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ASYMPTOTICALLY OPTIMAL ERROR BOUNDS
FOR QUADRATURE RULES OF GIVEN DEGREE

H. BRASS

ABSTRACT. If the quadrature rule Q is applied to the function f, then the
error can in many situations be bounded by p5(Q)||/®|lco , where ps(Q) is in-
dependent of f . We obtain the asymptotics of these numbers for the Gaussian
method Q¢ (n=1,2,...) with very general weight functions and show that
ps(QS) is (asymptotically) an upper bound for ps(Q), if Q is any quadrature
rule with the same degree as QS .

1. INTRODUCTION
Let I denote a fixed given functional on C[-1, 1] of the form

I[ﬂ::/_llf(x)k(x)dx with k € L[-1, 1], k>0, /_llk(x)dx>0.

The numerical computation of I[f] is often done with the help of “quadrature
rules” Q; these are functionals of type

n
Q[f]:_-_zavf(xu) WithauZO, —13x1<"'<an1-

The érror is the functional R := I — Q. The degree of Q is the number
deg[Q] := sup{m : R[Z#,] = 0}, where £, denotes the space of polynomials of
degree < m . The most interesting quadrature rules are the Gaussian rules QF,
which are characterized as rules with n evaluation points and degree 2n — 1.

We are interested in error bounds of the type

IRLAL < ps(@ISV]

(Il + I means the sup norm throughout this paper), that is, in the numbers

ps(Q) :=sup{|RLf1l: f€Z},  F:={f:I/D<1}.

We shall determine the asymptotics of ps(QS) and shall prove that these num-
sers are (asymptotically) upper bounds for py(Q), if deg[Q] = deg[QF].
As an illustration we cite a special result: Let k=1 and let Q;, Q», ... be
1 sequence of quadrature rules with deg[Q,,] > m — 1. Then we have
. 7[2 . G
'nlgrgo mp1(Qm) < 7= ”}l_fgo mp1(Q(m+1)/2)) -
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786 H. BRASS

If we make the further assumption that Q,, has m evaluation points, then
we have mp;(Qn) > 1 (see, e.g., [1, p. 242]). Hence, all quadrature rules
of interpolatory type (Gauss, Lobatto, Radau, Clenshaw/Curtis, Filippi, ... )
are of similar quality with respect to p;, and there is only little improvement
possible if we would use the best rule (which is not of interpolatory type and
will give poor results if applied to functions of high smoothness).

To be more precise, we define

Ps,m =sup{ps(Q) : deg[Q]1 > m}, 1<s<m+1.

With suitable assumptions on k we shall prove
1
(L1)  Jim mps = Hm e py(Qffmyny) = G TH] [ 1Bi(0)]dx,

where we have used the notation

(1.2) h(x):=V1—-x%,  Byx):= _ZZ cos(zzczljt);_ fns)

The restriction of B; to (0, 1) is identical with the Bernoulli polynomial (see,
e.g., Himmerlin and Hoffman [8]).

Formula (1.1) gives the asymptotics of p; ,, if s is fixed, but there are many
error bounds which use an increasing order of derivatives. For this situation we
shall prove: If /€ {0, 1, ...} is fixed, then

. 2mH (4 1) 2+ (m + 1)) G
W m ——r— Pm—tet,m = M —— =Py 141 (1))
. 1
= ¢v/Tmexp l/ In k(x) dx
TJ_1V1-x2

with
c,:=/ \D'le~*1|dx,  Df]:=/".

2. THE RESULTS

Theorem 1. Let Q1, Q>, ... be a sequence of quadrature rules with deg[Q,,] >
m ; then we have

1
JE mp.(Qn) < QP TIN) [ B0l dx,  hx) = VT= .

In the special case s = 1, this theorem is given in [4]; under the further
assumption k = 1 an asymptotically sharp bound is given in the same paper.
The constants

( 1 v(s+1)

Z(Zv+l)5+1’ s=0,1,

are called Favard constants; they are used in our next theorem.
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Theorem 2. Suppose v is continuous on (—1,1) and M = inf{v(x): -1 <
Xx <1} >0 holds. Let Q1, Q, ... be a sequence of quadrature rules

Qn[f] = Zau,nf(xu,n)
v=1
with

t
(2.1) lim n“‘l{x,,,,,:x,,,,,StH:/ v(x)dx
-1

n—oo
(H{:--}| means the cardinality of {---}); then we have

lim n'ps(Qn) > (27) K I[v~°].

n—oo

The condition (2.1) is satisfied for the Gaussian method Q,? (n=1,2,...)
with v(x) := #~!(1 — x2)~1/2 (and for the Lobatto method and the Radau
methods) if k > 0 a.e. (see, e.g., Freud [7, Theorem 9.2]).

