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ITERATIVE AND SEMI-ITERATIVE METHODS 
FOR COMPUTING STATIONARY PROBABILITY VECTORS 

OF MARKOV OPERATORS 

IVO MAREK AND DANIEL B. SZYLD 

ABSTRACT. Iterative and semi-iterative methods for computing stationary prob- 
ability vectors of Markov-type operators are proposed and their convergence 
properties are analyzed. The methods studied apply to certain classes of prob- 
lems in infinite-dimensional spaces as well as to classical n x n stochastic ma- 
trices. 

1. INTRODUCTION 

The aim of this contribution is to analyze certain iterative and semi-iterative 
methods for computing approximate solutions to singular equations of the type 

(1) Ax = 0 

with A = I - B, where I is the identity map, B is an operator which is non- 
negative in the sense that it has an invariant cone [4, 1 1], and is such that its 
spectral radius r(B) = 1. Such problems appear, for example, when modeling 
queueing systems; see, e.g., the references given in [1] and [3]. Another applica- 
tion is data fitting constrained to some eigenvalue relations [13]. The operator 
A in (1) is an M-operator [ 17], and the class of problems studied here includes 
in particular the solution of systems of linear equations with Q-matrices [2, 22]. 

From the numerical point of view, this problem leads to the calculation of 
a stationary probability vector (or stationary distribution) of a Markov process 
[ 14, 18]. In practical computations such problems reduce usually to constructing 
some or all stationary probability vectors of n x n stochastic matrices. 

Although the latter problem is very important, we analyze the methods pro- 
posed in application to general (infinite-dimensional) Markov processes [5]. In 
this way there is more flexibility in choosing appropriate methods. In particular, 
one can handle infinite-dimensional problems, say by discretizing them at each 
iteration step instead of discretizing a priori the original problem by reducing 
it to an n x n model. Our approach offers the possibility of constructing the 
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required approximations without an a priori restriction to a certain size of the 
corresponding matrices; a reduction to finite-dimensional spaces can be done 
during the computational process formally working in an infinite-dimensional 
space. In addition, our proofs of convergence are independent of the dimen- 
sion of the space. This implies that the convergence results of the methods 
discussed apply, e.g., to every stage of aggregation and disaggregation methods 
[10, 18, 26], and in general to a discretization with any number of points; see 
Remark 4. 1. 

We should add that if the discretizations of the infinite-dimensional opera- 
tor are done with minimal care, the convergence rate of the iterative processes 
remains controlled. Let T be the iteration matrix of such an iterative process. 
Its spectral radius is 1, but the rate of convergence is given by the 'reduced spec- 
tral radius' y(T) = {y E v(T): 1y2 < 1, IAy > JAI, A E C(T), JAI < 1}, i.e., the 
eigenvalue of largest modulus inside the unit circle; see the next section for def- 
initions and notation. Let h be the discretization parameter. The eigenvalues 
of the discretized problem tend to the eigenvalues of the infinite-dimensional 
problem as h -* 0. Thus, the reduced spectral radius of the finite-dimensional 
problems tend to the reduced spectral radius of the infinite-dimensional prob- 
lem as the number of points increases, while the convergence results continue 
to apply. 

2. DEFINITIONS AND NOTATION 

Let F be a real Banach space (in particular, it could be Rn), F' its dual, 
and ~Q(F) the space of bounded linear operators on F'. It is assumed that A' 
and W(F) are equipped with the usual norms and are thus Banach spaces as 
well. Let Y denote the complex extension of F, i.e., 9 = F ED i, with the 
norm 

IlzILT =sup{Ilxcos0+ysingly :0<0<27z:}, 
where z=x+iy, x,yEF'. 

