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FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS: 
THEORY AND IMPLEMENTATION 

MICHAEL CLAUSEN AND ULRICH BAUM 

ABSTRACT. Recently, it has been proved that a Fourier transform for the sym- 
metric group S, based on Young's seminormal form can be evaluated in less 
than 0.5(n3 + n2)n! arithmetic operations. We look at this algorithm in more 
detail and show that it allows an efficient software implementation using appro- 
priate data structures. We also describe a similarly efficient algorithm for the 
inverse Fourier transform. We compare the time and memory requirements of 
our program to those of other existing implementations. 

1. INTRODUCTION 

In 1965, Cooley and Tukey [6] published a fast algorithm for the evaluation of 
Discrete Fourier Transforms. Since then, the DFT and its variants have become 
extremely important tools in many areas such as digital signal processing. In 
terms of representation theory, the DFT describes an algebra isomorphism from 
the complex group algebra CC, of the cyclic group Cn (the signal domain) onto 
the algebra of n-square diagonal matrices over C (the spectral domain). 

Wedderburn's theorem allows us to generalize the DFT to arbitrary finite 
groups: Let K be a splitting field of the finite group G with char K I I GI. Then 
the group algebra KG is isomorphic to an algebra of block diagonal matrices: 
KG - = Kd' xd, where the blocks correspond to the equivalence classes of 
irreducible representations of KG and h is the number of conjugacy classes 
of G. Every algebra isomorphism 

h h 

D= Di :KG. ,Kdixdi 
i=1 i=1 

is called a Fourier transform for KG. The constituents D1, ... , Dh of D form 
a transversal of irreducible representations of KG. With respect to natural 
bases in KG and e3iKdixd,, every Fourier transform of KG can (and will) 
be viewed as a matrix D E KIGIXIGI and every a E KG as a column vector in 
KIGI . 

This gives rise to three closely related computational problems: Efficient con- 
struction of a suitably encoded Fourier transform matrix for a given group, fast 
evaluation of such a transform, which amounts to computing a matrix-vector 
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product, and finally fast interpolation, which means fast evaluation of the in- 
verse Fourier transform. Usually, the construction is a precomputation step 
that has to be done only once for multiple evaluations. 

The simplest way to do this would be to precompute and store the whole IGI- 
square Fourier matrix and then to evaluate it using the standard matrix-vector 
multiplication formula. But this procedure is very inefficient: The precompu- 
tation step requires computing the representing matrices Di(g) for all i and 
all g E G. Obviously, this takes a great deal of time, and one has to store 
IG12 numbers. The evaluation would take of the order IG12 arithmetic opera- 
tions. Both time and memory restrictions prohibit using this approach for large 
groups. To obtain practically feasible algorithms, one takes advantage of the 
group structure and the properties of the chosen transversal of irreducible rep- 
resentations. Nonabelian groups have irreducible representations of degree > 1 
which have different matrix forms depending on the choice of bases in the cor- 
responding simple KG-modules. Hence, there are essentially different Fourier 
transforms which can also widely differ in their construction and evaluation 
complexities. 

We are going to define a computational model for the evaluation of Fourier 
transforms and their inverses: The K-linear complexity of a matrix A E KnXn 
is the minimal number of K-linear operations (i.e., additions, subtractions, 
and scalar multiplications) sufficient to evaluate A at a generic input vector 
x. As nonabelian groups have many Fourier transforms, we define the K- 
linear complexity LK(G) of a finite group G as the minimum of the K-linear 
complexities of all Fourier transforms for KG. 

Obviously, IGI - 1 < LK(G) < 21GI2 . The classical FFT algorithms [6, 3, 17] 
show that LK(G) = O( GI log GI) for abelian groups G. This has recently been 
extended to a much larger class containing the supersolvable groups [1] using 
monomial and symmetry-adapted representations which are also surprisingly 
simple to generate. In a restricted computational model, one can prove that 
these algorithms are asymptotically optimal [2]. 