If s is odd, then we have

1
(2.2) K, = (2n) /0 |By(x)) dix;

for the proof, use Bs(x) # 0 if x € (0, %) , see [8]. With the aid of (2.2) we
obtain by a combination of Theorem 1 and Theorem 2 as a main result of this
paper:

Theorem 3. Let s be odd, and suppose k > 0 a.e. Then (1.1) holds.

If s is even, then (2.2) is not true, and we have as a weaker substitute for

(1.1)

1
(23 KdWI< lim mpon < T mop,m < 2nP100] [ 1B.(0)]dx

m—o0

if k> 0 a.e. However, the ratio of the bounds is < 1.027.
If we make stronger assumptions on k, we can prove (1.1) also for even s.
We have to use the following theorem of Petras [10]:

Theorem. If there is a constant M and a polynomial t with zero set N :=
{_la fly ey fm, 1} suCh that

?(x) <k(x) <M1 -x)"12,  xe[-1,1]\N,

and if k is continuous on [-1, 11\ N, then we have
1
lim np,(0S) = 7*11K*] [ 1Bl dx.
n—oo 0
As an immediate consequence we have

Theorem 4. The relation (1.1) holds under the conditions of the theorem of Petras.

We turn now to the case of increasing s. Here we have
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Theorem 5. If f_ll(l —x2)"12Ink(x)dx exists, then (1.3) holds.

With the added hypothesis k = 1, the exact values of p,,.; », are obtained
in [6], [3]; with the same hypothesis, the asymptotics of Pm-1+1(Qﬁm +1) /21) is
given in [5].

The proof of Theorem 1 uses two results on the degree of approximation by
(ordinary or trigonometric) polynomials, which are of independent interest. We
use the notation

a,[f]:= %/_11 F)T,(x)(1 = x»)~Y2dx  with T, (x) := cos(v arccos x),

and state

Theorem 6. If f € %, then there exists a sequence py, p1, ... With
(i) pn e ‘@n ’
(i) 1/(x) = pa(x)]| < Q@) (n+ 1) (VT = X2 [, |Bs(w)ldu + O(n="1),
(iii) &, [f1-alp]=0(n=="1), v=0,1,....

The O terms hold uniformly in % .

We shall need some further notations:

n
T = {t 1i(x) = Z(a,, cosvx + B, sinvx); a,, B, € ]R} ,
v=0
V4

a,[f] :=% _n f(x)cos(vx)dx, b,[f] :=% 3 f(x)sin(vx)dx.

We can now state

Theorem 7. Let f be a 2m-periodic function with a bounded sth derivative.

Then there exists a sequence ty, ty, ... With
(i) tn € '771 ’
(ii)
@2n)° ! . (s) .
ILf = tall < 1y J, |Bs(u)| duinf{|| /') —c|| : c € R},

(iii)
la,Lf — ta]l = O(n~*"Y)inf{|| f© —¢|| : c € R},
b, Lf — ta]l = O(n=s~ V) inf{|| ) — ¢|| : c € R}.

If s is odd, then (i), (ii) is the well-known theorem of Favard, Achieser and
Krein (see, e.g., Timan [12, p. 289]) and the method of proof leads to (iii) too.
Therefore, we shall restrict ourselves to the proof of Theorem 7 in the special
case of even s.

3. PROOF OF THEOREM 7

Lemma 1. Let s € N be fixed. There exists a sequence u, (= u, ;) (n =
1,2,...) such that

(i) un € I,

(ii) ao(un) =0,
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(iii)
a; |Bs (5= = 0(n™71),
[ (27t) ] A=1,2, ...
) -] =ou,

T
(iv) The function By(5;)—un changes its sign on (0, 27) exactly at the zeros

of Bs((n+1)5;).