Let % c F be a closed normal and generating cone [ 1 1], i.e., % satisfies the 
relations (i)-(vi), where (i) % + % c X%, (ii) aX c X%, (iii) % n (-%) = 
{O}, (iv) % = % (X denotes the norm closure of %), (v) F = X -X, 
i.e., for every y E F, there exist yj E X, j = 1, 2, such that y = Y1 - Y2, 
and (vi) for every pair x E X%, y E X%, there exists a real a > 0 such that 
lix + YJl > 5llxllJg. For the case of F = Rn one can consider % = IRn, the 
set of nonnegative vectors. 

Let A' be the dual cone, i.e., 

' = ={x' E F': for all x eX, [x, x'] _=x'(x) > 0} 

and fd the d-interior defined as 
fd ={XE Xt: forallx' eX', x' :0, [x, x'] > O}. 

In the case X= IR, the d-interior coincides with the topological interior 
consisting of vectors with all components positive. 

An element x*' E %' is called strictly positive if [x, x&'] > 0 holds for every 
xeX, X7&0. 
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A partial order is introduced into F by setting 

x < y (or equivalently y > x) A} (y - x) E Z. 

Thus, in analogy to Rn we denote x E X by x > 0. 
An operator T E W(F) is called J-nonnegative [11] if Tf c X . A 

X-nonnegative operator T is called X-irreducible [25] if for every pair x E 
X, x :$ 0, x' E A', x' :$ 0, there is an index p = p(x, x') > 1 such that 
[TPx, x'] > 0; see also [19]. 

Let S T E W(F) . We let 

T > S (orequivalently S < T) A} (T-S)X c X. 

In particular, T > 0 for any X-nonnegative operator. 
Let T E q(F) . By R (T) we denote the range of T and by ker(T) its null 

space. By T we denote the complex extension of T, i.e., Tz = Tx + iTy, 
where z=x+iy, x, yea'. 

Let I denote the identity operator. Let T E (F) and T be its complex 
extension. The set 

p(T) = fA E ?: (AI - T)-1 E 'q(')} 

is called the resolvent set of T. Its complement 

u(T) = C \ p(T) 

is called the spectrum of T. By definition, c(T) _ v(T). The quantity 

r(T) = max{IAI: A E (T)} 

is called the spectral radius of T. We define the peripheral spectrum of T by 
setting 

r(T) = {f E v(T): JAI = r(T)}. 
An operator A E M(F) is called an M-operator, more precisely X-M- 

operator [17], if A = bI - B, where b > r(B) and B > 0. 
Let P E M(Y) and let yU E v(T) be isolated. Then [28, pp. 305-306] 

00 00 

(R~LI- T)1 =a Ak(,)(A- U)k + E Bk(y)( A) 
k=O k=1 

where the Ak(,u), Bk+I (4u) E W(Y_) and the following relations hold: 

[BI (y)]2 = B, (y) 

and 
Bk+ () = (T - JI)Bk(u), k = 1, 2. 

In particular, if there is an index q = q(u) < +oc, such that Bk(u) = 0 for 
k > q, the singularity ,u is called a pole of the resolvent operator (AI - P) -I 

and q = q(u) is called its multiplicity or order. We write q(u) = 0 if y v(P), 
i.e., if ,u E p(T) is a regular point of the resolvent operator. 

An operator T E ~W (,) is said to have Property P, if the peripheral spectrum 
u, (T) consists of poles of the resolvent operator. We say that T E MQ(F) has 
Property P, if its complex extension possesses this property. Similarly, we say 
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that an operator T E W(F) has a certain property, if its complex extension T 
possesses this property. 

An operator T E ~W (Y) is called convergent, if there exists an operator 
P E W(Y_) such that 0 = limkoo0 i/Tk - Paq. If P = 0 (the zero operator), 
T is called zero convergent [24]. 

Let T have Property P, and let the value 1 be a pole of the resolvent operator 
(AI - T)1. We denote by (I - T)D the Drazin generalized inverse of I - T 
i.e., 

(I_- T) = fo (A) (AI -T) -'dA 

where 

fi /( -A) if II -2 >e, 
JO o0 if 11-l<e, 

with e > 0 such that {A: 1I - A< e} n v(T) = {1}. The contour of integration 
is 

= {fA: 11 -A = e} u{)A: 1JA = R}, 
with R > I such that v(T) c {A: JAI < R}. 

