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ASYMPTOTICALLY OPTIMAL ERROR BOUNDS 
FOR QUADRATURE RULES OF GIVEN DEGREE 

H. BRASS 

ABSTRACT. If the quadrature rule Q is applied to the function f, then the 
error can in many situations be bounded by ps(Q)IIf(S) I I , where p,(Q) is in- 
dependent of f . We obtain the asymptotics of these numbers for the Gaussian 
method QG (n = 1, 2, ...) with very general weight functions and show that 
p5(QG) is (asymptotically) an upper bound for p5(Q), if Q is any quadrature 
rule with the same degree as QG. 

1. INTRODUCTION 

Let I denote a fixed given functional on C[- 1, 1] of the form 
I I1 

I[f:=j f(x)k(x)dx withkEL[-1, 1], kO, j k(x)dx>O. 

The numerical computation of I[f] is often done with the help of "quadrature 
rules" Q; these are functionals of type 

n 

Q[f]1:=Z vf(xv) with av > O 1 < xi < ..< Xn <1. 

V=1 

The error is the functional R I - Q. The degree of Q is the number 
deg[Q] := sup{m R[nm] = O}, where YAm denotes the space of polynomials of 
degree < m . The most interesting quadrature rules are the Gaussian rules QG? 
which are characterized as rules with n evaluation points and degree 2n - 1. 

We are interested in error bounds of the type 

IR[Jf] < ps(Q)Ijf(s)II 

(I* means the sup norm throughout this paper), that is, in the numbers 

p5(Q) := supf JR[fjl : f E Xsf S Xs := {f : 11f(S) 1 < I} . 

We shall determine the asymptotics of ps(QG) and shall prove that these num- 
ers are (asymptotically) upper bounds for p5(Q), if deg[Q] = deg[QG]. 

As an illustration we cite a special result: Let k = 1 and let Q1, Q2, ... be 
sequence of quadrature rules with deg[Qm] > m - 1 . Then we have 

lim mpI(Qm) < T =lm MP,(Q 
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If we make the further assumption that Qm has m evaluation points, then 
we have mpl(Qm) > 1 (see, e.g., [1, p. 242]). Hence, all quadrature rules 
of interpolatory type (Gauss, Lobatto, Radau, Clenshaw/Curtis, Filippi, ... ) 
are of similar quality with respect to Pi , and there is only little improvement 
possible if we would use the best rule (which is not of interpolatory type and 
will give poor results if applied to functions of high smoothness). 

To be more precise, we define 

Ps,m = sup{ps(Q) : deg[Q] > m}, 1 < s < m + 1. 

With suitable assumptions on k we shall prove 

(1. 1) liM Mspsm = liM msps(Q m ~l)/2l) = (27r)sI[hs]j IBs(x)I dx , 

where we have used the notation 

-x2, B~~(x) ~ o cos(27ruzx - 1 rs) (1.2) h(x) := A Bs(x) :=-2 (27ru)s 
2 

The restriction of Bs to (0, 1) is identical with the Bernoulli polynomial (see, 
e.g., Hammerlin and Hoffman [8]). 

Formula (1.1) gives the asymptotics of Ps, m if s is fixed, but there are many 
error bounds which use an increasing order of derivatives. For this situation we 
shall prove: If 1 e {O, 1, ... } is fixed, then 

m- 2m+*(m 
+ 

p)' m/2 = lim ( + ) 
Pm-1+I(QG 

(1.3) ( k(x) d) 

with 

clj ID[e- 2] dx, D[f] := f'. 

2. THE RESULTS 

Theorem 1. Let Qi , Q2 , ... be a sequence of quadrature rules with deg[Qm] > 
m; then we have 

lim mSsp(Qm) < (27t)YI[hs] jBs (x)I dx, h(x) = A/1 - X2. 

In the special case s = 1, this theorem is given in [4]; under the further 
assumption k = 1 an asymptotically sharp bound is given in the same paper. 