Proof. Let s be even. (The lemma holds for all s € N, but for our purpose
we need it only for s even.) The function B; has two zeros &; € (0, %) and
& =1-¢ on [0, 1] ([8, p. 280]). We define the functions u, of the lemma
by

n
Up(x) := Z aj,n COSAX,
A=1

2= 20 sin((v + 1)27¢)
“on = Qaysin@ag) e wnr D) +AF

Then (i) and (ii) are true. After some work we get from the above definitions
@B (37) - w]

_2(=1)*% [ 2cos(v2mé)) 1
T (2n)s Z:l (v(n+1))s ° sin(2ng;)

X <§: sin((v + 1)228)(v(n+ 1)+ 4)7° — (v(n + 1))™)

v=1

= sin((v - 1)27E)((v(n + 1) = A)° — (v(n + 1))*))) .

v=1
The first sum is (—1)(+t2/2(2n)5(n + 1)~5B,(¢;) = 0; the second sum can be
bounded by

DI+ 1)+2)7 - (w(n+ 1))~
v=1

=(n+ 1)‘siv“s (1 - (1 + ;(—ni_’_—l))_s)

v= 1
< (n+ 1) Z - n):f' 1)

for the third sum we use the same method, and (iii) is proven.
For the proof of (iv) we use the notation

Xy (u+§,)n+1, u=0,1,...,n; i=1,2.
These are the zeros of Bs((n+ 1)5;) on (0, 27). Verifying
Bs(x”"")=u,,(x,,,,-), p=0,1,...,n; i=1,2,

2r
is a rather long but elementary task.

O((n+1)=1);
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If d := By(5;) — u» had zeros different from x, ;, or if one of these zeros
would not be a point of sign change, then d would have at least 2n + 3 zeros
on (0, 27). Butthen d’,d”, ..., d"=2 would also have at least 2n+ 3 zeros

on [0, 27) (Rolle and periodicity), whereas d*~! would have 2n+2 and d®®
would have 27 + 1 zeros. But this is a contradiction because of 0 # d®) € .9, .
Thus we have (iv). O

Proof of Theorem 7. Using the u, from Lemma 1, we define
(3.1)

1 2n
() 1= gl 1= @0y~ [ e =90 dy

= %ao[j] + (=1)6+D/2ps=1gs Zn: ay nAS(ai[f1cos(Ax) + by[ f1sin(Ax)).
P

Then (i) of Theorem 7 is evidently true, and (iii) follows easily from assertion
(iii) of Lemma 1.
If f is 2z-periodic and has an sth derivative, then we have

2n _
62 fe)=gal-eot [Ce (S2E) o0 dy:

this is a special case of the Euler-Maclaurin sum formula. Combining (3.1) and
(3.2), we get

169 =) = = @yt [ (B (552) - e ) 100y

= - @2ny-! /o ” (B, (%) ~ un(2)) fO(x - 2)dz.

The first factor of the integrand has mean value zero; therefore, we can deduce

By (=) - un(2)| 21 = cll,

2n
(33)  If - tall < 2ay! /O

where ¢ is any constant.
We use now assertion (iv) of Lemma 1:

/02,, /02" (B () — n(2) sen B, ((n+ 1)5= ) dz| .

The second factor of the integrand has period 4 := +1 ; hence we obtain

e

B, (-2-27—[) - u,,(z)' dz =

5 () -]
/ Z ( (Z+Kh) - un(Z+Kh)) sgn By ((n + 1)2—272) dz

We apply now

iBs (Z ;ﬂ"h) = (1+1)'~B, ((n+ 1)
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(the “multiplication theorem”) and

iun(z+xh) =0

k=0

(an identity holding for all u € .;,) and get

/27[
0

z z

B (%) (| dz = e 0= [ [B, (tn 4 12|

=(n+ 1)“27:/l |Bs(x)|dx.
0

Combining this relation with (3.3) gives assertion (ii) of the theorem. 0O

4. PROOF OF THEOREM 6

Lemma 2. Let f € % ; then there exist 2rn-periodic functions h, j, t such that
(4.1) f(cosy) = h(y)sin’y + j(y) + ¢(»)
with
(i) inf{||A®) —c||:ceR} < 1,
(ii) ||j¢*+V|| < const,, where const; does not depend on f,
(iii) t € ;.
Proof. We begin with Taylor’s formula:

s—1 x
f(x) =3 v )% + (s — 1)1 / FOu)(x — up=" du.
v=0 0

If we put x = cosy and substitute # = cosv, we get

s—1

fleosy) = > w17 f)(0) cos” y — (s — 1)!™!

v=0

v
x / f®)(cosv)(cosy — cosv)*~!sinv dv.
/2

Using the notation
g :=(cosy —cos(-))*"!sin(-) and ho:= f(cos-) — Jao[ /) (cos-)],

we obtain
s—1 1 y
feosy) = 3w 1(0)cos” y = el eos s = 117 [ gw)a
=0 T
(4.2) —(s—1)"! / ’ ho(v)g(v) dv
n/2

. y
=1 () — (s — 1)1 /  o©)3)do.