An operator T E ('), Tf c X, is called a Markov-type operator corre- 
sponding to xk', if 

(2) T'x' = x', 

where x' is a strictly positive element in A'. In Rn the vector x' is usually 
chosen as e' = (1, 1, ..., 1), and with this choice condition (2) means that 
the matrix T is column stochastic; see further ?6. 

A vector x E % is called a stationary probability vector, if 

(3) Tx =x and [x, x'] = 1, 

where T is a Markov-type operator corresponding to x'. In Rn, with the 
choice x.' = e', the second condition in (3) is xin= 1 = 1. 

An M-operator A E BQ() is said to have Property C, if there is an operator 
B E ~Q(F) such that b > r(B), A = bI - B, and (1/b)B = T is convergent. 
It is easy to see that each M-operator A = bI - B for which b > r(B) has 
Property C. On the other hand, it is known that even in the matrix case there 
are singular M-matrices not having Property C; see, e.g., [4, p. 152]. 

3. ITERATIVE AND SEMI-ITERATIVE METHODS 

Let A be an M-operator, and let A = M - N be its splitting, i.e., M- E 
(Q'). Given an initial guess x0 E A, consider for the solution of (1) by 

iterative methods of the form 

MXk+l = NXk, k= O. 1, . ... 

or equivalently, 

(4) xk+l = Txk , k = O. 1I .. 

where T = M- N is called the iteration operator. 
The following result is well known; see, e.g., [4, p. 152] and also [1 5]. 
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Proposition 3.1. Let T have Property P. The iterative sequence {Xk} defined by 
(4) is convergent if and only if T = P + S, where p2 = p, PS = SP = 0, and 
r(S) < 1. 

These rather restrictive conditions on the iteration operator lead to the ne- 
cessity of broadening the class of convergent methods. Thus, we consider semi- 
iterative methods corresponding to the iterative method (4), which we now 
define; see [6, 7, 21, 30]. 

Let Pk be a polynomial of degree k, k > 0, i.e., let 

k 

(5) Pk(Z) = 7k,tZ, 7tk,k 0. 
t=O 

It is assumed that 

(6) Pk(l)= 1. 

Then 

(7) qk-_(Z) 
Pk(Z) 

is a polynomial of degree k - 1 , and (7) is the only polynomial of degree k - 1 
interpolating the function I lZ on the set of the roots of the polynomial Pk [7]. 

We define 

k 

(8) yk=Zlktxt, k=0,1,.... 
t=O 

and call the sequence {Yk} the semi-iterative sequence corresponding to the 
basic iteration (4). It follows from (6) that yo = xo . 

The following result characterizes conditions for the convergence of semi- 
iterative methods. We study these conditions in specific examples later in ??5 
and 6. 

Proposition 3.2. Let T E q (F) have Property P. Let the value 1 be a pole of the 
resolvent operator (AI - T)-1 with multiplicity q = q (1) . Let the polynomials 
Pk and qk-1 be defined by (5) and (7), respectively, and let (6) hold. Then the 
following statements are equivalent: 

(a) The sequence {Ykj is convergent for arbitrary yo E 6M((I - T)q) U 
ker(I - T). 

(b) limk ,t00 Pk(T)v = 0 for every v E 3?((I - T)q). 
(C) limk,0 qk-1 (T)v = (I- T)DV for each v E 3((I- T)q). 

If one, and thus all, of these conditions are fulfilled, then 

lim yA = [I-(I- T)D(I- T)]yo. 
k-+oo 

The proof of Proposition 3.2 can be given by the same arguments used in 
proving Theorem 1 in [6]; a generalization from the matrix case to our operator 
situation represents no essential difficulty. 
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4. JACOBI RELAXATION AND SUCCESSIVE RELAXATION ITERATIONS 

In this section we show that some classical iterative methods are suitable for 
finding stationary probability vectors. 

