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ENUMERATION OF QUARTIC FIELDS OF SMALL DISCRIMINANT

JOHANNES BUCHMANN, DAVID FORD, AND MICHAEL POHST

ABSTRACT. With the mixed-type case now completed, all algebraic number fields
of degree 4 with absolute discriminant < 10° have been enumerated. Methods
from the totally real and totally complex cases were used without major mod-
ification. Isomorphism of fields was determined by a method similar to one
of Lenstra. The 7, criterion of Pohst was applied to reduce the number of
redundant examples.

1. INTRODUCTION

We have previously enumerated totally real (signature 4) [1] and totally com-
plex (signature 0) [2] fields. We now treat the remaining case, fields of mixed
type (signature 2). The methods of [1] and [2] are used without major modifi-
cation.

2. EXISTENCE OF SMALL INTEGERS

A consequence of [8, Theorems 1-3] is

Proposition 1. If F is an algebraic number field of degree 4 with discriminant
dr and ring of integers O, then there exists p € Op\Z such that

Ta(p) < 1+ {/ldrl/2,

where py, ..., pa are the conjugates of p, and, for k € Z,
4
Ti(p) = Ipjl*.
Jj=1

We let p be an algebraic number satisfying the conditions of Proposition 1,
with characteristic polynomial given by
4

fx)=]](x=pj)) =x*—sx*+px* —gx +n.

Jj=1
If Q(p) has signature 2, then p may be assumed to satisfy the following:
(1) 0<s<2,
2 _ 2
) s 27"2(/7) <p<? /2+2T2(P) ’
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—s3 + 3s§ —~ Ts(p) <g< —s3+ 3s§ + Ts(p) ’

TZ(p)
(4) 0<n< T

Relations (1), (2), and (4) come directly from [8, Theorem 3], while (3) is a
consequence of |s3 — 3sp + 3¢q| = IZ‘}=1 P3| < Ts(p). We take

3)

Tou(d) = |1+ {/ld|/2], T3(d) = (1 + {/1d]/2)*?],
Tod) =121+ {/1d1/2)),  Tud) = (1 + {/1d]/2)*],

and define G;(d) to be the set of all polynomials f(x) = x*—sx3+px2—gx+n €
Z[x] with coefficients satisfying

(5) 0<s <2,
2 _ A 2,7
(6) s gZI(d) <p<? +Z;22(d)’
_3 _T _e3 T
7) s +3s§7 T3(d)qu s +3s§+T3(d)’
8) 0<n< T"l(é‘”.

The integer quantities TZI(d) s Tzz(d) , ﬁ(d) R ﬁ(d) are easy to compute, soO
the question of whether a given polynomial belongs to G)(d) can be answered
quickly.

Observing that |T3(p)] < Ta1(dF), |2T2(p)] < Tna(dF) . |T3(p)I <1 Ta(p)*?]
< T3(dr), |T}(p)] < Ta(dF) establishes

Proposition 2. If F is an algebraic number field of degree 4 and signature 2
with discriminant dr and ring of integers OF , then there exists p € Or\Z with
characteristic polynomial belonging to G,(dF).

3. FIELDS WITH SMALL QUARTIC INTEGERS

For each polynomial f(x) € G;(10°) we perform the following tests (cf. [1]):

If f(x) is reducible in Z[x], we exclude f.

If f(x) is irreducible but Q(p) is not of signature 2, we exclude f.
We compute the discriminant dr of the field F = Q(p).

If |dr| > 10°, we exclude f.

If f ¢ Gi(dF), we exclude f.

e

Among the polynomials surviving these tests is a generating polynomial for
every quartic number field of mixed type with absolute discriminant less than
106, excepting those fields for which no choice of p in Proposition 1 gives
a quartic integer. In these fields every such “small” p generates a quadratic
subfield; we enumerate these fields separately.
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4. FIELDS WITH QUADRATIC SUBFIELDS

We now assume that F is an algebraic number field of degree 4 with signature
2 and discriminant dr, with |dr| < 10°, and that F contains a quadratic
subfield K with discriminant dg . Since F has a real embedding, dx > 0.

Let w, 0 = %(a:l: \/Zi;), where ¢ € {0, 1}, 0 = dx (mod 4), so that
K =Q(w), and @ = Z[w] is the ring of integers of K .