The constants 

Ks . 4 (- l)v(s+?) . = 

are called Favard constants; they are used in our next theorem. 
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Theorem 2. Suppose v is continuous on (-1, 1) and M := inf{v(x): - 1 < 
x < 1 } > 0 holds. Let Q1 , Q2, ... be a sequence of quadrature rules 

n 

Qnf] ZE av, nf(xv, n) 
v=1 

with 
rt 

(2.1) lim n-'{,X:,n :X,,n t}j v(x)dx 

.1.... }l means the cardinality of I. }); then we have 

lim nsps(Qn) > (27r)-sKsI[v-I]. 
n- oo 

The condition (2.1) is satisfied for the Gaussian method QG (n - 1, 2, ...) 
with v(x) : r 1-I(I - x2)-1/2 (and for the Lobatto method and the Radau 
methods) if k > 0 a.e. (see, e.g., Freud [7, Theorem 9.2]). 

If s is odd, then we have 

1 

(2.2) Ks = (270)s IBs(x)I dx; 

for the proof, use Bs(x) $ 0 if x E (0, 2), see [8]. With the aid of (2.2) we 
obtain by a combination of Theorem 1 and Theorem 2 as a main result of this 
paper: 

Theorem 3. Let s be odd, and suppose k > 0 a.e. Then (1.1) holds. 

If s is even, then (2.2) is not true, and we have as a weaker substitute for 
(1.1) 

(2.3) KsI[hs] < lim mspsm < lim m Spsm < (2Jo)sI[hs] IBs(x)Idx 

if k > 0 a.e. However, the ratio of the bounds is < 1.027. 
If we make stronger assumptions on k, we can prove (1.1) also for even s . 

We have to use the following theorem of Petras [10]: 

Theorem. If there is a constant M and a polynomial T with zero set N 
{l, i,..., ,m, 1} such that 

T2(X) ? k(x) < M(l -X2)-1/2, X E [-I I 1] \N, 

and if k is continuous on [-1, 1] \ N, then we have 

lim nS Ps (QnG) =7rsI [hS] , IBs (x) I d x 

As an immediate consequence we have 

Theorem 4. The relation (1.1) holds under the conditions of the theorem ofPetras. 

We turn now to the case of increasing s. Here we have 
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Theorem 5. If f1 (1 - x2)1/2 in k(x) dx exists, then (1.3) holds. 

With the added hypothesis k = 1, the exact values of Pm+,im are obtained 
in [6], [3]; with the same hypothesis, the asymptotics of Pml+i (Q m+l)/2l) is 
given in [5]. 

The proof of Theorem 1 uses two results on the degree of approximation by 
(ordinary or trigonometric) polynomials, which are of independent interest. We 
use the notation 

a&[f] f(x)T(x)(I -x2)-1/2 dx with T(x) :=cos(varccosx), 

and state 

Theorem 6. If f E X, then there exists a sequence po, Pi, ... with 
(i) Pn E Yn, 
(ii) if(x) -Pn(x)I < (27r)s(n + 1)s 1 - X2) f Bs (u)Idu + O(n-s-1), 
(iii) A[f - [Pn] = 0(n-s-l), v = O, . 

The 0 terms hold uniformly in Xs. 

We shall need some further notations: 
r ~~~n 

:={ t: t(x) = (a,, cos vx + I sin vx); a,, , I E ]R} 
V=o 

a,[f]:=?j f(x)cos(vx)dx, b^[f]:= f f(x) sin(vx)dx. 

We can now state 

Theorem 7. Let f be a 27r-periodic function with a bounded sth derivative. 
Then there exists a sequence to, tj, ... with 

(i) tn E X, 
(ii) 

11f - < (nI + ) I IBs(u)I du inff {If(s) - cdl c E RI}, 

(iii) 

lad[f - tn]1 = O(n-s-l) inf{I1f(s) - cil : c E RI}, 

1bdjf - tn]l = O(n-s-l) inf{llf(s) - cil : c E RI}. 

If s is odd, then (i), (ii) is the well-known theorem of Favard, Achieser and 
Krein (see, e.g., Timan [12, p. 289]) and the method of proof leads to (iii) too. 
Therefore, we shall restrict ourselves to the proof of Theorem 7 in the special 
case of even s. 

