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THE RELATIVE CLASS NUMBERS OF IMAGINARY CYCLIC FIELDS
OF DEGREES 4, 6, 8, AND 10

KURT GIRSTMAIR

ABSTRACT. We express the relative class number of an imaginary abelian num-
ber field K of prime power conductor as a sort of Maillet determinant. Thereby
we obtain explicit relative class number formulas for fields K of conductor p,
p > 3 prime, and degree 2d = [K: Q] < 10, in terms of sums of 2d-power
residues. In particular, tables are given for p < 10000 .

INTRODUCTION

Let p, m bein N, p prime. In a number of papers the relative class num-
ber of the p™th cyclotomic field has been expressed as a rational determinant
(Maillet’s determinant; cf. [1, 8, 10, 11}, see also [12, 3]). Moreover, an explicit
relative class number formula in terms of quartic power residues modulo p has
been given for imaginary cyclic quartic fields of conductor p [9, 7]. The aim
of the present article is to study a generalization of Maillet’s determinant that
yields relative class number formulas for arbitrary imaginary abelian fields K
of conductor p™ (Theorem 1). By specializing these formulas to fields K of
degree [K: Q] = 2d and conductor p, we obtain explicit relative class num-
ber formulas in the cases d = 1,2, 3,4, 5 (the formula for d = 1 is well
known, of course). Our formulas are used to compute relative class number
tables for d = 3,4, 5 and p < 10000 (Tables 1-3 in the Supplement section;
the respective table for d = 2 can be found in [6]).

1. GENERALIZED MAILLET DETERMINANTS

Let K be an imaginary abelian number field of conductor . In particular,
K is contained in the nth cyclotomic field Q({,), ¢, = €2"/*. By G, we
denote the Galois group

Let (Z/nZ)* be the prime residue group mod . There is a canonical isomor-
phism
(Z/nZ)* — G,

which maps the residue class k, k € Z, onto g ; 0k being defined by oy ({s) =
¢k . For this reason we shall frequently identify k with oy , and thus the group
(Z/nzZ)* with G,.
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Let H C G, be the Galois group
H = Gal(Q(¢,)/K) = {0 € Gy ; o|x = id}.

Since K is imaginary, H does not contain complex conjugation o_; = —1.
Therefore, K* = KNR is a proper subfield of X, and H* = ({—1}UH) is the
Galois group H* = Gal(Q(¢,)/K™*). The group index [H*: H] equals 2. We
write d = [K*: Q], which means [K: Q] = 2d . Now let X, be the character
group of G,, X C X, the character group of K (i.e., the character group of
Gn/H), X* the character group of K*,and X~ = X\X +. We fix an arbitrary
character y in X~ . This is the same as saying y(k) = 1 for each k € H,
and y(-1)=-1. _

For a given number k € Z, let [k] = [k] be defined by

k=[k] modn and [k]e{0,1,...,n—1}.

If (k,n)=1, we put
Ec=w(k) Y (2lkjl-n).

J=!
jeH

Proposition 1. With the above notations,
n
E= Y vl
j=1
jekH*

In particular, E; depends on the residue class of k modulo H* only.
Proof. Since w(j) =1 for all elements j € H, one obtains

Ex = Y w(&)(2Ukj] - n).

jeH

Now E; can be rewritten as

B = 5 YW@k - n) + w(FR)@A-kJ1 - )

jeH
1 Ay
=5 2 v(Dell-n
jekH+
—rq N -
= 2 vl- 5wk 3 v
jekH+ jeH+
However, the last sum is 0, since w(j) = 1 for j € H, y(j) = -1 for

jeH"\H,and |H|=|H*\H|=d. O

In view of Proposition 1 we may write E; = E,, where r is the residue class

of k modulo H+.
Let #Z C Z be a system of representatives of G,/H™* . In particular, |#| =
d . Suppose, moreover, that % is ordered in some way. We put