Let T be a Markov-type operator corresponding to an x.' E A'. Define the 
Jacobi relaxation operator as 

W(wo) = (1 -w)I + wT, 

where 0 < co < 1. 
Similarly, cf. [30], the successive relaxation iteration operator is defined by 

V(wj) = (I - oL)-'[( - wo)I + wU], 

where T = L + U, L > 0, and U > 0. 

Remark 4.1. These methods have been analyzed in [1] for the n x n standard 
M-matrix case, and their convergence has been established for generally re- 
ducible M-matrices possessing Property C. The main result in [1] is based on 
an interesting inequality relating the knth power of the Jacobi relaxation matrix 
W(wO)kn to the kth power of the successive relaxation matrix V(wO)k, where n 
is the dimension of the space, i.e., the size of the matrix T. From this relation 
one might conclude that the convergence result depends on the dimension of 
the space, and moreover, that this result may not hold in infinite dimensions. 
However, this is not the case. The argument used in our proof is based on a 
rather simple observation, telling us that the peripheral spectrum of a nonneg- 
ative operator T bounded below by a positive multiple of the identity map is 
a singleton; see [15]. 

Proposition 4.2. Let T E W(F) be f-irreducible and V(co) have Property P. 
Then r(V(wo))= 1. 

Proof Let x0 E 5 d be an eigenvector of T corresponding to r(T) = 1 . Then 
the relation V(w)xo = x0 and Lemma 4.1 in [17] imply that r(V(wo)) = 1 . o 

Theorem 4.3. Let T E q(), Tf c X, and let the spectral radius r(T) be 
a simple pole of the resolvent (AI - T) -. Then the Jacobi relaxation method 
defined by W(wo) is convergent for 0 < w < 1. Let r(V(w)) = 1. Let T have 
the spectral decomposition T = P + S, where p2 = p, PS = SP = 0, and 
r(S) < 1, 1 ? C(S) . Then the successive relaxation method defined by V(X) is 
convergent for X > 0 such that 

(9) wolIPLPIi < 1. 

Proof. Since W(w) > (1 - o)I, by Proposition 2 in [15] it follows that 
o,, (W(w)) = {1}. Proposition 3.1 then implies convergence of the Jacobi re- 
laxation. 

Similarly, since V(wo) > (1 - o)I, Proposition 2 in [15] implies that 

o,(V(w)) = {1}. 

By Proposition 3.1 it remains to show that the value 1 is a simple pole of 
(AI - V(o))-1 . If the multiplicity of the value 1 as a pole of the resolvent 
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operator is not 1, then, by Theorem 6.4 in [17], there exists an element u(wO) 
such that 

u(wo) = (I- wL)Pv = (I-P)w, 

where v and w are some suitable elements. It follows that P(I - woL)Pv = 0, 
and hence, 

Pv = cwPLPv, O < co < 1. 
Therefore, I IPv I I < Wo IIPLPI {I I Pv I I . However, this can happen only if Pv = 0 . 
Thus, u(w) = 0, and the proof is complete. o 

Remark 4.4. The validity of the condition r(V(wo)) = 1 depends upon an in- 
terplay between the cone X and the operator T; cf. Proposition 4.2. More 
generally, let X and T E S7(F) be such that there exists a direct decom- 
position % = Ej Xj , where Xj c Fj are generating normal cones in Fj, 

= Ej j, and the reductions Tj to j are Xj5-irreducible. Then, under 
the hypotheses of Theorem 4.3, r(V(w)) = 1. To see the interplay mentioned 
above, let Tj be the reduction of T to F. Let V(co)j be the correspond- 
ing reduction of V(w). Then, by Proposition 4.2, r(V(o)j) < 1, and thus, 
r(V(wo)) = sup{r(V(w)j): j} = 1. 