3. PROOF OF THEOREM 7 

Lemma 1. Let s E N be fixed. There exists a sequence un (= s) (n = 
1, 2, ... ) such that 

(i) Un E g, 
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(iii) 

i[B (z) -Un] (= Q(n-,), 

bs [BA (27r)U- n = Q(nSl), 

(iv) The function Bs( ) - )Un changes its sign on (0, 27r) exactly at the zeros 
of Bs((n + 1) ). 
Proof. Let s be even. (The lemma holds for all s E N, but for our purpose 
we need it only for s even.) The function Bs has two zeros 'j E (0, 2) and 
42= 1 - ' on [0, 1] ([8, p. 280]). We define the functions Un of the lemma 
by 

n 

Un(X) ZE a, n cOs Ax, 

A-1 

2(-1)(s+2)/2 ?? sin((v + 1)27rT1) 
(27r)s sin(27,~i) O (v(n+ 1) +Aj) 

Then (i) and (ii) are true. After some work we get from the above definitions 

aI Bs (#*)-un] 

2(-1)s/2 (r' 2cos(v2X41) + 1 
(27CQS ,= (v(n + 1))5 sin(2oTi) 

00 aZ - Zsi(vUn)~i(v~ ) (~ 
Z 7n(v(n + 1) 2 + )S - (v(n + 1))-5) 

i=1 00 \ 

- E sin((Z - 1v)27s~j ((v (n + 1v) s-s - (v (n + 1))v-5) 
V=1 / 

?(n+1YS(vS-12rj v(n+ 1)+1 s-(v( ) s 

The first sum is (u 1)(s+2)12e(2) o(n + 1)-sBs(I) = 0; the second sum can be 
bounded by 

00 

E: I(v(n + 1) + A)-s - (vo(n + 1)s 
V=1 

For the proof of (iv) we use the notation 

X~, =(C +Xi rm 1 U = 0, 1, . ..,n; i =1,2 . 
These are the zeros of Bs((n + 1);) on (0, 27r). Verifying 

iarte nb elementr tEas k. =. .n i = 1, 2 

For artheproo long but elemuentr thesk.aio 
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If d Bs( 7) - Un had zeros different from xM, , or if one of these zeros 
would not be a point of sign change, then d would have at least 2n + 3 zeros 
on (0, 27r) . But then d', d", ... , d(s-2) would also have at least 2n + 3 zeros 
on [0, 27r) (Rolle and periodicity), whereas d(s- l) would have 2n + 2 and d(s) 
would have 2n + 1 zeros. But this is a contradiction because of 0 $ d(s) E n. 
Thus we have (iv). LI 

Proof of Theorem 7. Using the Un from Lemma 1, we define 

(3.1) 
1 r~~~~~~~27c 

tn(x) =ao[f] - (27r)s- j un(x - y) f(S) (y) dy 

1 n 

= jao[ + (-_)(s+2)/22s-17rs E ac, n As(a[f] cos (Ax) + bAf] sin(Ax)). 
A=1 

Then (i) of Theorem 7 is evidently true, and (iii) follows easily from assertion 
(iii) of Lemma 1. 

If f is 2Xr-periodic and has an sth derivative, then we have 

(3.2) f(x) = 2ao[f] - (27)s1I j Bs (x-Y) f(S)(y)dy; 

this is a special case of the Euler-Maclaurin sum formula. Combining (3.1) and 
(3.2), we get 

f(x) - tn(X) = -(271)s- j (S (XI) B-Un (x y)) f(S)(y)dy 

= (27r)s5-j (Bs () - un(z)) f(S)(x-z)dz. 

The first factor of the integrand has mean value zero; therefore, we can deduce 

(3.3) I nf- IIj < (27r)s-l Bs (aZ 
- un(z) dzllf(s) - elI 

where c is any constant. 
We use now assertion (iv) of Lemma 1: 

) B 
( 

- -un(z) dz = j (Bs (- - Un(z)) sgnBs ((n + l)#) dz 

The second factor of the integrand has period h := 2n hence we obtain 

j2r5Bs (f Un(z) dz 

J: Bs 
( ( 7 ) 

n 
u(Z + Kh)) sgn Bs ((n + 1)z) dz 

We apply now 

ZEBs ( 2K) = (n + l)l-sBs ((n + l) ) 
Kc=0 

7 7 
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(the "multiplication theorem") and 

n 

E un(z + Kh) = 0 
K=O 

(an identity holding for all u e T9) and get 

j7 IB5(? )-Un(z) dz=(n+1)15j Bs((n+1)? )dz 

= (n + 1)-527r J Bs(x)I dx. 