D = det(Ey;)k, jew = det(Eys)r, seG,/H+ >
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and
D* = det(Ers—1), seG,/H+
Finally, let 6 = [{k € #; %k € H*}|. We get
Proposition 2. In the above situation,
D = (-1)4-9/2. p*,
Proof. Consider the permutation
p: Gu/H" — Gu/H*

of G,/H*, defined by p(r) = r~!. Clearly, D = sign(p) - D*. But sign(p) =
(=1)¢, with & = [{r € Gy/H*; 1 # r~1}|/2 = (d — |{r € Ga/H*; 2 = 1}])/2 =
d-6)/2. O

For a prime divisor p of n, let e, (resp. e;) be the ramification index of
p in K (resp. K*). Similarly, g, (resp. g;) denotes the number of prime
divisors of p in K (resp. K*).

Theorem 1. Let the above notations hold. Then D* = 0 if there isa p, p|n,
with g, = 2g5 . Otherwise,

D* = (-2n)42h=/(Q - w),
with

k=3{g :pln, & =8 ,e»=¢€},

h~ = relative class number of K ,

Q = unit index of K,

w = number of roots of unity in K (for notation, cf. [5)).

Proof. By its definition, D* is a group determinant belonging to the abelian
group G,/H*, which means (cf. [5, p. 23])

D= 1] ( > x(r)-E,).

XEXH reG,/H*
It is easy to see that
n
o oxn-E= Y xwk) -k,
reGu/H+ k=1
(k,n)=1
whence
n —
D=1 1| Y xk)-k
XEX— k=1
(k,n)=1

Now let f, denote the conductor of x, and x, the primitive character of
(Z] f,Z)* that belongs to x . A reduction formula of Hasse (cf. [5, p. 18]) says

S xR -k=n-[[(1-2/0))- By,
k

=1 pln
(k,n)=1 !
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where B, is the generalized Bernoulli number

S
By =Y xs(k)-k/fy.

k=1
The product [, .x-(1-x,(p)) can be evaluated in a well-known way (cf., e.g.,
[2]). We obtain

0 if g, =2g;,
[Ta-x@y=41 ife,=2e,
*ex 2 ifg, =g, g=¢.

Finally,
I B:.= (=247 /(Q-w)
XEX-
(cf. [5, p. 12]). On putting these results together, one gets the theorem. 0O

Let us now consider the special case n = p™, p an odd prime. Then K is
a cyclic extension of Q with [K: Q] = 2d . Since e, = 2¢;, the number « is
0. According to [5, p. 68], the unit index Q equals 1. The number w is given
by the following

Propeosition 3. With the above conventions,
{2°p"’ if K=Q(n),
w = )
2 otherwise.

Proof. Assume that K contains a root of unity different from +1. Then K
contains a root of unity of p-power order. Therefore, {, € K. But then
[Q(¢n): K] = p* for some k, 0 <k <m—1. Since Q(¢,) is cyclic over Q,
there is only one subfield K of Q({,) with this property, viz., K = Q({,m-«) .
However, n = p™ is the conductor of K;hence k=0. O

On collecting the above observations, we obtain the

Corollary to Theorem 1. Let p > 3 be prime, n = p™, m > 1, and K be an
imaginary abelian field of conductor n and degree 2d = [K: Q]. Then

>~ (=Dt i K =Q(),

(=n)4.24-1 . h=  otherwise.

2. THE CASE OF A PRIME CONDUCTOR
Let, in particular, n = p > 3 be prime, which implies that 2d|(p — 1). Then

H=GY={&";%eG,}.

Since —1 is not in H, we get (—1)?~D/Q4) = _1 mod p, and p = 1 +
2d mod 4d . If, conversely, p = 1 +2d mod 4d , there is a uniquely determined
subfield K of Q({,) with [K: Q] =2d, and K is imaginary. We now choose
a number g € Z\pZ such that # = {1, g, g%,..., g%"'} is a system of
representatives for G,/H™* . This is the same as saying that

(%) gk®=1/d £ 1 mod p
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foreach k€ {1,...,d — 1}. We define

p—1

(%) Fe=) (&5 -p), kel

j=1

Then w(g*)-F, =2d-E ¢« - By Proposition 2 and the corollary of Theorem 1,

(+xx) det(y (8 Fjik)) k=0,...a—1 = (2d)* - D=c-h~,
with
( (_1)(3d—1)/2.22d—1,pd—l.dd ifd=(p—1)/2,
p=3mod4,
(_1)(3d—2)/2 . 22d—1 .pd—l . dd ifd = (p _ 1)/2,
e | p=1mod4,
(=1)34=072.224=1 . (pd)? ifd <(p-1)/2,
d odd,
(=1)B34=2/2. 2241 (pd)? ifd<(p-1)/2,
L d even.