792 H. BRASS

We proceed with s partial integrations and denote by A, 4y, ..., hs the suc-
cessive primitives of /4y with mean value zero. We obtain

y
/ ho(v)g(V)dv = [h1g ~ hag' + — -+ (=17 h gV, ,
n/2

+(=1) /,, :zhs(v)g(‘)(v)dv.

Using induction, we get easily
g™ (v) = (cosy — cosv) 1 ¥(s = 1)(s = 2)--- (s — k) sin" 1 v
+1(cosy—cosv) ¥ (s—1)(s=2)--- (s—k + ) (x + Dr sin*~! v cosv
+ (cosy — cosv) ¥ 1T, |
with T, ; € J,_; . Hence, we have immediately
g®y)=0, k=0,1,...,5s-2,
gt D) =(s—1)sin’y,
and with a simple computation
g9W) = (s + DIsin* ' ycosy.

From all this we get
y ~
/ | o@)§()dv = 1)+ (=17 s = k) sin'y
n
y
+ (=1 / hy(0) 2 (v) dv
n/2

with 7 € ;. If we substitute this equation in (4.2), we arrive at (4.1) with
t=f—(s—-DI"Y%,  h=(=1’h,
i) = =0 [ hw)giw)do,
/2
and assertions (i) and (iii) are evident. In view of

J) = (=D s = DI h() g (v) = (=1)" §5(s + 1)hs(v) sin’~" y cosy

j&+D exists, and we have ||j+!|| < const-max{||kol|, ..., ||As]|}. But observe
that 4, has mean value zero; therefore, ||A|| < 27||Ae—y|| and |jC+D|| <
const; ||Ao|| < 2const; . This is assertion (ii). O

Proof of Theorem 6. We represent f(cos-) as in (4.1). We approximate #4
by t,—s € J,-s according to Theorem 7. The function j in (4.1) can be
approximated by 7, €.9, according to Jackson’s theorem, so that we have

(4.3) lj — fa]l < constn™s~!,

Let
Pn(y) == ta—s(y) sin’y + fn(y) + ().



ERROR BOUNDS FOR QUADRATURE RULES 793

We have
|f(cosy) = B(¥)| < [h(Y) = ta—s(¥)|sin y + [j(¥) — & ()
2\, !

< —s—1 .

< (_n T —s) | sin yl/0 |Bs(u)| du + constn
Here, p is an even function (if not, replace it by its even part); therefore the
substitution y = arccosx leads immediately (p, := p,(arccos-)) to assertions
(1) and (ii) of Theorem 6.

The proof of assertion (iii) starts with

(4.4) ay[f — pnl = ay[f(cos) — pn]l = ay[(h — ta—s) sin’ -] + a, [ — Tu].
We have the identity

v+s

a,[gsin’ -] = Z (aay gl + Bibylgl)

A=v—s

where «;, B; denote some constants. Using this identity and assertion (iii) of
Theorem 7, we obtain

a,[(h —ty_s)sin’ ] = O(n=7Y),

and this gives the bound for the first term in (4.4). The second term can (using
(4.3)) be bounded by [la, || [lj — Zll < 2constn=~'. DO

5. PROOF OF THEOREM 1
Let f € %, and choose p,, according to Theorem 6. Then we have
L1 = Oml ANl = ILf = Pm] = Qmlf — Pmll
S UL = Pmll + Omll|f — Pml]

<17 = omll + (2 )SQm[h‘] / ' |Bu(w)| du

m+1
+1QmllO(m="1)

with A(x) =1 —x2. We now use ||Qm| = On[1]=I[1] = ||I|| and Qu[f] —
I[f] (this follows from deg[Q,,] — occ) and obtain

101~ @l < (225 ) 1081 [ 1B dc otm™) -+ 1LF =
It is now only necessary to prove that
(5.1) Jim m*|I[f = pm]| =0
holds uniformly in .%Z;.
For every positive ¢ there exist numbers y;, ..., ¥, such that