We take p € Or\O , and let

g(x) =x*—ax + B € F[x]
be the minimal polynomial of p over K, with
a=a +ao, B=b+bhow,
o =a; + azw’ s ﬂ’ =b + bza)’.
Then the characteristic polynomial of p over Q is
9) flx)=(x*— (a1 + azw)x + (b + bw))(x* — (a1 + @)X + (by + b))
=(x?-—ax+pB)(x*-a'x+p")
=x*—sx3+px*—gx +neZx].
We define the Z-module homomorphism A: & — R* by
A&) = (36 —&), 5(&2—&1), 0, 3¢3)
where &, &, are the real conjugates of &, and &;, &, the complex conjugates.
Then A(@) is a 2-dimensional lattice of determinant A = +/[dr|/8dx , and the
kernel of 1 is @k . We choose p € O so that ||A(p)|* < 2A/v3 = \/|dF|/6dx
and Trpk(p) =a€{0+w, 1 +w, 0+ 2w, 1 +2w}. (Taking o ¢ Q ensures
that p has degree 4 over Q.)
Since a and f are real, we have
a=p1+p2, B =pip2,
o =py+p3=2Rp3, B =pip;, =|ps*
Therefore,

B+ B =L +a?) - Loy - p2)? +Sps?,
B—p =1~ o?) - Ho1 = p2)* = Sp3?,
so that
1B+ ') — L@ + )| < L(p1 — p2)? + 332 < IAD)I1%,
0< a2 —a?) = (B~ B) < AP
We define 4, = 4a? + 4a,a,0 + a?(dx + 0), Ay = ay(2a; + a,0), so that
1 2
o +a% =14, B+ B =2b +byo,

az—a’2=A2\/dK, B— B =by\dg.

It follows that

Ay, — M A

(10) 24 Sb2S—4—
Ay — 8byo — N Ay —8byo + N
(1) ARl m T g D20
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where
M = |44/|dF|/6ldk|*], N = |84/|dF|/6|dk]].

We define G»(dr, dx) to be the set of all polynomials f(x) € Z[x] defined
by (9), with a; € {0, 1}, a, € {1, 2}, and b,, b, satisfying (10), (11).

Proposition 3. If F is an algebraic number field of degree 4 and signature 2 with
discriminant dr and ring of integers @ , and if F contains a quadratic subfield
K with discriminant dx and ring of integers Ok , then there exists p € Or\Ok
with characteristic polynomial belonging to G,(dr, dx), such that F = Q(p).

5. FIELDS WITH SMALL QUADRATIC INTEGERS

Let F be a quartic number field of signature 2 with discriminant dr > —10°.
Suppose there exists p € @r\Z with characteristic polynomial in G;(dr) such
that K = Q(p) is a quadratic subfield of F. It follows from Proposition 2,
using (5)-(8) with d = —10%, that 0 < dx < 80.

For each quadratic field discriminant dx with 0 < dx < 80 we generate
the polynomials in G,(—10%, dx) according to (9), taking a; € {0, 1}, a, €
{1, 2}, and b;, b, running through the values specified by (10) and (11). For
each such polynomial f(x) we perform the following tests:

If f(x) is reducible in Z[x], we exclude f.
If f(x) is irreducible but Q(p) is not of signature 2, we exclude f.
We compute the discriminant dr of the field F = Q(p).
If |dp| > 10°, we exclude f.
If f ¢ Gz(dp, dK), we exclude f

Among the polynomials surviving these tests is a generating polynomial for
every quartic number field of signature 2 with absolute discriminant less than
10°, such that no p € @r\Z with characteristic polynomial in G;(dr) is a
quartic integer.

el M

6. DETERMINING FIELD ISOMORPHISM

Let f and g be irreducible monic quartic polynomials in Z[x], a and
roots of f and g, respectively, p a rational prime not dividing D, or D,
and n; and n, the number of solutions in Z/pZ to the congruences f(x)=0
(mod p) and g(x) =0 (mod p). From Hensel’s Lemma we know that n,
and n, give the number of roots of f and g in Z,.

The fields Q[a] and Q[B] are isomorphic if and only if there is a polynomial
h € Q[x] such that h(a) has characteristic polynomial g. If Q[a] and Q[]
are isomorphic, then any root of f lying in Z, is taken by 4 to a root in Z,
of g. It follows that f and g have the same number of roots in Z, , and that
h gives a one-to-one correspondence between them.

