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REMARKS ON MIXED FINITE ELEMENT METHODS 
FOR PROBLEMS WITH ROUGH COEFFICIENTS 

RICHARD S. FALK AND JOHN E. OSBORN 

ABSTRACT. This paper considers the finite element approximation of elliptic 
boundary value problems in divergence form with rough coefficients. The so- 
lution of such problems will, in general, be rough, and it is well known that 
the usual (Ritz or displacement) finite element method will be inaccurate in 
general. The purpose of the paper is to help clarify the issue of whether the use 
of mixed variational principles leads to finite element schemes, i.e., to mixed 
methods, that are more accurate than the Ritz or displacement method for such 
problems. For one-dimensional problems, it is well known that certain mixed 
methods are more accurate and robust than the Ritz method for problems with 
rough coefficients. Our results for two-dimensional problems are mostly of a 
negative character. Through an examination of examples, we show that certain 
standard mixed methods fail to provide accurate approximations for problems 
with rough coefficients except in some special situations. 

1. INTRODUCTION 

This paper is concerned with the finite element approximation of elliptic 
boundary value problems in divergence form with rough coefficients. The solu- 
tions of such problems will in general be rough, and it is well known that the 
usual (Ritz or displacement) finite element method based on piecewise linear 
approximating functions is inaccurate in general. The purpose of the paper 
is to help clarify the issue of whether the use of mixed variational principles 
leads to finite element schemes, i.e., to mixed methods, that are more accurate 
than the Ritz or displacement method for such problems. Mixed variational 
principles arise naturally in the mathematical formulation of many physical 
problems. For example, the laws of linear elasticity may be described in terms 
of a displacement variational formulation, involving only displacements, or in 
terms of a mixed variational formulation, involving both stresses and displace- 
ments, whose equations express the stress-strain relation and the balance of 
forces. In purely mathematical terms, one can obtain a mixed formulation 
from a displacement formulation by introducing new variables for some of the 
derivatives or certain linear combinations of derivatives of the unknown func- 
tion. A mixed approximation method is obtained by basing a finite element 
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method on the mixed variational formulation incorporating both the original 
and new variables. A difficulty in making precise and incisive statements about 
whether such methods are more accurate is that one can construct a variety of 
reasonable mixed methods. 

For the one-dimensional problem, it is well known that certain mixed meth- 
ods are more accurate and robust than the Ritz method for problems with rough 
coefficients (cf. Babuska and Osborn [2]). In the case of two dimensions, rig- 
orous results of this type do not exist except in special cases, and generally the 
situation is much less clear. Despite this fact, one-dimensional results are some- 
times used to justify the use of mixed methods for two-dimensional problems 
with rough coefficients. 

The results of this paper are mostly of a negative nature. Through an ex- 
amination of examples, we show that certain standard mixed methods fail to 
give good approximations for problems with rough coefficients, unless the new 
mixed variable has some added regularity over what might be expected from 
merely differentiating the original variable. Unlike the situation for the one- 
dimensional problem, this will not generally be the case in two dimensions. 
When this added regularity does occur, we are able to show that certain mixed 
methods do provide accurate and robust approximations. Thus, our analysis 
shows the importance of regularity in assessing when a mixed method will be 
effective. 

To make our discussion precise, we consider a model boundary value problem 
and several specific mixed methods that have been discussed in the literature. 
The description of the boundary value problem is presented in ?2 along with an 
abstract error estimate and a regularity result due to Bernstein that will play a 
key role in the subsequent discussion. In ?3, we present a brief review of what 
has been established about mixed methods for problems with rough coefficients 
in the one-dimensional case. In ?4, the main section of the paper, we describe 
the mixed methods we will consider and then show that for two-dimensional 
problems, the use of mixed methods cannot be expected to provide improved 
accuracy for problems with rough coefficients except in some special circum- 
stances. In ?5, we make some comments about the use of special finite element 
methods, i.e., finite element methods using special approximating functions that 
depend on the coefficients, in the context of mixed methods. 