This paper is concerned with fast Fourier transforms for symmetric groups 
and their implementation. Some interesting applications of these transforms in 
the statistical analysis of ranked data have been investigated by Diaconis [7, 8]. 
In the 1 930s, Alfred Young found simple explicit formulae for two transversals 
of irreducibles of Sn, the so-called seminormal and orthogonal forms. In- 
dependently, Diaconis and Rockmore [9] and Clausen [5] have used Young's 
seminormal form as a basis of a more efficient algorithm for the evaluation of 
the corresponding Fourier transform of Sn . Although their methods are quite 
similar, the resulting upper bounds differ substantially: Diaconis and Rockmore 
show that 

LK(Sn) = 0((n!)r2 n), 

provided that (d x d)-matrices can be multiplied with O(da) arithmetic oper- 
ations. However, all known matrix multiplication algorithms with a < 3 are 
of no practical use for our problem: They use a large amount of memory and 
do not run faster than the naive algorithm for the d in question. Hence, with 
respect to implementations, one should assume a = 3. On the other hand, 
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Clausen has proved the explicit upper bound 

( 1.1 ) LK(Sn) < 2(n3 + n2)n!, 

which does not depend on advanced matrix multiplication methods. 
Recently, Linton, Michler, and Olsson [13] suggested a completely different 

approach for computing Fourier transforms for symmetric groups. It is based 
on the Inglis-Richardson-Saxl model [10] consisting of a series (7rt)O<t<Ln/2j 
of induced monomial representations lrt of degrees n!/(2tt!(n - 2t)!). The 
crucial fact is that 7r0 ... 7rLn/2j contains every irreducible representation 
of Sn with multiplicity one, i.e., for suitable block-diagonalizing matrices Xt 
the mapping tXt * . tr(.) * X7-1 is a Fourier transform for Sn . This leads to 
an algorithm with an arithmetic complexity of 

LK(Sn) = 0((n!)3/2en-12) 

Diaconis and Rockmore, and Linton, Michler, and Olsson sketch implemen- 
tations of their algorithms and present some information on their running times. 
Both implementations seem to be rather time- and space-consuming (see the ta- 
bles in ?5). In particular, the Fourier transform for SI0 does not appear feasible 
using either of these algorithms. 

In this paper, we look at the algorithm described in [5] and the necessary 
precomputations in more detail and show how to turn it into an efficient pro- 
gram using appropriate data structures. We also describe a similarly efficient 
implementation of the inverse Fourier transform. Finally, we compare our pro- 
gram to the other two implementations. It turns out that computing the Fourier 
transform for SIO is no problem with our program, even on a small workstation. 

2. FAST PRECOMPUTATION 

A uniform approach to designing efficient DFT algorithms is based on adapt- 
ing the irreducible representations to a chain of subgroups: Suppose we want to 
evaluate a Fourier transform D of a finite group G at a generic input vec- 
tor a = EgEGagg E KG. Any algorithm based on the formula D(a) = 

EgEGagD(g) has to specify the order of summation. This can be done in 
a natural way using subgroups: If U is a subgroup of G, one rewrites the 
input a = EgEGagg E KG according to the partition G = UjhjU of G 
into left cosets of U: a = Zjhjaj with aj := ZuEUahjUu E KU. Then 
D(a) = >j D(hj)D(aj) reduces the original problem to several evaluations of 
D at elements of KU. Now if the restriction of D to KU is itself (up to 
multiplicities) equal to a Fourier transform of the subgroup U, we can apply 
this method recursively without performing a base change. This idea can be 
formalized as follows. 

Definition 2.1. Let 9 = (G = Gn > ... > Go = {1}) be a tower of subgroups 
of the finite group G and K a splitting field of all Gi with char K { I GI .I A 

IUnless otherwise specified, we will assume in this section that G, Y, and K are defined as 
here. 
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matrix representation D of KG is called Sf-adapted if for all j, 0 < j < n, 
the following conditions hold: 

(a) The restriction D 1 KGj of D to KGj is equal to a direct sum of 
irreducible matrix representations of KGj. 

(b) Equivalent irreducible constituents of D l KGj are equal. 

As copying is free in our computational model, condition (b) allows us to use 
intermediate results several times, saving arithmetic operations. This will lead 
to more efficient DFT algorithms. The concept of symmetry-adapted represen- 
tations has also been successfully applied to various mathematical and physical 
problems (see, e.g., [12, 14]). 

An easy induction argument shows that every representation of KG is equiv- 
alent to a Sf-adapted representation. Moreover, S-adapted representations are 
almost unique under certain conditions: 

Theorem 2.1. For a S-adapted representation D of KG, the following state- 
ments are equivalent: 

(a) D is multiplicity-free and for all j, 1 < j < n, if F is an irreducible 
constituent of D 1 KG1, then F 1 KGj_1 is multiplicity-free. 