Combining this relation with (3.3) gives assertion (ii) of the theorem. n 

4. PROOF OF THEOREM 6 

Lemma 2. Let f e Xs; then there exist 2ir-periodic functions h, j, t such that 

(4.1) f(cosy) = h(y)sinsy + j(y) + t(y) 

with 
(i) inffllh(s) - cil : c c- RI < 1, 

(ii) llj(s+1)1l < constS, where constS does not depend on f, 
(iii) t - 9s. 

Proof. We begin with Taylor's formula: 

s-1 x 
f(x) = v!lf(v)(O)xv + (s - 1)!'] f(s)(u)(x - u)s1 du. 

v=O 0 

If we put x = cosy and substitute u = cosv, we get 

s-1 

f(cosy) = V! vf(P)(O) COSV Y-(s- 
v=O 

x f(s) (cosv)(cosy - cos v)s-5 sinv dv . 
Jc/2 

Using the notation 

g := (cosy - cos(.))s-' sin(.) and ho := f(s)(cos) - 'ao[f(s)(cos)], 

we obtain 
s-1 1Y 

f(cosy) = v!lf(v)(0) cosv y - -ao[f(s)(cos)](s - 1)V1 J g(v) dv 
v=O 2 Jc/2 

(4.2) - (s - 1)!- 1/2 ho(v)g(v) dv 
() /2 

(Y 
=: (y) - (s - 1)!- 1 ho (v )g(v ) dv 

/2 
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We proceed with s partial integrations and denote by hI, h2, ..., h5 the suc- 
cessive primitives of ho with mean value zero. We obtain 

| ho(v)g(v) dv = [h, g - h2g' + - + (-1)s-lhg(s-l)]y2 
/r2 

7/ 

+ (-1)5 
1 

hs(v)g(s)(v) dv. 
I /2 

Using induction, we get easily 

g(K)(v) = (cosy - cosv)s-l-K(s - l)(s - 2) (s - K) sin K+l V 

? I(COS y _COS V)SK K(5_1)(5-2) ...(S-K + )(K + )K Sin K1V COS V 

+ (cOs y - cos v)SK+ TKs 

with TK, S E K-_ I. Hence, we have immediately 

g(K)(y)=O, K=Ol,...,s-2, 

g(s-1)(y) = (s - 1)! sinS y 

and with a simple computation 

g(S)(y) =I (s + l)! sins-' y cosy . 

From all this we get 

/2ho(v)g(v)dv = t(y) + (-l)s- (s - l)!hs(y) sinsy 
/12 

+ (-1)s hs(v)g(s)(v) dv 
z/2 

with t E 8s. If we substitute this equation in (4.2), we arrive at (4.1) with 

t = t - (s - l)!-1, h =(-l)s5h, 

j(y) = (- l)s+"(s - l)!V1 1 h5(v)g(s)(v) dv, 
/2 

and assertions (i) and (iii) are evident. In view of 

=( = (-l)s+1(s- l)!-Vhs(y)g(s)(y) = (-l)s+' s(s+ l)h5(y)sins- ycosy 

j(s+1) exists, and we have 11js+111 < const-max{Illholl, ..., I1hslI}. But observe 
that hK has mean value zero; therefore, I1hKII < 27rIjhK-lII and llj(s+1)Il < 
constI lIholl < 2 const . This is assertion (ii). 0 

Proof of Theorem 6. We represent f(cos-) as in (4.1). We approximate h 
by tn-s E 85-- according to Theorem 7. The function j in (4.1) can be 
approximated by 4^ E 7 according to Jackson's theorem, so that we have 

(4.3) 11j - 
^ 

11 < constn-s-. 

Let 
Pn (Y) =tnt-s(Y) sin y + ?n(y) + t(y) . 
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We have 

If(cosy) -pi(y)I < jh(y) - tn-s(y)I sins y + Ii(y)- n (-)I 

< ( +2v s) sinsyJl Bs(u)jdu+constn-s- 

Here, P is an even function (if not, replace it by its even part); therefore the 
substitution y = arccos x leads immediately (Pn fi 3(arccos-)) to assertions 
(i) and (ii) of Theorem 6. 