In the course of our discussion, we shall also consider the relation ol mixed 
methods to generalized displacement methods and whether the use of the piece- 
wise harmonic average of the coefficients leads to improved accuracy (as com- 
pared to the use of the ordinary piecewise average) in the approximation of 
two-dimensional problems. 

For a comprehensive discussion of mixed finite element methods, the reader 
is advised to consult the book of Brezzi and Fortin [5]. 

2. PRELIMINARIES 

We shall consider in this paper the approximation of the model problem 

(2.1) -divAgradu=f inQ, 
(2.2) u=O onaQ, 

where Q is a bounded domain in R 2 and A = (aij(x, y)) is a symmetric 
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matrix with entries E L?? (Q) that satisfies 
2 2 2 

(2.3) 
v 2< E: aij (x , y)4jQj <! 

8E2, 
V(x, y) c , V8 R i2 

i=1 i,1j= i=l 

The class of mixed finite element formulations we shall consider are based 
on variational formulations of (2.1)-(2.2) that fit into the following abstract 
framework. Let V, W, and H be three real Hilbert spaces with norms 11 , 
11 lw, and 11 IIH, respectively, and assume V c H with 11TrlH < KjjTrjv for 
all T C V. Let a(., *) and b(., *) be continuous bilinear forms on H x H and 
V x W, respectively: 

a(a, T)1 ' IlaIllcIIHHTIlHH for all c, T c H, 
jb(o, u)j < Ilblllallvllullw for all a E V, u c W. 

We then consider the following variational problem: 
Problem P. Given f C W', find (a, u) c V x W satsifying 

(2.4) a(o, T) + b(T, u) = O for all T E V, 

(2.5) b(o, v) = f(v) for all v c W. 

In order to obtain a mixed finite element method for (2.4)-(2.5), we suppose 
we are given finite element spaces Vh c V and Wh c W, and then consider 
the following approximate problem: 

Problem P h. Find (OTh, Uh) C Vh X Wh satisfying 

a(cr,, T) + b(T, uh) = O for all T C Vh, 
b(ah, v) =-f(v)) for allv E Wh. 

As will be seen from the examples in the following sections, many standard 
mixed finite element methods for the approximation of (2.1)-(2.2) fit this frame- 
work. Although many of our results will be of a negative nature, there are some 
cases in which positive results for the approximation of problems with rough co- 
efficients can be obtained. In these cases, our error analysis will require several 
additional assumptions, which we now state. For all h, 

(2.6) Zh C Z, 

where 

Z = {r C V: b(T, v) - 0 for all v E WI, 

Zh =T E Vh: b(r, v) = 0 for all v E WJh}. 

There is a constant a > 0, independent of h, such that 

(2.7) a(T, T) > ?aiT11v 2 for all T C Zh. 

There is a constant ,B > 0, independent of h, such that for all v E WI, 

(2.8) sup b(T V) > l3llvllw. 
TcVh unTiv 

We note that if (2.8) holds (cf. [6, Proposition 1]), then there is an operator 
th: V -` Vh satisfying 

(2.9) b(T- 7rhT, V) = O for all T e V, v E Wh. 
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If in addition, (2.6) holds (cf. [6, Proposition 3]), then there is an operator 
Eh: W -` Wh satisfying 

(2.10) b(r, v-XhV)-0 for all T C Vh, v E W. 

The following abstract error estimates follow easily when all the above as- 
sumptions are valid. The results are special cases of a more general theory to 
be found in [5] and [6]. 

Theorem 2.1. If (a, u) and (Ch, Uh) are the solutions of Problems P and Ph, 
respectively, and hypotheses (2.6), (2.7), and (2.8) hold, then 

(2.11) Ila- ahIIH < (1 + lal l - 7thallH, 
Kjaj 

(2.12) IXhu-UhIIw, < lalII-ahIlH, 

where 7rh and Yh are any operators satisfying (2.9) and (2.10), respectively. 
Proof. It follows easily from the definitions that for all X E V h, 

a(7tha - ah, T) = a(7tha - a, T) + b(r, Uh -u), 

and letting T = 7h- ah, we get 

a(7ha - ah, 7(ha- ah) = a(7ha - a, 7(ha - ah) + b(7tha - ah, Uh - U). 