(b) If A is a Sf-adapted representation equivalent to D, then there exists a 
monomial matrix X such that D(a) = X-1A(a)X for all a e KG . (In 
this case, we call D and A monomially equivalent.) 

A proof can be found in [4] or [1]. As we shall see later, the last theorem 
applies to the tower 

'T, : = (Sn > Sn -I > ... > SI) 

of S, Next, we are going to describe Young's seminormal form, which is a 
ST-adapted Fourier transform for S, Although it is well known (see, e.g., 
the standard text by James and Kerber [11]), we are going to revisit Young's 
construction from an implementation point of view. 

It is known that every field is a splitting field for S,. So let K be any 
field with char K {n!. The conjugacy classes of S, as well as the equivalence 
classes of irreducible representations of KS, are usually parametrized by the 
partitions of n . A partition a = (aI, a2, . . . ) of n, abbreviated a H n, is a 
nonincreasing sequence of positive integers summing up to n. Partitions can 
be illustrated by the corresponding diagrams: The diagram of a is the set 

U{(i, ') I1 <i<ai}, 

which can be visualized as a left-justified arrangement of ai boxes in the ith 
row. By abuse of notation we will make no difference between partitions and 
their diagrams. The following figure shows all diagrams for n = 4: 



FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 837 

IDLE1 1 01 ffl oh 

Hence, there are five unequivalent irreducible representations of KS4. For 
every partition a of n, we denote by [a] an irreducible representation of Sn 
of "type" ca. Inclusion defines a partial ordering on the set of all diagrams, the 
so-called Young lattice: 

In fact, this has a representation-theoretic meaning: The celebrated branching 
theorem tells us that [a] t S- is multiplicity-free: 

fi 

[a t /n I\? 

where the sum is over all diagrams fi of n - 1 contained in a. In particular, 
the degree f, of [a] equals the number of paths from (1) to a in the Young 
lattice. Every such path can be described by a standard a-tableau, which is an 
a-shaped matrix whose elements 1, 2, ... , n are arranged in such a way that 
the entries in each row and column are strictly increasing: 

In 1930, Alfred Young gave surprisingly simple explicit formulae for Sn-adapted 
irreducible representations of Sn . They are based on the so-called last letter se- 
quence, which is a total ordering of the standard a-tableaux. It can be described 
by the leaves of a certain tree. We omit a formal definition and illustrate it by 
an example, the last letter sequence of all standard (3, 2)-tableaux: 
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Since S, is generated by all transpositions of consecutive numbers, 

every representation D of KSn is completely determined by all D(i, i + 1), 
i < n. Let a be a partition of n . We are going to describe Young's seminormal 
formaa~,which is an irreducible representation of KSn of "type a". The rows 
and columns are parametrized by the last letter sequence T1 < ... < Tr of all 
standard a-tableaux, where r :=fa . In order to describe for a fixed i < n 

(2.1) aai i + 1) =:(Ukl) I<klr, 

we have to consider two cases. 

Case 1. For a < r the numbers i and i + 1 are in the same row (resp. column) 
of Ta: Then the only nonzero entry in the ath row and ath column of (aki) 
is the diagonal position: caa = 1 , if i and i + 1 are in the same row of Ta , 
whereas caa = -1I, if i and i + 1 are in the same column of Ta . 

Case 2. Tb results from Ta by interchanging i and i + 1 : Then, if a < b, 

(aa Cab /-1 1 
V1ba 1 bb< I -d15 

where d := ju - xI + Iv - yI is the axial distance of the positions (u, v) of 
i and (x , y) of i + 1 in Ta . All other entries are zero. Consequently, the 
matrix (akl) is sparse with at most two nonzero entries in each row and in each 
column. Table 1 shows all a(i, i + 1) for n = 4. 
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TABLE 1 

last letter sequence aa(l, 2) aa(2, 3) a(3, 4) 

1 1 2 1 3 1 4 1 (1) (1) (1) 