Let us mention two examples. The first is 8 = Rn , % = Rn, and any matrix 
T E q (Q), the second is 8 = lP, = liP, 1 < p < + oo, and any compact 
operator T E q (8'). 

Remark 4.5. The hypothesis (9) of Theorem 4.3 holds in particular if the spec- 
tral projections P are uniformly bounded, say, IP lI < K. In this case, the 
successive relaxation method defined by V(o) is convergent for sufficiently 
small w > 0. 

Remark 4.6. Let 8 = Rn and X = Rn . Then the interval of cox's for which 
the successive relaxation method converges is the whole interval (0, 1). This 
follows from Rothblum's Index Theorem [23] and the fact that the incidence 
graphs of the matrices V(Z) are identical for all co e (0, 1) . 

Remark 4.7. An alternative proof of Theorem 4.3 for the case 8 = Rn and 
X = Rn can be given by using Theorem 6.5 in [17]. 

5. SOME PARTICULAR SEMI-ITERATIVE PROCESSES 

From the variety of all semi-iterative methods for computing the stationary 
probability vectors, we present some particular examples. Our analysis shows 
how the methods proposed here can compete with a very effective method of 
conjugate gradients, the method analyzed by Tanabe in [27]. 

Consider first the polynomials 

I k 

(10) Pk(Z) = k1 Zzt, k = 1, 2. 

Since condition (6) is obviously satisfied, the polynomials (10) are admissible 
for constructing a semi-iterative method. These are the Cesaro-1 (C-1) sums; 
cf. [6, 24]. 
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Theorem 5.1. Let T E Q8), TXf c , have Property P. let r(T) < 1, and 
let the value 1 be a simple pole of (AI - T) -. Then the semi-iterative method 
defined by (4), (8), and (10) converges to a solution of the operator equation 
x - Tx = 0 . 

Proof According to Proposition 3.2 it is enough to show that 

liM pk(T)v = 0, 
k-aoo 

for every v E 3 ((I - T)) . For this purpose, it is sufficient to prove that 

(11) liM Pk( (Ai) = 0, 
k-aoo 

for all Aj E ,,(T), and that 

(12) lim p -)(A) = 0 

for all A E a(T) and 1 = 0, 1, ... , k - 1. However, the relations (11)-(12) 
are well known from elementary calculus. o 

Remark 5.2. Let A = I-B and B = L+U, where Be(Q) L >0, 
U > 0, r(L) < 1, and r(B) < 1 . 

Then, by choosing either T = B or T = (I - L)-I U, we obtain the (C - 1)- 
Jacobi or the (C - 1)-Gauss-Seidel semi-iterative method, respectively. These 
methods have been analyzed for the n x n M-matrix case in [1]. 

Let 8 be a Hilbert space with an inner product (., *), and let B* denote 
the adjoint of B E Q8). Let 

(13) T=I-(I-B*)(I-B). 

Let 0 <co? ... < acO be the nonzero singular values of A = I - B. Define 

4 (UO'O -CO2 
(14) /t =LO (a+a)2 2= 

-(. ao)2 

and 

( 15) Y1 = 1 - /t0 - Y2- 

Let yo be arbitrary and consider the sequence {Yk} defined as follows: 

(16) Yi = IoTyo +(1 -uo)yo, 
(17) Yk = JOTyk-1+ + yk1+12ykI2, k = 2, 3. 

Theorem 5.3. Let A = I - B, where B > 0, r(B) = 1, and let B have Property 
P. Let T be defined by (13) and let 

a(T)\f 1 c [ 1 - a2,0 1 - 0]. 

Then the stationary two-step iterative process (14)-(17) converges to a solution 
of the equation Ax = 0. 

Proof According to Theorem 1 in [6] and the theory of asymptotically optimal 
semi-iterative methods (AOSIM) developed in [8], the above two-step iteration 
is equivalent to a particular AOSIM related to the interval [1 - o2, 1 - o0]. 
This fact implies convergence, and completes the proof. o 
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Remark 5.4. The convergence theory is developed in [8] for the n x n ma- 
trix case only. An appropriate generalization needed for our purposes can be 
obtained without any difficulty. 

