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CHECKING THE GOLDBACH CONJECTURE UP TO 4. 1011 

MATTI K. SINISALO 

ABSTRACT. One of the most studied problems in additive number theory, Gold- 
bach's conjecture, states that every even integer greater than or equal to 4 can 
be expressed as a sum of two primes. In this paper checking of this conjecture 
up to 4 * 1011 by the IBM 3083 mainframe with vector processor is reported. 

1. INTRODUCTION 

The Goldbach conjecture states that every even integer greater than or equal 
to 4 can be expressed as a sum of two primes. This problem appeared for the 
first time in a letter from Goldbach to Euler in the year 1742. 

A direct consequence of the Goldbach conjecture would be that every odd 
integer greater than or equal to 7 can be expressed as a sum of three primes. 

It should be noted, that Goldbach treated the number 1 as a prime. Here 
we consider the number 2 as the first prime. 

Mok Kong Shen [1] reported in 1964 about checking the Goldbach conjecture 
up to 33,000,000. Stein and Stein [2] checked the conjecture up to 108 in 1965 
and Light, Forrest, Hammond, and Roe [4] in 1980 up to the same bound, 
independently. To the best of our knowledge the latest published result is due 
to Granville, van de Lune, and te Riele [5], who checked the conjecture up to 
2 . 1010 in 1989. 

As in [5], we will use the following terminology. By minimal Goldbach par- 
tition for an even integer n we mean the representation n = p + q, where 
p and q are primes and p is such that n - p' is composite for every prime 
p' < p. The smallest prime in the minimal Goldbach partition of n is denoted 
by p(n). For every prime q we denote by S(q) the least even number n such 
that p(n) = q. 

2. ON THE COMPUTATIONAL PROCESS 

The basic method used in our computations was Eratosthenes' sieve method. 
No primality test was needed in the actual computational process. 

The details of the method have been presented in [5]. This paper also includes 
some valuable statistics concerning the subject. The published values in [5] agree 
with our results. 

At the first step a bit matrix representing the prime numbers up to 1048576 
(= 220) was made by using Eratosthenes' sieve method. A 32-bit integer 
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array of 32768 elements (= 1048576/32) was needed for this. Every inte- 
ger [1, 1048576] was represented by one bit in this table. These primes were 
stored into another integer table. This table can be used to make prime num- 
ber tables on intervals up to 240 ( 1.0995 * 1012), using Eratosthenes' sieve 
method. 

The basic step size was chosen as 2 2.3 . 5 . 7 - 11 * 13 * 17 = 1021020. Hence, an 
interval of more than one million numbers was checked at a time. This selection 
made the program run faster since we did not need to use the small primes from 
2 to 17 in the sieving process. The divisibility by the primes from 19 up to 
the square root of the last integer of the interval had to be checked by sieving. 

The addition of small primes was replaced by shifting of the bit matrix as a 
whole by the number of bits corresponding to these prime values. The shifted 
bit matrices were joined together using the logical OR operation. The remaining 
zeros were handled separately. 

The programs were written in VS FORTRAN and interpreted by the IBM 
FORTVS2 vectorizing interpreter. The logical (IAND, IOR) and shifting op- 
erations (ISHFT) available in FORTRAN were used whenever it was possible. 
The main parts of the program vectorized quite effectively. 