LJwLjwFjw(-l11l) (A ) (1 

__ __ _ __ _ __ 
__X_ ( 1 1) (I -2 ( 1) 

.~ ~~ 3 

f~~~ 2 1 4 (- -1 8~ A l 
_~~~~~~~~~~~~~~ 9 

; A tH(-1) (-1) (-1 

It can be shown that Can :=eahn a7 is a 3U-adapted Fourier transform for 
KSn (see, e.g., Theorem 3.3.10 in [1 1]). More precisely, 

(2.3) alS,-l = @ 9 , 
,f*n-l: fcar 

where the direct summands appear in the order given by the first level of the 
last letter sequence tree for a. For example, 

oT(4'2, 1) 1 S6 - oy(3'2, 1) @ o7(4' 1, 1) ? (,2 

As each aa l Sn.1 is multiplicity-free, Theorem 2.1 tells us that an is-up 
to monomial basis transforms-the unique 4-adapted Fourier transform for 
Snow For example, Young's orthogonal form, which is another well-known Sg- 
adapted DFT for Sn, is obtained by a monomial basis transform from an . Our 
DFT algorithm for Sn requires that, for all k < n the matrices 9 (i, i + 1) 
for all fi H k and i < k be precomputed and stored. One might think that 
this takes too much memory. But this is not the case if we use the right data 
structure: The sparse matrix (Crab) 9=C(1, i + 1) is represented by a table 
(ba, da)l~a~ffg of pairs of integers satisfying 1 < ba ? ffl, -1 ? da < k. 
The pair (b, d) :=(ba, da) describes row a of the matrix. If a = b, then 

Cra= d e {+ 1} according to Case 1 above. Otherwise, we are in Case 2. If 
a< b, then aa =d-l and Cab = 1 -d-2. Finally, if a> b, we have 
(Jab = 1 and Uaa = -d-l . This encoding is slightly redundant, but allows a 
more efficient multiplication by ((Tab) . Altogether, we have to store 

2 (k - 4)Zff 
k<n flF-k 
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small integers, a modest quantity compared to the input size n! = Ean f2. 
For example, for n = 10, this requires space for 227, 376 small integers, while 
the input consists of 10! = 3, 628, 800 floating-point numbers in case K = R. 

Now we describe the procedure for computing all a(i, i + 1). In a first 
step, we generate the Young lattice up to level n in an obvious way. This gives 
us all partitions of k < n as well as the degrees and the branching behavior of 
the corresponding representations in negligible time and space. 

Next, we compute the 9fl(i, i + 1) "bottom-up" for S2, S3, ..., Sn . Sup- 
pose l3 F- k < n and i < k. For i < k - 1, we have 

cl(j, i +1) = (aI k (l)(i, i+ 1) = e &'(i, + 1) 
y4-k-1: yCfl 

according to equation (2.3). Hence, the matrix 9 (i, i + 1) can be assembled 
without any further calculation from its direct summands already computed at 
stage k - 1. 

Only for i = k - 1, the matrix has to be constructed by Young's formula 
using the last letter sequence of /8. To do this, we only need to know the 
positions of k - 1 and k in the standard fl-tableaux T1, ..., To. Hence, 
we do not have to construct the complete last letter sequence tree, but merely 
the nodes N1 < ... < N, of depth 2. (These are pictures containing only 
the two entries k - 1 and k.) This makes the construction of 9 (k - 1, k) 
substantially faster. 

Each Nj defines an interval Ij C { T, , . . . , Tf, }, which consists of all leaves 
of the subtree rooted at Nj . The size of Ij equals the degree of the represen- 
tation corresponding to the partition of k - 2 which is obtained by deleting 
the positions k - 1 and k from Nj. (This degree has already been computed 
in the first step of the algorithm.) For each 1 < j < m, exactly one of the 
following two cases occurs: 

(i) k - 1 and k are contained in the same row (resp. column) of Nj. 
Then Case 1 of Young's construction applies to all elements Ta in Ij. 

(ii) For some / > j, N1 is transformed into N1 by interchanging k - 1 and 
k. Then Case 2 of Young's construction applies to every pair (Ta, Tb), 
consisting of the uth element of Ij and II, respectively. Obviously, 
the axial distance d is the same for all these pairs. 

In this way, the matrix 0 (k - 1, k) can be quickly constructed. For n = 10, 
the construction of 9 (i, i + 1) for all partitions /3 F- k and all 1 < i < k, 
k = 2, ..., 10, takes 270 milliseconds on a SUN SPARCstation 1. 