The proof of assertion (iii) starts with 

(4.4) av f - Pn] = av[f(cos ) -,in] = av[(h - tn-s) sins 5] + av[j - tn]. 
We have the identity 

v+s 

av [g sins*] = E (a~a1A [g] + flAb1A [g]), 
A=V-s 

where aA, PA denote some constants. Using this identity and assertion (iii) of 
Theorem 7, we obtain 

av [(h - tn-5) sins = (n-s- 1) 

and this gives the bound for the first term in (4.4). The second term can (using 
(4.3)) be bounded by avII 11Ill - 4 11 < 2const n-S-il 

5. PROOF OF THEOREM 1 
Let f E X, and choose Pm according to Theorem 6. Then we have 

I'[f - QM[fI = lI[f-Pm] -QMV -Pm1 
< II[f- PM]I + Qm[If-PmI] 

? | [f Pm]+ (m +)SQm[hs] 1Bs( u)Idu 

+ jIQmjjO(m-S-1) 

with h(x) = VIY'W2. We now use IIQmII = Qm[1] = I[1] = IjIII and Qm[jf 

I[f] (this follows from deg[Qm] -x oc) and obtain 

I[f] - Qm[f]l< ? 1)S I[hs] JBs(u)I du + o(m-s) + I[f -pm 

It is now only necessary to prove that 

(5.1) lim mSlI[f - Pm]l= m-woo 

holds uniformly in Xs 
For every positive e there exist numbers yI, ... y ,r such that 

j k(cos t) sin t -3- Z y.cos vt dt < e. 

If we substitute x = cos t, the same formula reads 

j k(x)- 2 Zy^(l -x2)'12Tv(x) dx < e. 
7rv=0 
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This means that the functional 
r 

I*[fV Z YVAV[f 
v=O 

approximates the given functional I; more precisely, II[f] - I*[f]l < ellf 11. 
We have 

1,1f - PM1 < [(I-I*)[f -Pm11 + [I~l [- Pm1 
r 

<?gIf-PmI?+ Z2YvvA[f-Pm] 9 
v=O 

and if we apply Theorem 6 (ii) and (iii), then we have proved (5.1). 0 

6. PROOF OF THEOREM 2 

Lemma 3. Let a < xI < X2 < < X, < b. Then there exists 

g E s[a, b] with g(xv) = O (v =1, ... , n), 

g(A) (a) =g(A) (b) = 0 (A = 0 1,. ,s-1 

and 
b ~~(b - a)s+lKs 

Ia g(x~dx? (27r)s(n + 2s)s 
Proof. Motornyi [9] established the existence of a function g E Xs[0, 27r] such 
that we have g(xv) = 0 for given points 0 <? XI < < xn < 2i and 

~27r 2irKs 
] g(x) dx > s 

We apply this theorem to a situation where we have added s further points 
Yi, .I. ., .5 near 0 and s further points zI, ..., z5 near 2ir to the fixed points 
xI, , x,. If we now let Yv --0 O and zv -7r (v = 1, ..., s) and use 
compactness arguments, we obtain the existence of a function g e X [0, 27r] 
with g(xv) = g(A)(O) = g ()(2r) = O (v = 1, ..., n; A = O... s- 1) and 

f27r 2 irKs 

g(x) dx > 
(n + 2s)s 

The lemma now follows by a simple transformation. O 

Proof of Theorem 2. Fix g > 0. There exists a step function t > 0 with 

(6.1) j Ik(x) - t(x)l dx < e. 

Denote by -1 = 40 < I < < Xm = 1 a partition of [-1, 1] such that all 
Riemann sums of the integral 

J j t(x)(v(x)) s dx 

which are based on this partition are contained in the interval [J - 6, J + ']. 