Also, 

b(Tha - ah, Uh - U) = b(rha a-h, Uh - hU) = b(a - ch, Uh - Ih) = 0, 

and so 
a(7ha - ah, 7ha -ah) = a(7tha - a, 7rha - ah). 

Estimate (2.1 1) now follows from (2.7) and the triangle inequality. To obtain 
the second result, we apply (2.8) to get 

13112h - UhjW ? upbI,r, Y-hU - Uh)I 
RIO u- Uh IIW < SUp 1ITIIV 

It again follows easily from the definitions and our assumptions that 

Jb(T, ZhU-Uh)I = Ib(T, u-Uh)I = Ia(ah -a, T)l ? IlaIla-ahlIH11TIIH. 

Estimate (2.12) now follows immediately. El 

Note that although (2.12) is a somewhat crude estimate for general problems, 
it will enable us to obtain error estimates for some special classes of problems 
with rough coefficients. Also observe that to obtain positive rates of convergence 
from this theorem, we will need to know that a is smoother than implied by 
inclusion in the function space H. 

Since smoothness of the solution will play a key role in our discussion of the 
effectiveness of mixed methods for the approximation of problems with rough 
coefficients, we shall frequently rely on the following theorem of Bernstein [4], 
[8, ?3.17] on the regularity of solutions of elliptic equations in nondivergence 
form in two dimensions. We now state this theorem, which will be used in ?4 
in our discussion of mixed methods. 
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Consider the problem 

(2.13) -al,(x, y) 02 u - 2a12(x, y)0 02 
- a22(x, y) 02U in Q, 

(2.14) u=O on9Q, 

where Q is a bounded, convex domain in 1R2 with a piecewise C2 boundary 
a&, and where the functions aij E L??(Q) satisfy 

2 2 2 

(2.15) Z 2 < S aij(x, Y)UiXj < V(X, y) E 2, VF E i, 
i=1 i,j=1 i=1 

with a2l = a12, and where v and ,u are positive constants. 

Theorem 2.2 (Bernstein). For each f E L2(Q), Problem (2.13)-(2.14) has a 
unique solution u E H2((Q) n Ho' (Q) . Furthermore, there is a constant C = 

C(v, /u), depending on IJ and ,u but independent of f, such that 

11U11H2(Q) ? CIfIL2(Q). 

Our hypothesis on Q is not identical to the one in [8]. To prove that the 
result is valid for a domain of the type we are considering, one can use the a 
priori estimates in [7, ?3.1]. The Bernstein Theorem says that nondivergence 
form equations have solutions in H2(Q) even though the coefficients are very 
rough. 

3. A SURVEY OF RESULTS FOR THE ONE-DIMENSIONAL PROBLEM 

In this section we discuss the application of mixed methods to the approxi- 
mate solution of the one-dimensional version of problem (2.1)-(2.2), namely 

(3.1) -(a(x)u'(x))' = f(x), 0 <X< 1, 
(3.2) u(0) = 0, u(1) = 0, 

where a(x) E L??(O, 1) and satisfies 0 < IJ < a(x) < ,u. 
We shall consider three variational formulations of (3.1)-(3.2) that fit the 

abstract framework of the previous section. These are: 
I. Find a E L2(O, 1), u E Ho(0, 1) satisfying 

-j aav'dx =-Jfvdx for all v E Ho'(0, 1), 
o ~ ~~~~~ 1 

]arTdx - au'Tdx -0 for all z E L2(0, 1). 