It is well known [3, Theorem 1], [10] that ny > 0 for infinitely many choices
of p. We assume therefore that p has been chosen so that ny = n, > 0, and
take o and g to lie in Z,. Suppose

(12) A+Aa+ie?+ia® + =0, Aj€Z,,0<j<4.

The rational solutions of (12) form a Z-lattice of rank at most 1 (otherwise 1,
a, a2, o® would be dependent over Q). The p-adic solutions of (12) form a
Zy-lattice of rank 4, with Z,-basis given by the columns
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-a —-a? —-a3 -B
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Consider now the relation

(13) Ao+ Ara+Aa? +13a® +A4f =0 (mod p™) .

The rational solutions of (13) form a Z-lattice L,, of rank 5, with Z-basis
given by the columns

p" —a —a? —-a&3 _B‘
0 1 0 0 0
0 O 1 0 0
0 o 0 1 0
0 0 0 0 1

where @, B are rational approximations to «a, B, correct modulo p™. (@
and g are easily computed by Hensel-Newton lifting from roots modulo p of
f and g.)

If a nontrivial rational solution of (12) exists, it can be shown (see [6]) that
for sufficiently large m it appears as a short vector in the lattice L,,, and is
therefore accessible via lattice basis reduction techniques (see [1, 7]).

It is known that the effectiveness of basis reduction depends upon, and is
predictable from, the size of the entries. For these computations we found a
choice of m such that p™ =~ 10?5 to be effective.

7. RESULTS

It should be noted to begin with, that our results are in complete agreement
with the work of Godwin [4, 5]. The distribution of Galois groups by field
discriminant appears in the appendix (cf. [1, 2]).

The main computations were done on a Digital Equipment VAX 8550 com-
puter at the Computer Centre of Concordia University. Statistics for the totally
real and totally complex cases (using the most recent versions of the software)
are included for comparison. Execution times are expressed in CPU-hours.

Signature 0: 104:12 CPU-hours, 81322 fields.
Signature 2: 222:15 CPU-hours, 90671 fields.
Signature 4: 5:30 CPU-hours, 13073 fields.
The following data has been prepared for each of the fields (all signatures):
e generating polynomial
o field discriminant
¢ Galois group
integral basis
e quadratic subfield discriminants (imprimitive fields only)
¢ fundamental units
e class group
The computation of fundamental units and class groups was done with KANT
on Hewlett-Packard Apollo workstations at Diisseldorf. The data is available
on magnetic media from the authors.
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APPENDIX

Distribution of Galois groups by field discriminant

Dg Sy
0: 193 | 822 |

20000: 190 | 1144 | |

40000: 204 | 1236 |

60000: 186 1359 |

80000: 195 | 1355 i 1
100000: 187 1419 i il [
120000: 195 | 1402 | |
140000: 212 Il 1457 | | [T | |
160000: 224 Il 1544 | | M
180000: 181 1513
200000: 179 1534 |
220000: 179 1459
240000: 222 i 1531
260000: 195 | 1663 11
280000: 186 1582
300000: 209 Il 1620 I
320000: 219 I 1505
340000: 190 | 1635
360000: 180 1636
380000: 190 | 1647 |
400000: 176 1634
420000: 197 | 1658 |
440000: 195 | 1649 |
460000: 188 1637
480000: 193 | 1628
500000: 214 Il 1646
520000: 187 1708 Il
540000: 196 1675 |
560000: 193 1733 Il
580000: 196 1696
600000: 188 1764 Il
620000: 184 1753 |
640000: 206 1726
660000: 200 1648
680000: 197 1745 |
700000: 201 1737
720000: 211 | 1762 |
740000: 185 1827 I
760000: 185 1799 [l
780000: 195 1762 | |
800000: 215 | 1726 T | [
820000: 226 Il 1750 (|11 (TR T
840000: 180 1740 Il I Il [ i
860000: 213 I 1758 | | | Il |
880000: 184 1810 | [l
900000: 188 1786 | Il
920000: 193 | 1719 |
940000: 198 | 1806 | Il
960000: 194 | 1749 | |
980000: 178 |l 1805 | | 1t

Total: 9772 80899
Percent: 10.78 89.22
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