3. FAST EVALUATION 

In this section, we will show how the Fourier transform an can be efficiently 
evaluated. Given an element a = Zges, agg of KSn, we have to compute 
an (a) . To begin with, we decompose S, into left cosets of the subgroup S,-I: 
Sn = j:ngp9nSn- I, where gin is any fixed permutation in Sn which maps 
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n to j. The choice of gin is crucial for our algorithm's efficiency and will 
be discussed in a moment. According to this decomposition, we can write 
a = Enj> gjnaj , where aj = ZheS,_ agjnhh E KSnj . As acn is a morphism of 
K-algebras, we get 

n n 

an (a) = ian (gjn) an (aj) =E (E a (gin a' (aj) 
j=1 j=1 ahxn 

n 

= E(a Ca(gin)(,a t 1KSn (aj). 
j=1 aF-n 

Now we use the fact that an is 9n-adapted: 
n 

n (a) =: E(,a (gin) e 9(a). 

j= 1 aF-n aDfl-n- 1 

Thus, every 9a(aj), once computed, can be used in the evaluation of aa(aj) 
for all partitions a of n containing Jl . Because copying is free in our compu- 
tational model, this means a substantial reduction in the number of operations. 
The assumption that copying is free is realistic for practical software implemen- 
tations, as copying an element of K is usually much faster than an arithmetic 
operation. This is the fundamental advantage of S-adapted Fourier trans- 
forms. (Clausen [5] employs this idea to derive improved DFT algorithms for 
arbitrary finite groups.) 

We still have to specify the coset representatives gin. We use the cycle 
gjn (= U, i + 1, ... , n). Why is this a good choice? As gin = (, 1 + 1). 
(j + 1, j + 2) ... (n - 1, n), Ca(gjn) is the product of n - j sparse matrices, 

aa(jn) = a(j, j+ 1) . Ca(j+ 1, j+ 2) ...a(n - 1, n). 

Recall that qa(i, i + 1) has at most two nonzero entries in each row and at 
most I of its nonzero entries are 54 +1 . Hence we can multiply Ca(i, i + 1) 4 

with an arbitrary fa-square matrix in at most *f,,j operations. Instead of 
directly multiplying the "twiddle factor" qCa(gin) (which is typically not sparse) 
by Ca (aj), we compute the product as indicated by the expression 

(3.1) (qa(j, j + 1) ... (,(a(n -2, n- i). (a(n - 1, n) .a (aj))) ...) 

and can thus perform this multiplication with at most 5 * (n - j)fa2 arithmetic 2 
operations, compared to order fa for direct multiplication.2 

Finally, we have to sum up the n blockdiagonal matrices an(gj)an(aj) . This 
takes 

(n - o)ofa2=n(n - )n! 

operations. 

2Diaconis and Rockmore also use an, but take gjn = (j, n) and directly multiply aa(gin) by 
aa(aj) . This gives an upper bound of order (n!)3/2 * n for LK(Sn) . 
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Let L, denote the arithmetic cost of our algorithm to evaluate an . Then we 
have the recursion 

/n n 
n< n *Ln- + d2 *t+ (n -1) * JSnJ. 

ij=1 m=j+ I ax-n 

Obviously, LI = 0. When this is combined with EaFn 2 = -SI and the 
well-known formula En72 (2) = (n+1) induction yields the following small 
improvement of Clausen's original result (1.1). 

Theorem 3.1. We have 

LK(Sn) < Ln < ( I n3 + In2 -1n)n!. 

(By a closer look at the matrices in (3.1), this upper bound can be slightly 
improved. However, the gain is too small to justify the much more technical 
proof.) 

So far, we have followed a top-down approach to describe and analyze our 
algorithm. However, a top-down implementation recursively computing the 
Fourier transform would require too much memory and a great deal of book- 
keeping (see the discussion in [9]). Our implementation works bottom-up to 
avoid these problems. It takes a global view of all computations at layer k 
of the algorithm, where the Fourier transform ak of Sk is evaluated once for 
each coset of Sk in Sn . More precisely, define gjk: (I, I + 1, ..., k) for 
1 j < k < n . Then the words 

9_ =jnngjnn-. gjk+lk+l, 1 ? ii < i, 

form a transversal of left cosets of Sk in Sn . The lexicographical ordering of 
the vectors (in, .. . A ik+1) thus induces a total ordering of the cosets. 