Remark 5.5. It is interesting to note that the limit vector yOO of the iteration 
(14)-(17) has the form 

yOO = [I - (I - T)+(I- T)]yo, 

where (I - T)+ denotes the Moore-Penrose pseudoinverse of I - T. This means 
that in the case considered, the Drazin generalized inverse and Moore-Penrose 
pseudoinverse coincide. For a general definition of the Moore-Penrose pseu- 
doinverse and some of its properties the reader can consult the collection [20]. 
For the case of operators T having a closed graph, a brief discussion is pre- 
sented in [12, p. 714]. 

Remark 5.6. The algorithm (13)-(17) should be performed in a numerically 
reasonable way. In particular, the vectors Yk are updated by multiplying suc- 
cessively by I - B* and I - B without the explicit computation of the product 
(I - B*)(I - B); see [6]. 

Remark 5.7. As noticed in [6], the process (1 3)-(17) remains convergent even 
if some bounds &t and &OO are available in place of ao and aO, respectively; 
convergence is actually achieved even with some rather crude bounds. The 
rate of convergence may, however, dramatically decay in comparison with the 
asymptotically optimal rate of the process with the exact spectral bounds. For 
numerical realization some effective methods of bounding the quantities co and 
a,, are thus needed. 

6. COMPUTATION OF ALL EXTREMAL STATIONARY PROBABILITY VECTORS 

OF A STOCHASTIC MATRIX 

In this section we apply the results of the previous sections to the classical 
case of an n x n stochastic matrix. We proceed in a way similar to that of 
Tanabe in [27] for the conjugate gradient method. 

Let F = Rn with [x, y] = E~n xjyj and X = Rn . According to [19], Rn- 
irreducibility is equivalent to the classical Frobenius irreducibility as presented, 
e.g., in [30, p. 18]. Let e' = (1, ... , 1) e (Rny), where (DRn)' denotes the dual 
to Rn . An n x n (column) stochastic matrix (bj, k), bj,k > 0, En I by,k = 1, 
defines a Markov-type operator in our terminology as follows: 

[Bx e' =[x, e]for all x E fin 

i.e., x' = e'. Such a matrix B is called a transition matrix. It is well known 
that B can be expressed as B = Q + Z, where Q2 = Q, QZ = ZQ = 0, and 
1 av(Z) . It follows that x e IRl is a stationary probability vector of B if and 
only if x E M (Q), [x, e'] = 1 . Since Rn is a direct sum of the ranges M (Q) 
and 3 (I - Q), we deduce that 

x e Rn . Qx 54 0O x x V _W(I -Q) = M(I -B). 

A splitting A = M - N is called a regular splitting if M-1 > 0 and N > 0 
[4, 16, 29, 30]. 
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Proposition 6.1. Let A = I - B = M - N be a regular splitting, and let T = 

M-IN. Let P and R be such that T = P + R, p2 = p, PR = RP = O, 
and 1 ? v(R). If B is an irreducible transition matrix, and if the semi-iterative 
procedure described by (4)-(8) converges to the limit yo,, then 

(18) YO = [Py0 , e'] x, 

where 

(19) x-k=PxkEIntlR+, 

i.e., x > 0. Moreover, ycO + 0 if and only if yo 0 (I - B). 

Proof. By Proposition 3.2, 

YOO = [I(I -T)D(I -T)]yo. 

It follows that [17] 

(I-B)P = (M- N)P = M(I- T)P = O. 

This implies that 
9 (P) c ker A = ker(I - B). 

However, ker(I - B) = 3(Q) and dimn(Q) = 1. Since J(P) $ {O}, we 
have 9i(P) = M (Q) . Therefore, since 

p = I - (I - T)D(J - T), 

we have that I - P = (I - T)D(I - T) is a projection of Rn onto the range of 
I - T. As a direct conclusion we obtain (18) and (19). 