/ dt <e.
0

If we substitute x = cost?, the same formula reads

[ k- 23 )10
—1 /A 0

. 2
k(cost)sint — = Z;) Yy COS VL
v=

dx <eg.
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This means that the functional
,
r'i:=>_ nalf
v=0

approximates the given functional I; more precisely, [I[f]— I*[f]| < e[ f]l.
We have

IILf = pmll S| = I*)Lf = Pmll + |I*[f = Dw]

r
<ellf =Pl + D 2 lf — Pm]
v=0

b

and if we apply Theorem 6 (ii) and (iii), then we have proved (5.1). O

6. PROOF OF THEOREM 2
Lemma 3. Let a<x1 <Xy <---< X, <b. Then there exists

geHla,b] withgx,)=0w=1,...,n),
gP(a)=gPb)=0 (A=0,1,...,5-1)

and
(b _ a)“H'le

b
>
/a §X)AX 2 s T 25y
Proof. Motornyi [9] established the existence of a function g € #[0, 2n] such
that we have g(x,) =0 for given points 0 < x; <--- < Xx, < 2m and

2n 2nK;
/0 g(x)dx > prat
We apply this theorem to a situation where we have added s further points
Y1, ..., s near 0 and s further points z;, ..., z; near 2x to the fixed points
Xt,...,Xp. f wenowlet y, - 0and z, -7 (v =1,...,s) and use

compactness arguments, we obtain the existence of a function g € %[0, 2x]
with g(x,)=g®0)=gW®W2r)=0 (v=1,...,n; A=0,...,5s—1) and

2n
2nK;
> o8
s dx 2 ms

The lemma now follows by a simple transformation. 0O
Proof of Theorem 2. Fix & > 0. There exists a step function ¢ > 0 with

(6.1) /_ 11 k(x) — 1(x)|dx < .

Denote by —1 =& < & < --- < &, = 1 a partition of [—1, 1] such that all
Riemann sums of the integral

1
J = /_lt(x)(v(x)) Sdx

which are based on this partition are contained in the interval [J —¢, J + €].
There are partitions of this type; we may even add the further hypothesis that
the knots of ¢ are a subset of {&, ..., &n}.
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If g, € Z has the zeros x,,, (v=1, ..., n), then we have

1
P5(Qn) > I1ga] > /_ &u(x)i(x) dx = el

(6.2) m=1 "
=Y ue+0) [ e dx—clg
v=0 &

We construct a function g, piecewise on each of the intervals [€u, &us1] by
an application of Lemma 3. The points X, ..., x, of the lemma consist of
the points x, , situated in [&,, &,11] together with some added points, which
guarantee that the distance between adjacent points is < dn~!, where d is a
positive constant. This can be done with [n(£,,; — &,)/d] + 1 extra points;
therefore, we have not more than

1

= n(é,u-rl - Cﬂ)(d_l + ’U(ﬂ,,))(l + 0(1))

<t =&ML +d7 MY (1+0(1))  (ny € &, Eurn])
prescribed zeros in [, , &,11]. From Lemma 3 there now follows the existence
of 8u,n € ‘%[éﬂa é;l+l] with

Cu1 K éﬂ'” —&u
L g”,,,(x) dx > (27[)*‘(1 +d—1M—1)sns ('U(”,u))s

"

(14+o0(1)).

We have shown: If n > ny(¢), then

Cutl Ks é +1 — é
/e S 4% 2 (1= &) e T - Th Ty (o(m) °

u

u=0,1,..., m—1.

We put g,(x) := gy n(x) if x €[, &,41] and obtain g, € % . In view of the
definition of the £, we have

m—1 éu+l
t(&, +0) + gn(x)dx

K, U t(x)
2 U= v d (/_1 ooy 8) ’

and by virtue of (6.1) we arrive at

m—1 fp+l
> G+ 0) [ galx)dx
(6.3) =0 S
>(1—¢) Ks (Iv™=]1-M ¢ —¢).
- 2m)s(1 +d-M-1)sns
Let x be fixed. Then there are zeros y;, ..., y; of g, with

sup{|x—y,,|:v=1,...,s}§%.
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Since g, € %, we have |dvd(x, y;, ..., ys)lgn]l < S‘—!, where dvd(---)[gx]
means the divided difference of g, for the indicated points. The well-known
expression of dvd as a linear combination of g,(x) and g,(y,) leads to

sd
6n()] < Hlx sk (%),
and thus we have

1 (sd\’
(64) leo < 7 (22)

n
We substitute (6.3) and (6.4) in (6.2) and get

pu(@n) 2 (1= )t - M~ s =) —ed (.S.;i)

if n > ny(¢). This implies

lim 7°ps(Qn) > (1 _8)(27t)3(1 +K;;,_1M_I)S(I[U—S] —MSe—¢)— £ (5:) .