TABLE 1 

n p(n) ql q2 n p(n) q1 q2 

6 3 1.485 1.602 3,526,958 727 0.347 1.179 

12 5 0.959 0.890 3,807,404 751 0.346 1.203 

30 7 0.898 0.494 10,759,922 829 0.359 1.136 

98 19 0.529 0.594 24,106,882 929 0.364 1.135 

220 23 0.549 0.469 27,789,878 997 0.360 1.194 

308 31 0.486 0.541 37,998,938 1039 0.362 1.193 

556 47 0.426 0.638 60,119,912 1093 0.366 1.181 

992 73 0.375 0.794 113,632,822 1163 0.372 1.158 

2,642 103 0.367 0.804 187,852,862 1321 0.369 1.235 

5,372 139 0.353 0.876 335,070,838 1427 0.372 1.244 

7,426 173 0.336 0.996 419,911,924 1583 0.366 1.344 

43,532 211 0.373 0.781 721,013,438 1789 0.364 1.426 

54,244 233 0.367 0.821 1,847,133,842 1861 0.376 1.336 

63,274 293 0.343 0.998 7,473,202,036 1877 0.400 1.163 

113,672 313 0.353 0.941 11,001,080,372 1879 0.407 1.119 

128,168 331 0.349 0.971 12,703,943,222 2029 0.401 1.191 

194,428 359 0.352 0.968 21,248,558,888 2089 0.407 1.166 

194,470 383 0.344 1.033 35,884,080,836 2803 0.386 1.487 

413,572 389 0.364 0.909 105,963,812,462 3061 0.394 1.469 

503,222 523 0.335 1.178 244,885,595,672 3163 0.404 1.408 

1,077,422 601 0.339 1.184 
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3. THE RESULTS 

In Table 1 we list the champions for the p(n) function: values of n such 
that p(m) < p(n) for all even integers m < n. This table is an extension of 
Table 3 in [3] (up to n = 40. 106) and of Table 3 in [5] (by four new entries). 
As in [5], we list the quotient q1 = log(n)/(logp(n))2 and also the quotient 
q2= p(n)/((log n)2 log log n) . It was conjectured on probabilistic grounds in [5] 
that the latter quotient would be bounded above and for all n > 10, that is, we 
should have p(n) < < (log n)2 log log n . 

Table 1 implies that for all even n < 4 1011 we have p(n) < 3163. 
Table 2 presents a list of champions for the function S(p), that is, primes p 

such that S(q) < S(p) for all primes q < p. 

TABLE 2 

p S(p) p S(p) p S(p) 

3 6 347 1,042,078 1,091 678,546,502 

5 12 379 1,172,918 1,097 1,168,888,534 

7 30 401 2,041,402 1,283 1,673,268,292 

11 124 419 2,406,448 1,301 1,927,528,888 

17 418 463 4,288,574 1,327 2,331,465,314 

37 1,274 487 4,938,848 1,429 2,538,833,642 

53 2,512 509 9,292,156 1,439 2,816,593,312 

59 3,526 521 14,341,888 1,451 4,407,165,118 

71 4,618 569 17,726,098 1,493 5,801,828,806 

83 7,432 593 20,757,292 1,559 8,946,630,856 

89 12,778 659 32,507,242 1,571 21,439,965,412 

101 26,098 739 34,362,758 1,787 26,070,202,114 

131 34,192 743 37,890,844 1,811 30,325,742,068 

149 37,768 761 49,358,128 1,867 30,834,371,756 

167 59,914 773 68,788,066 1,873 32,652,627,542 

179 88,786 839 129,796,642 1,889 44,460,316,708 

191 97,768 853 144,516,902 1,907 64,243,962,808 

197 112,558 911 150,386,932 1,997 65,334,725,368 

223 221,942 941 206,892,484 2,027 113,843,130,358 

257 237,544 977 247,013,164 2,153 244,808,993,116 

263 485,326 1,031 299,434,108 2,351 384,619,217,512 

281 642,358 1,049 379,410,652 2,441 > 400, 000, 000, 000 

317 686,638 1,061 554,463,808 
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4. REMARKS 

Vinogradov showed in 1937 that every odd integer which is large enough 
can be expressed as a sum of three primes. Several authors have since then 
improved the lower bound in this statement and it has been shown to be true 
for every odd integer n greater than exp(exp(l 1.503)) - 1043000 [6]. 

On the other hand, let n be an odd integer. If there is a prime pi on the 
interval (n - 4 1011, n - 2), then n -PI is even and it can be expressed as a 
sum of two primes, say n - Pi = P2 + P3. Thus n = Pi + P2 + P3. Hence, the 
Vinogradov statement has been checked up to the first prime number gap (the 
difference between two consecutive primes) of 4. 1011 integers. 

Large prime number gaps seem to be quite rare. Young and Potler [7] have 
investigated prime number gaps up to 7.263 * 1013. The largest gap found by 
them was 778. It may be that there is no prime number gap of length 4 . 1011 
or larger below exp(exp(l 1.503)). 

5. CPU-TIME 

Verification of the Goldbach conjecture required about 130 hours of cpu-time 
on the IBM 3083 mainframe. In total, about 170 hours of computing time was 
used on this project. 
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