If yoo 0 0, then, since yoo = PyOO = QyOO, we have 

Yo 0M(I - Q) = M(I -B). 

Conversely, if yo 0 9i(I - B) = M (I - Q), we see that yo 0 yo - Qyo and 
thus, Qyo $A 0, implying Pyo $ 0 and consequently, ycO 5 0. o 

Corollary 6.2. Under the same hypotheses as in Proposition 6.1, let yo E Rn+. 
Then yo M 3P(I - B) and the unique stationary probability vector of B is given 
by 

=- {I-(I-T)D(I-T)}yO PyO QYo 
[{I - (I - T)D(I T)}yo, e'}] [Pyo, e'] [yo '] 

A computation of the stationary probability vectors of general reducible ma- 
trices is based on the following representation of B in the form [9, p. 448] 

B=E GI F, O . El < E' < r n. 

LGr O O 0 Fri 

Here, E is an n x n permutation matrix, E' its transpose, Fj, 1 < j < r, 
are irreducible column stochastic matrices, and r(Fo) < 1. If uj is the unique 
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stationary probability vector of Fj, then 

(20) vj = E(O, ..., uj, O,...., O), =l,...,r, 

are mutually orthogonal stationary probability vectors of B. Every vj has nj 
positive entries which correspond to the states in the same ergodic class Fj, 
where nj is the order of Fj. Every stationary probability vector of B is a 
convex combination of VI, ..., Vr 

For a vector b E Rn, b = (b, ..., bn)', let us define the support of b as 

supp(b) = {j: bj > 0}. 

Theorem 6.3. Let B be a column stochastic matrix. Let vj be defined as in (20) 
and let {Yk} be the sequence generated by (4), (5), and (8). Then 

* limyk r [Pyo, ej] 
k-+ooyk E [v_ e] Vj I 

where Yo E Rn is the initial vector of the process and 

els A, ... , 0, 1, ... , 1, .., 1, 0, ... , 0)', . j> 0 

so that e' = . 
If yo ? 9i(I - B), then yo 0, and the vector = yo/[yo e'] is a 

stationary probability vector. 

Let el, ..., en denote the elements of the standard basis, 

ej = (O ... , 1,~ ... , 0)I, i= 1,~ ... , n. 

Theorem 6.4. Let B be a column stochastic matrix, and let yo = cej with some 
c > O. Then 

J# O if j E supp(vt) for some < t < r, 
l= ? otherwise. 

If yOO $ 0, there exists a unique integer k such that I E SUpp(Vk), and Vk can 
be expressed as 

1 
[yOO, el] 

Corollary 6.5. For every ej, j = 1, ..., n, one of the following conditions holds: 
1. The vector 

_ 1 1D( 
X [ej, el] [{I - (I - T)D(I - T)}ej {I - (I - T)D(I -el 

coincides with one of the extremal probability vectors of B in which case the 
state j belongs to the ergodic class supp(.j). 

2. The vector Pej is the zero vector, in which case the state ] is transient. 
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Corollary 6.6. Let e = EZ- e;. The probability vector 

Pe~ [Pe, e'] 
is a convex combination of all the extremal stationary probability vectors v;, 
j = 1, ..., r, i.e., x = z>,=, cjv1, where c; = [k, Eej]. 

The proofs of the theorems and corollaries stated in this section can be given 
in a way very similar to that of Tanabe [27] and are thus omitted. 

From these results it follows that the whole approach of Tanabe can be ap- 
plied to our semi-iterative methods in place of his conjugate gradient method. 
This concerns, in particular, both the Conceptional and Computational Algo- 
rithms. These algorithms are important tools for practical computations. This 
means that with our semi-iterative methods one can compute the complete basis 
of stationary probability vectors of B in a numerically stable way, just as it was 
proposed by Tanabe [27]. 
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