n—oo

This relation holds for any ¢ and for any d ; therefore, the assertion of the
theorem follows. O

7. PROOF OF THEOREM 35

Our starting point is the expansion in Chebyshev polynomials
l o0
f= 301+ Y@l .
v=1
This expansion is uniformly convergent if f has a bounded derivative, that is,

in all cases of interest in this paper.
If Q satisfies deg[Q] > m, then we have

R[f1= amai[fIR[Tms1]+ R

> &V[f]Tu] ;

v>m+l
hence
sl IR Tl = IRI|| S @, [A1T,
v>m+l
<RI € lamar LR Tl + IR Y. alA1T,
v>m+l

and thus, using ||R|| < 2|/I]|,
Sup{|@m+1[f1l : f € Zn_141} Sup{|R[Tpn+1]| : deg[Q] > m}

(7.1) —2||IIISUD{ > alAT tf€7fm-1+1}

v>m+1

< Pmtst,m St
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We need the following results from [2]:
sup{|am+1[f1| : f € Fon—i141}

7.2 1/2
(7.2) ,ﬁ%n—rT(Ho(l)) (m— oo, fixed),
SuP{ Z a,[f1T, :fe'%m—lﬂ}
(7.3) v>m+1
m(1+1)/2

(m — oo, [ fixed).

= c1+1 ﬁ2m+1(m + 1)'(1 + 0(1))

For the estimation of the remaining term in (7.1) we use the following the-

orem of Markoff and Krein (see, e.g., [6, Theorem 6]): If deg[Q] > m and
fim+l) > 0 then

Rb(r)l+3)/2[ﬂ} <R[fl1< {Rgnﬂ)/z[f] m odd,

R 1 R 1
REED 1] RECV 111, m even,

where RC, RLe, RRa(+l) RRa(-1) denote the errors of the quadrature rules
of Gauss, Lobatto, Radau with abscissa +1, Radau with abscissa —1, and the
indicated number of evaluation points.

We apply this theorem to f = T,,,; and obtain

[R[Tm+1]] < [RP[ 1]
where RSP¢C is the error of one of the specified quadrature rules. We assume
RsPeC = R(m +3)/25 in the other cases the proof is similar.

Denote by g the orthonormal polynomial of degree '"—2‘1 associated with the
weight function k*(x) := (1-x2)k(x), and denote by J,, its leading coefficient.
The abscissas of Q(L,g +3)/2 are the zeros of g*(x) := (x? — 1)g(x). Hence we
have
(7.4) R(m+3 2 Tmi1] = 2o, RS (m+3 /2[4 q]=2"o, zl[q ql = —2m5;;2 .
Szego ([11, p. 302]) proved
1 ! Ink(x)(1 - x?)

Om = n—122(m=1)/2 ey
P 2m —1 V1 —x2

(7.5) a'x) (I+o0(1))

(m — o00).

Using

1 42 n
/ de=2/ Insintdt = —-2nin2,
1 V1—x2 0

we can write (7.5) as

1
Om = n~1/220m+1)/2 exp (——2—17?/ lnlk(x) dx ) (14 0(1)).

Combining this with (7.4) gives

1
IR,y ol Tt ] = 5 €x (% /_ | ;‘1_"_1% dx) (1+0(1));
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we arrive at the same result, if RSP € {R (m+1)/22 RRma(:zl) 123 R (m +2) /2} There-
fore, we have

T I—x

(7.6) SUp{|R[Tms 11| : deg(Q) 2 m} = 7 exp (l / ' Ink(x) dx) (1+0(1)).

Substitution of (7.2), (7.3), and (7.6) in (7.1) gives us immediately the asymp-
totics of py—14m,m > and the proof shows that the bound for the error is attained
for the Gaussian rule. 0O
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