The data in layer k of our algorithm consists of n!/k! blocks olk(aj) of size 
k!, where the aj E KSk are defined by decomposing the input a E KSn along 
our transversal: a = >j gja1 . As we shall see below, it is favorable for our 
algorithm to arrange the blocks in each layer k according to the lexicographical 
ordering of the cosets of Sk in Sn . Each blockdiagonal matrix ak (aj) is repre- 
sented by a vector of length k! as follows: The block constituents are ordered 
according to the lexicographic order of the partitions of k . Within each block, 
the entries are stored row-wise. With respect to this arrangement, the data in 
layer k can be described as a vector Vk E Kn! . In particular, the input vector 
v1 consists of the coefficients of a enumerated in the lexicographical order of 
the group elements. 

Given v1 , our program successively computes v2, ... , Vn and outputs Vn . 
In layer k, we compute Vk from Vk- . More precisely, we compute each 
ak(aj) from the k blocks Jk-1(al) with g1Sk_1 C gjSk as described above. 
As our ordering of the ak(aj) is compatible with the stepwise refinement of 
our coset decomposition, the same linear transformation has to be applied to 
each block of length k! in Vk - to obtain the corresponding block in Vk . In a 
(sequential) software implementation, this is easy to realize by moving pointers 
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over Vk and Vk- I . On the other hand, it is obvious that a very regular parallel 
implementation is possible. The layered structure of the algorithm also allows 
pipelining. 

What about memory requirements? Of course, we do not have to store 
(vj, ... , vn), but only Vk and Vk+1 at layer k. In addition, we need storage 
for f2 + 2f, elements of K for evaluating the expression (3.1). Altogether, 
our algorithm requires memory for 

M(n) := 2 l n! + fn2 + 2 - fn 

elements of K, where fn denotes the maximal degree of an irreducible repre- 
sentation of KSn. For n = 10, we have fio = 768 and M(10) < 2.17. 10!. 
In 32-bit floating-point arithmetic (K = R), this takes less than 30 megabytes 
of virtual memory. In addition, we need less than one megabyte for storing the 
precomputed tables (see ?2) and local variables. So the Fourier transform for 
S10 is already feasible on a medium-sized workstation. 

4. FAST INTERPOLATION 

In this section we will design an efficient interpolation algorithm for symmet- 
ric groups that evaluates the inverse Fourier transforms an-' . Our algorithm 
is based on the well-known Fourier inversion formula [16, p. 49], which in our 
case reads as follows: 

ql ( a) ISn I (Zfatr( (g1)*A()) g 

for every blockdiagonal matrix 3(a A E an (KSn). We rewrite this, using our 
coset decomposition Sn = Uj gjnSn-i 

a (yi ( A ) =~n Llg* l [ iZ _o (Z tri a(g1l) . a(g,-). A)) g] 

=:EginXin j 

j<n 

As can is 97-adapted, we have 

tri (g)* gn ) *At) = tr (( @ 4gl)*vlgI a) 
ora~fn-i1 

for all g E Snl. Let pat be the natural projection of Kfa xfa onto the block- 
diagonal eaDfln- Kfflffl . Because only the diagonal elements contribute to 
the trace of a matrix, we have 

tr((e 3 l(g1)) .Q(gl ) .Aa) = Etr(afl(g-) A~1) 
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where : p,(a(gJl ) *Aa) . Now we see that 

Xjn = (Z-tr(a a(g ) 
a 

0(gj1) *A,)) g 

Xn 
Jn- I IEn~ ( tr ,SCE 

gES,-l a f~ 

1 , (y 'ffl tr(afl(g-) (z * g 

J~~n- I I nf~j aj 

I n-lgES,-l ,a ,flB 

Altogether, 

To compute c'(rnl( Aa), we proceed as indicated by the previous equations: 

I~~fgtr afl~g-1). 
E fca -1 

In a first step, we compute all the products qTa(gj-nl) *A, . Decomposing g1-n = 

(n - 1, n)(n -2, n- l) *. (j, j+ 1) and proceeding as in (3.1), we obtain 
all these products (and hence the blocks Al) in at most 2 (2n) *n! arithmetic 
operations. Next, we compute all Alin the obvious way using at most 

n~ n I I2E{x~ nCD#I ffl aj 

flIn-1 

< n.* (2max(I{av n~ l} l tr ) - 1) - Af l 

<n (2(1+ (n - 1))- 1)*(n- 1)!=(1+2 2(n- I ))n! 

operations. Finally, we compute a,7l ( A's) for all j, recursively applying 

Let An denote the arithmetic cost of our algorithm to evaluate an l. Then 
we have the recursion 

wh =0 ncnh ta 

wiogther, .Inuto sosta 



FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 845 

Further estimation, using E n-- v'k- < fin vx dx < n312, yields the final result. 

