 

Finally, since by (1.2d), RJ k= jk - Qpjk - m/p2, we conclude 

N 2 
k NRNk(, t)IILI <ConstmN(logN)ds 3-s 

P=mN 

< Const ms(log N)d, Vs < 2. o 

Young's inequality followed by Lemma 3.1 with (r, s) = (1, 2) implies our 
final corollary, which confirms the statement at the beginning of this section. 

Corollary 3.2. Consider the real, spherically symmetric SV kernels, 
N 

QNk(X, t) = E Qk ei*x 
pNmN RI=P 

with monotonically increasing Fourier coefficients, Q k satisfying (1.2d). De- 
note 

(3.5) CN -NM 2(logN)d < Const. 

Then the following estimate holds: 

d 

(3.6) eN S| jkRN *UN(, t) < CNIIUN(, t)LP, VP > 1. 

4. CONVERGENCE OF THE SV METHOD 

In the first part of this section we prove that the SV approximation, (1.2a)- 
(1.2d), is uniformly bounded. 
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Lemma 4.1 (L??-stability). There exists a constant such that 

(4.1) IIUN(, t)IIL-(x) < Const IIUN(., O)IILo(x), Vt < T. 

In the second part of this section we show that the SVsolution is consistent with 
the entropy condition (1. Ib) for all convex entropy pairs (U, F) . 

Lemma 4.2 (Entropy consistency). There exists a vanishing sequence, eN, such 
that 

(4.2) atU(UN) + ax * F(UN) < eN ` 0 in 9'. 

The detailed proof of Lemmas 4.1 and 4.2 is postponed to the end of this 
section. Granted the L??-stability and the entropy consistency, we can combine 
DiPerna's uniqueness result for measure-valued solutions [5] with the finiteness 
of propagation speed (see also [ 18] for the case of bounded domains) to conclude 
the following theorem. 

Theorem 4.3. Let UN be the solution of the SV approximation (1 .2a)-( 1 .2d), 
subject to bounded initial conditions satisfying 

lUN(G, O)IIL(x) + eNIIXUN(., O)IIL2(X) < Const. 

Then UN converges strongly to the unique entropy solution of (1.1 a)-( 1. Ib). 

We now turn to the promised proofs of the LOO-stability and the entropy 
consistency. 

Proof of Lemma 4.1. Using (3.2), we can rewrite the SV approximation (1 .2a) 
in the form 

d 

(4.3a) atUN + ax PNf(UN) - eNAUN = eN Z aO2kRiN * UN 
j,k=l 

or, equivalently, 

d 

(4.3b) atUN + ax f (UN) - CNAUN = CN Z a2kRk * UN + ax (I - PN)f(UN). 
j,k=l 

Integrating against puP-1 and letting p I o0, we are led to the maximum 
principle associated with the parabolic left-hand side of (4.3b), which reads 

d |J|uN(, t)||L?(x) < 1ax* (I - PN)f(uN(*, t))llL(x) 

+ CN Z &2 RN ,* UN(, t) 

j, k=l L?(x) 

It remains to bound from above the two expressions on the right of (4.4). 
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We now fix s = 2U)+d* Corollary 2.2 implies, consult (2.9), that the first 
term on the right of (4.4) does not exceed 