There are partitions of this type; we may even add the further hypothesis that 
the knots of t are a subset of {1o, ... ,m} 
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If g, e X, has the zeros x, (v = 1, .. , n), then we have 
I 

Ps(Qn) > I[gn] > J gn(x)t(x) dx - |gnl 

(6.2) r-i 

E t(4v + 0) gn(x) dx- lIgnil. 
v=O 

We construct a function gn piecewise on each of the intervals [,, ,+i] by 
an application of Lemma 3. The points xI, ... , xn of the lemma consist of 
the points xv,n situated in [,, ,,+I] together with some added points, which 
guarantee that the distance between adjacent points is < dn-I, where d is a 
positive constant. This can be done with [n(4,,+1 - X,4)/dl + 1 extra points; 
therefore, we have not more than 

n d + 1 + n| v(x) dx(l + o(l)) 

= n(4jU+, - ~,4)(d-1 + v(qv))(1 + o(l)) 
< n (4, l+1 - ,4,f)v(qv)(l + d-'M-')(1 + o(l)) (qv C- K4, '4,+1 ]) 

prescribed zeros in [4,, yj+I]. From Lemma 3 there now follows the existence 
of gi,, n C Xs [iu i i,+ 1 ] with 

| gu n (X) dx > (27r)s(1 + d-lM-l)sns (v( 
( ) )) 

We have shown: If n > no(e), then 

f 

9ju+ 
g 

(x) dx > (1 -,e) u 

| 

gs n~) d > l 

e)(27r)s( l + d-IM-I )sns (U (q,))s 

,u=O, 1, ..., m-1. 
We put gn(x) := g~jn(x) if x e [4,u, 4,fJ+I] and obtain gn e Xs . In view of the 
definition of the 4,, we have 

Z t(,u +?)+| gn(x) dx 
/1=0 

+0) +(27l)(l + d-IM-I)sns (| W dx -g 

and by virtue of (6.1) we arrive at 

E t(QJu + 0) f gn(x) dx 
(6.3) /1=o 

- (27r)s(l + d-lIl-I)sns( 

Let x be fixed. Then there are zeros Yi, ..., Ys of gn with 

supfix - yvI : v ~SI<nsd 
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Since g, E X, we have Idvd(x, y1,..., y)[gn]l < -1, where dvd(. .)[gn] 
means the divided difference of gn for the indicated points. The well-known 
expression of dvd as a linear combination of gn(x) and gn(y,) leads to 

1gn(x)j < 11 {x f - Yv1 ( n) 
V=1 

and thus we have 

(6.4) ffgsfj 1! ( d)S 

We substitute (6.3) and (6.4) in (6.2) and get 

Ks ~~~~~~1 (sd\( 
) (27r)s(1 + d-IM (I[Vs] - M Se - e) 

- e s! ) 

if n > no(e). This implies 

lim nsps(Qn) > (1- e) (27r)s(1 + d-lM-I)s (I[v-s] - M-se - e) - e! ( 

This relation holds for any e and for any d; therefore, the assertion of the 
theorem follows. U 

7. PROOF OF THEOREM 5 

Our starting point is the expansion in Chebyshev polynomials 
00 

f= ao[j]+ Eav [f]TV 
v=1 

This expansion is uniformly convergent if f has a bounded derivative, that is, 
in all cases of interest in this paper. 

If Q satisfies deg[Q] > m, then we have 

R[f] = am+1[f]R[Tm+1] + R [ [f ETVI; 
LaV>m+ 1 

hence 

alm+i[fjR[Tm+i]-IIRII Z [JIT| 
V>m+1 

< IR[fII ? lam+,[f]R[Tm+i]I + IIRII Z av[fITV | 
V>m+1 

and thus, using IIRII < 211I11, 
sup{Iam+i[fIJ: f E Xm-l+1 } sup{JR[Tm+I]I deg[Q] > m} 

(7.1) -21IIII sup |E a^v[.f]Tv: f Enm-l+ } 
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We need the following results from [2]: 

sUP{Iam+i [fUlI f E 5fm-1+1 } 

(7.2) = Ci+2m(m +)!(0+ 00)) (m o0, fixed), 

sup {;E v[finTvo f E 5X/m-1+1} 
(7.3) v>m+1 

Cl+lf 2m+l(l+1)!(l + O(l)) (m x0, I fixed). 

For the estimation of the remaining term in (7.1) we use the following the- 
orem of Markoff and Krein (see, e.g., [6, Theorem 6]): If deg[Q] > m and 
f(m+l) > 0, then 

R(m+3)/2[fl < Rr] < R (ml)/2[fl] m odd, 

R Ra(+l) ?Rf RRa(lI) [fIvenm (m+2)/2[J - (m+2)/2 even, 

where RG, RLO, RRa(+ 1), RRa(-1) denote the errors of the quadrature rules 
of Gauss, Lobatto, Radau with abscissa + 1, Radau with abscissa -1, and the 
indicated number of evaluation points. 