Theorem 4.1. There holds 

LK(a,71) < ( 5 n3 + 4v/2n3/2 + 7n) * n! 
(This upper bound can also be slightly improved at the expense of a much 

more technical proof.) 
Our interpolation program is very similar to our evaluation program "read 

backwards" and uses exactly the same data structures. Hence, all comments on 
the implementation made in ?3 apply respectively. In particular, our data ar- 
rangement is also compatible with the successive coset decompositions implied 
by equation (4.1). 

5. RUNNING TIMES AND COMPARISONS 

We have implemented our algorithm in C on a SUN SPARCstation 1. The C 
program is less than 1000 lines long. It works over K = R, using 32-bit float 
arithmetic. For 6 < n < 10, Table 2 shows the precomputation time (in CPU 
seconds), size of precomputed tables (in kilobytes), evaluation time (in CPU 
seconds), number of arithmetic operations, and the theoretical upper bound 
of our FFT algorithm. (For total memory requirements, see the discussion 
at the end of ?3.) Table 3 gives the same data for the fast Fourier inversion 
algorithm. The precomputation times and memory requirements are the same 
as before. We see that our theoretical analysis comes rather close to reality: 
the running times of our algorithms are about proportional to the number of 
arithmetic operations. This is made possible by our choice of data structures, 
which results in low bookkeeping costs. 

Let us now look at the performance of the other two algorithms mentioned. 
Unfortunately, Diaconis and Rockmore [9, 15] do not present any running times 
of their algorithm. To be able to compare actual running times, we have im- 
plemented the "dynamic programming" variant (Algorithm 5 in [9]) of Diaconis 

TABLE 2 

n precomp. (s) table size (kb) eval. (s) arith. ops upper bound 
6 0.01 2 0.08 55,440 73,800 
7 0.02 7 0.79 623,952 811,440 
8 0.03 28 8.67 7,507,836 9,596,160 
9 0.08 110 105.68 96,756,840 121,927,680 

10 0.26 444 1518.62 1,333,294,380 1,660,176,000 

TABLE 3 

n eval. (s) arith. ops upper bound 
6 0.11 60,696 87,273 
7 0.99 663,600 916,887 
8 10.20 7,823,868 10,510,079 
9 118.03 99,337,932 130,604,753 

10 1630.98 1,354,098,380 1,749,547,826 
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TABLE 4 

n precomp. (s) table size (kb) eval. (s) arith. ops 
6 0.03 16 0.12 61,920 
7 0.15 134 1.64 1,110,144 
8 1.43 1236 28.52 23,489,536 
9 15.75 12576 633.34 576,440,064 

10 195.79 140152 18493.50 16,532,519,760 

TABLE 5 

n eval. (s) 
6 10.27 
7 35.81 
8 643.94 
9 44791.26 

and Rockmore, because it takes less memory and runs faster than the other 
variants. In fact, this is very similar to our algorithm, as we have already seen 
in ?3. The major difference is that they use the transpositions gjn := (j, n) as 
coset representatives and store all a (jI, n) . As these matrices are typically not 
sparse, this takes an enormous amount of memory, e.g., about 140 megabytes 
for n = 10. Moreover, direct multiplication with such a matrix takes 0(d3) 
operations, where d is its dimension. Our implementation of their algorithm 
uses the same data structures as with our algorithm, except that the a a(jI, n) 
are stored as full matrices and the data arrangement in each layer is adapted to 
the coset representatives (j, n) . On a SPARCstation 1, we obtained the results 
shown in Table 4. 

The running times of Linton, Michler, and Olsson's [ 13] algorithm on an IBM 
RISC 6000/540, which is faster than our SPARCstation 1 (evaluation times in 
CPU seconds), are given in Table 5. They do not present any information on 
their algorithm's memory requirements. 
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