A 
~~~~~S 

i (I - PN)f(UN(, t))IIL(x) ? l k < ConstUNL( 
k= 1 

By equation (3.6) with p = 00, the second term on the right of (4.4) does not 
exceed 

d 

6N Z 2~kRN * UN(,t) < CNIIUNIL-(x,[ot]), 
j,k=i L- (x) 

CN - ENm2 (log N)d < Const. 

Equipped with the last two upper bounds, we return to the inequality (4.4), 
which tells us that the growth of IUN(t)lo IIUNIIL-(x,[ot]) is governed by 

d Const S 

t|IUN(t)Ioo < CNIUN(t)loo + N IUN(t)IL, 

which in turn implies that 

/ ~~~~~~~~~~2 
c~~t(O\ (ecNIJuN(OIc~)" 

Si 

IUN(t)Ilco < e 'UN(0) |* I_ - 
NCN 

We conclude that for t < &(lnN), the SV solution remains bounded by 
ConstecNt UN(0)1o. o 

We close this section with the following proof. 

Proof of Lemma 4.2. Multiplying (4.3b) by U'(UN), we obtain 

OtU(UN) + OX * F(UN) - ENAU(UN) 
d 

< ENU (UN) E aO2kR)k * UN + U'(UN)fx * (I -PN)(UN) 
j,k=i 

d d 

(4.5) = Z j(ENUI(UN)Rj k* akUN)ENU"(UN) Z OjUNRj k* OkUN 
j,k=1 j1k=l 

+ Ox* (U (UN)(I- PN)f(UN))- U"(UN)OxuN * (I - PN)(UN) 

d 

E j(Ijk(UN)) - II(UN) + AX *III(UN) - IV(UN)- 
j ,k=i 

We claim that the four terms on the right of (4.5) tend to zero. Below, we 
abbreviate 11 U'IIL? = 11 U'(U) IIL-(QN), etc. 

First, from (2.6) we have 

IlIjk(UN)IILI2 (X t) < 19NIIU KILTmaxIR I * l0MUNIL2 (X t) 

< 8NIU IILOIIOXUNIIL2 (X t) < Constv/'NW- 0. 
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Next, since l(R:4, 4) < Const sj2, we find 

< ConsteNllU llLoollOXuNllLI(Xt) ? ConstW 1 0 

The inequality (2.8b) with (r, s) = (0, 1) implies 

IIIII(UN) 11L2 (X t) < IIU'IILc? 11(I - PN)f(UN)IIL 2(X ,t) 

<1 IU IILO * N |xUN||L2 (X, t) < Const N (1) O.-+0 

Repeating the previous arguments, we conclude the proof of (4.2) with 

IIIV(UN)IIL1 (X t) < IIU |IL?? II0xUNIIL2(X [O, t]) 11 (I -PN)f(UN) 11L2(X[o, tI) 

< 19XUN 112 ( < Const N-(1-6) - 0. o 
-N L1,,(xt 

5. TOTAL-VARIATION BOUNDEDNESS 

Consider the SV approximation (4.3b) 

d 

(5.1) OtUN + x * f( UN) -NAUN = &x * (I - PN)f(UN) + EN E RjN * O92%UN 

j,k=l 

On the left we have the usual Li-stable viscosity approximation of (1.1a)- 
(1. lb). The first and second terms on the right represent, respectively, the 
spectrally small truncation error and, by Corollary 3.2, the LP-bounded per- 
turbation of the SV operator. It follows that the SV approximation shares the 
LI-stability and, consequently, the total-variation boundedness of the usual vis- 
cosity approximation. Details of the one-dimensional case can be found in [22]. 
To demonstrate the above claims in the multidimensional case, we now turn to 
a direct proof of the latter total-variation bound. 

Spatial differentiation of (5.1) yields 

9t9iUN + Ox * (f (UN)9iUN) - CNA(iUN 

d 

=01x * (I-PN)P(UN) + eN Z OJjRj * 9iUN. 

j ,k=l 

Integrating this against sign OiUN and using (3.6) with p = 1, we obtain 

d 19iUN(. t)I1LI(x) < Const iax * (I - PN)f(UN)IILI(x) + CNIIAiUN(., t)IILI(x). 

Integration of the last inequality implies that the total variation of the SV solu- 
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tion, IIUN(, t)IIBV(x) _Z E=l I|0iUNliL1(x)' does not exceed 

IIUN(', t)IIBV(x) < eIN [II UN(, O)IIBV(x) + 11 *(I-PN)f(UN)IILI(x,([Ot)] 

By taking into account the spectral decay of the truncation error (2.8a), we 
conclude the following theorem. 

Theorem 5.1. Let UN be the solution of the SV approximation (1.2a)-(1.2d), 
subject to initial conditions (2.7). Then UN has a bounded variation, and the 
following estimate holds: 

(5.2) IJUN(', t)IIBV(x) < eCNt [IIUN(., O)IIBV(x) + P( VtIN 52)] 

S2 =(1 - 6)s - 2 > O. 

6. CONVERGENCE REVISITED WITH ERROR ESTIMATE 

In this section we revisit the question of convergence of the SV approximation 
to the unique entropy solution of (1.la)-(1.ib). An affirmative answer to this 
question was already given in ?4, where we used the LU?-bound together with 
the entropy consistency of the SV approximation. Alternatively, one may use 
the L??-bound together with the total-variation boundedness to conclude the 
convergence of the SV approximation. Moreover, in this section we show how 
one can use the total-variation boundedness to obtain an LI-convergence rate 
estimate of the usual optimal order one-half. We proceed along the lines of the 
one-dimensional argument in [1 5]. 

It is well known that the solution of the usual viscosity approximation 

(6.1) &tVIN + Ox . f(veN) = CNAvIN 

satisfies an LI-convergence rate estimate of order one-half (cf. [11, 4, 14]): 

(6.2) IIveN(., t) -u(., t)IILI(X) < Const /W, 0< t< T. 