We apply this theorem to f = Tm+l and obtain 

IR[Tm+i]l < IRSP"C[Tm+i]l 

where RSPeC is the error of one of the specified quadrature rules. We assume 
Rspec = R(m+3)/2; in the other cases the proof is similar. 

Denote by q the orthonormal polynomial of degree m -I associated with the 
weight function k* (x) := (1 -x2 )k(x), and denote by 6m its leading coefficient. 
The abscissas of QLO are the zeros of q*(x) := (x2 - 1)q(x). Hence we 
have 

(7.4) R~m+3) 2[Tm+i] = 2m3m-2R(m+3)/2[q*q] = 2m3 2I[q*q] = -2m3d2. 

Szego ([1 1, p. 302]) proved 

-1/2 / (If In k(X)(1 _ X2) N 
(5 m = 7- l/22(m-)/2 exp K21 L x dx) (1 + o(l)) 

(m-> oo). 
Using 

j (l _%2) dx = 2 In sin t dt = -27irn 2, 

we can write (7.5) as 

a= 7r- /22(m+l)/2exP (-2p 1 Vf2 dx) (1 + o(l)). 

Combining this with (7.4) gives 

IRo+3)/2[Tm+l]I = 2exp ( lnk(x) dx) (1 + o(l)); 
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we arrive at the same result, if RSPeC E {R(ml)/2 R(m+2)/2' Ra(+)72}. There- 
fore, we have 

(7.6) suP{IR[Tm+]l deg(Q) > m} = exp (I J dx) (1 + o(l)). 

Substitution of (7.2), (7.3), and (7.6) in (7.1) gives us immediately the asymp- 
totics of Pm-l+m, m , and the proof shows that the bound for the error is attained 
for the Gaussian rule. U 

BIBLIOGRAPHY 

1. H. Brass, Quadraturverfahren, Vandenhoeck und Ruprecht, Gottingen, 1977. 
2. , Restabschatzungen zur Polynomapproximation, Numerische Methoden der Approxi- 

mationstheorie Bd. 7 (L. Collatz, G. Meinardus, and H. Werner, eds.), Birkhauser Verlag, 
Basel, 1984. 

3. , Eine Fehlerabschatzung far positive Quadraturformeln, Numer. Math. 47 (1985), 395- 
399. 

4. , Error bounds based on approximation theory, Numerical Integration-Recent Devel- 
opments, Software and Applications (T. D. Espelid and A. Genz, eds.), NATO ASI Series, 
Series C: Mathematical and Physical Sciences, vol. 357, Kluwer, Dordrecht, 1992, pp. 147- 
163. 

5. H. Brass and K.-J. Forster, Error bounds for quadrature formulas near Gaussian quadrature, 
J. Comput. Appl. Math. 28 (1989), 145-154. 

6. H. Brass and G. Schmeisser, Error estimates for interpolatory quadrature formulae, Numer. 
Math. 37 (1981), 371-386. 

7. G. Freud, Orthogonal polynomials, Pergamon Press, New York, 1971. 
8. G. Hammerlin and K.-H. Hoffmann, Numerical mathematics, Springer-Verlag, New York, 

1991. 

9. V. P. Motornyi, On the best quadrature formula of the form EZ=l Pkf(Xk) for some classes 
of differentiable periodic functions, Math. USSR Izv. 8 (1974), 591-620. 

10. K. Petras, Asymptotic behaviour of Peanokernels of fixed order, Numerical Integration III 
(H. BraB and G. Hammerlin, eds.), Birkhauser Verlag, Basel, 1988, pp. 186-198. 

11. G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 4th ed., Amer. 
Math. Soc., Providence, RI, 1975. 

12. A. F. Timan, Theory of approximation of functions of a real variable, Macmillan, New 
York, 1963. 

INSTITUT FUR ANGEWANDTE MATHEMATIK, TECHNISCHE UNIVERSITXT BRAUNSCHWEIG, 

POCKELSSTR. 14, W-3300 BRAUNSCHWEIG, GERMANY 