Examples. For small numbers d it is easy to write down the determinant in
(*x*) term by term. Wedosofor d=1,...,5.
l.Let d=1,1i.e, p=3mod4, and p > 3. In this case (xxx) means

p—1
Fo=) QU*1-p)=-2p-h".

j=1
This is well known (cf. [4, p. 387]).
2. Let d =2,ie., p=5mod8, and p > 5. Because of (%) =20-D/2 =
—1 mod p, the number g = 2 has property (), and the character y can be
defined by

v2)=i, wk =1,
for all k € H = Gj. With F; defined as in (+x), formula (xxx) reads as

Fo iR\ _ 2, p2_a9. 2.5
det(iFl FO)—F0+F1—32p A

3. Let d =3,1ie, p=7mod 12, and p > 7. Choose a number g’ €
Z\pZ such that g’»~1/3 £ 1 mod p. Then put g = g’>. Moreover, since
p =3 mod 4, the Legendre symbol y = ( ;) is an odd character with H = Gg

contained in Kery . However, ://(jg'k) =1, k=0,1,2, and, with F; as in
(), formula (x*x) takes the form
3.Fp-F-F— (F§+F+F)=864-p3.-h~.
4. Let d=4,ie, p=9mod 16, and p >9. Choose g € Z\pZ such that
(f)) = gr~1/2 = —_1 mod p. Then g has property (x), and ¥ can be defined
by w(8) =3 =e™*, y(k)=1 forall k € H=GS. With F asin (xx), our
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formula (xxx) reads as
— (Fy + F' + F} + F}) - 2(F}F# + FF?)
— 4(F¢F\F3 — FERF, — F}F\F3 + F}FyF,) = —32768 - p* - h™.

5. Finally, let d = 5, i.e., p = 11 mod 20, and put p > 11. Choose a
number g’ € Z\pZ such that g’®=1/5 % 1 mod p. Then g = g'> has property
(¥). Again, the Legendre symbol v = (5) is an odd character of G,, with
H CKery and yw(g) =1. We obtain

F+F+F +F)+F}
— S{F}(F\Fy + B F) + F}(FoFy + F3F) + F} (FoFy + Fi F3)
+ F}(FoFy + F,Fy) + F}(RoFs + A )}
+ S{Fy(FEF? + F}F}) + F|(F¢F} + FF})
+ B(FF§ + FLF) + F(F FE + FIFY) + Fy(F F3 + FLF])}
—5.FyF{F,F3F4 = —1600000 - p3 - h~.

Remarks. 1. Of course it is possible to give analogous relative class number
formulas for d > 6, too. In the case d = 6, however, the determinant
det(t//(g)f“kFHk) consists of 68 monomials in Fp, ..., F5. Therefore, the
formula is too complicated to be written in full.

2. Let d =29.d', d’ odd. Then X contains a character y of order 24+
Obviously, w(=1) = =1 and w(k) =1 forall k € H = G2¢. Thus, y has
the required properties, and we may say that there is always an appropriate
character ¥ of G, of 2-power order.

3. TABLES

We have used the formulas of Examples 1, ..., 5 to compute the relative
class numbers A5, of imaginary subfields K C Q({,) with [K: Q] =2d, d €
{2,3,4,5} and 2d + 1 < p < 500000. In the Supplement we display the
result for d = 3,4,5 and p < 10000 (Tables 1, 2, 3). The respective table
for [K: Q] = 4 can be found in [6].
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