We claim that the LI-error between the SV approximation, UN, and the vis- 
cosity approximation, V8N, is of the same order (v/7). Indeed, subtracting 
(6.1) from the SV approximation (4.3b), we find 

Ot(UN - VeN) + OX* ((UN) - f(VeN)) - CNA(UN - VeN) 

(6.3)d 
(=N QjRj k * OkuN + Ox * (I-PN)f(uN). 

j,k=l 

Integrated against sign(uN - V eN), the last equality gives us 

(6.4) 

d d 
-jIIUN(., t) - VCN(., t)IILI(X) < N ORj k(., t) * OkUN(., t) 

+Ik=1 LI (x) 

+ IIOx . (I - PN)f(UN(., t))1IL1(x). 
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Using (3.3) with r = s = 1, we have that the first term on the right does not 
exceed 

|6N aZjRj k(.,t) * akuN(, t) 
j,k=1 LI(x) 

(6.5) d 

(6.5) - ~N Eaj Ri k(, t) *11190N(,~ t)IILI(x) 
j, k=1 L' (x) 

? ConstgNmN(logN)d * UN(, t)IIBV(x) < ConstfiW. 

With this in mind, we can integrate (6.4) to obtain 

(6.6) IIUN(&, t) - VeN(. t)I|LI(x) 

<ConstV'NV+ v'2189 * (I - PN)f(UN)11L2(X 10, t). 

According to (2.8b), the second term on the right is the spectrally small trunca- 
tion error 

(6.7) ||OX (I - PN)f(UN)11L2(X,[otl) 
< 

ConstsN-(s1+t), 
S1 =(1 - O)s - 1, 

which does not exceed &(+/-) for s large enough (s > l ). 

We summarize what we have shown in (6.2), (6.6), and (6.7), by stating the 
following theorem. 

Theorem 6.1. Let UN be the SV solution of (1.2a)-(1.2d), subject to the initial 
conditions (2.7). Then UN converges to the unique entropy solution of (1.1 a)- 
(1. Ib), and the following error estimate holds: 

(6.8) IIUN(&, t)-u(., t)IIL1(X) <Const/, 0 < t < T. 

7. PROOF OF THE MAIN A PRIORI ESTIMATES 

In this section we collect the promised proofs for the main a priori estimates 
associated with the SV approximation (1.2a), which we rewrite as 

d 

(7. 1) 9tUN + AX a of(UN)-8NAUN =N E Rjk * OJ2kUN + Ox (I-PN)f(UN). 

j,k=1 

An upper bound on the first term on the right was provided in ?3. We now turn 
to estimate the second term on the right of (7.1). Here, we first prepare the 
proof of (2.2), which we state as follows. 

Theorem 7.1. The following estimate holds: 
S 

(7.2) IOxs * f(UN)ll ? XIsJldUNl, XS E fIck * 
JUNlk, 

s = 1, 2, 
k=1 
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Proof. By the chain rule we have 

Of f(u) q Cl(a IU)l6(O ]2U)f2...(2 dU)fld 

{a,f>0 I a-fl=s} 

d 

Cfl JOurf(u), r = Z f3k. 

k=1 

The Holder inequality followed by the Gagliardo-Nirenberg inequality implies 
that a typical term on the right does not exceed 

||(O I U)l(61 (O2a)2 .U . . (Oad U)fdI| 

d 
< 1I 110jakuIylk (with k S- 

< 
Cont H 

|u||(kflk . |Slikk (withik=S) 

k=1 kk 

d 
< ConstJ7Jl uII1iksflkk II= uII3kflk with 

k=1 

d 
< Const uIUIrI 1fjull, r=Zf k s, 

k=i 

and hence (7.2) follows with X Z1 
SI 

If ICk *IUlko.o 

Equipped with Lemma 7.1, we are now ready for the proof of the main result 
of ?2, claiming that the smallest scale of the SV approximation is of order eN, 

(7.3) e9NII x UN(%, t)IIL2(X) + eII II O| 0 UN I IL2(X, [o, t]) < A + e I| 9xUN( O) II 2(X)I 

Proof of Theorem 2.1. Spatial integration of (7.1) against UN(X, t) yields 

l d 2d 
jIIUNII + CNI0xUNI < IUNII N E ORijk * UN 

j,k=i 

d 

+ E 10jUN11 * (I - PN)fj(UN)11I 

j=1 

Using (3.6) with p = 2 for the first term on the right, and (2.3) with (r, s) = 

(0, 1) for the second term, we find 

2 HdIIUNII + (N- N) IIOXUNII < CNIIUNII N 

Hence, (7.3) (log N)fd < s 0 

Hence, (7.3) follows for s = O (with X0 = ). 
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The general case follows by induction on s. Spatial integration of (4.3a) 
against O2SUN(X t) yields 

2- t IIax UN 112 + 9Nlaxs UN 112 < IjaxSUN|| *eN E j92kRJN 0xSuN (7.4) 2d1 12N NIxUNI?i~tti.~ 

+ IIaxs UNII I IOaxYl0x - 
PNf(UN)1I. 

Using (3.6) again and the Cauchy-Schwarz inequality to bound from above, 
respectively, the first and second term on the right of (7.4), we end up with 

(7.5) d IIOaxsUNII2 + 2 axs+IUN||2 < Const I|I9xsUN|12 + 
I 

|axs * PNf(UN)112. 
dt 2 2N + 

It remains to estimate the spatial derivatives of PNf(UN). To this end, we use 
(2.2) and (2.3) to obtain 

Iax PNf(uN)II < IIax * f(uN)II + Ilax I (I - PN)f(uN)II 

? XIIaxNzII + N XIaIxUNII. 

Together with (7.5), we find 

IIxs UNII + 2 NlIIax UNII ? (Const+ 5 ) IaUNI12. 

In view of the SV parametrization in (2.4), temporal integration of the last 
inequality yields 

II|x|UN&( t)l + NII+1 ax+UN IL2(x ?O t]) < e I I aXUNI L2(X [0O t]) + IIaxUN( ( 0)112, 

and the result (7.3) follows by induction on s. 51 
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