II. Find a E L2(0, 1), u E Ho'(0, 1) satisfying 

-jcrv'dx =-Jfvdx for all v E Ho'(0, 1), 

a tdx- u u'idx=0 forallTEL 2(O, 1). 
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III. Find a E H1 (0, 1), u E L2(0, 1) satisfying 
I1 I 

Jc'vdx=-j fvdx forallveL2(Q), 

J -dx + JuT' dx = O for all z E H1(0, 1). 

These are standard mixed formulations, which arise by introducing the new 
variable a = u' (in I) or a = au' (in II and III). 

We then consider certain simple natural finite element discretizations of these 
problems. Let h = {O = xo < xI < < xn = 1} be a mesh on I = [O, 1] 
satisfying xj - xj < h for j = 1, ..., n, and let Ij - (xj, xj) and hj= 

j- xj1. We discretize formulations I and II by choosing 

Vh= {T :T I, = constant for j= 1,..., n}, 

WVh={uEHO(O, 1):uII, =linearforj= 1,..., n}. 

This leads to the approximate problems: 
I h* Find ch E Vh, Uh E Wh satisfying 

achvl dx -jfv dx for all v E Wh, 

auhT dx- auhT dx-O forallze Vh. 

11 h. Find ch E Vh, Uh E Wh satisfying 

j hv dx fv dx for all v E Wh, 

1 cJh Tjdx - U T dx = forallzeVh. 

We discretize formulation III by choosing 

Vh - fT E H1(O, 1): T z, =linear for j - 1, ...,n}, 
Wh = {V E L2(0, 1): v I, =constant for j =1,...,n}. 

This leads to the approximate problem: 
III h. Find ch E Vh, u E Wh satisfying 

juhlvdx=- fvdx forallv E Wh, 

1 1 dx+ UhTI dx =O foralleE Vh. 

To analyze the approximation I h, we observe from the second equation that 

Uh = Uh 

Substituting ul for cJh in the first equation, we find that Uh E Wh satisfies 

(3.3) 1 auhv' dx - 1 fv dx for all v E Wh. 
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Thus, Uh is the usual Ritz approximation to u using continuous piecewise 
linear approximating functions. As mentioned in the Introduction, the Ritz 
method does not in general provide good approximations when a(x) is rough, 
and hence (Oh, Uh) is not a good approximation to (v, u). We will comment 
further on this point below. For later use, let us note that (3-3) can be written 
as 1 ahzVI dx = fv dx for all v E Wh, 

where ah(x) is the piecewise average of a(x), i.e., 

ah h -h71 jadx. 

To analyze approximation IIh, we may use Theorem 2.1 with V H = 

L2(Q), W = HIlQ) 

a(o , ) i=j / dx, b(a, v) -jcrv'dx, 

and Vh and Wh as defined above. We obtain 

(3.4) II- (hI1L2(0, 1) < (V, )11( - 7rhOIL2(o, 1), 

(3.5) Ehu - Uh)Y'L2(0,1) ? C(V, U)11Ho - 0h1L2(0, 1), 

where v and It are the lower and upper bounds for a(x) . The key ingredients 
in the application of Theorem 2.1 are to show that Zh = Z is the set of global 
constants and that (2.7) and (2.8) are satisfied. We also see that we may take 
7rh to be the L2 projection and 2h to be the piecewise linear interpolant. 

Recall that a = au', so a' - -f, showing that a is smoother than implied 
by a E H= L2(Q) . Thus, from (3.4) we have 

(3.6) 1- Oh 11L2(o, 1) < C(v, du)h11f1L2(O, 1). 

Since u 0 H2(0, 1) we cannot use the triangle inequality, (3.5), and (3.6) to 
get an 0(h) estimate for H1U - Uh IIHI(O, 1) . However, since 

IlyhU - Uh11L2(0, 1) ? CI(hU - Uh)YI1L2(0, 1), 

it easily follows from the triangle inequality and (3.6) that 

(3.7) Iu- Uh11L2(0,1) ? C(v, /)h11fHL2(0, 1). 

Estimates (3.6) and (3.7) show that method Ilh is accurate and robust for one- 
dimensional problems with rough coefficients. 

By eliminating ch from Problem Ih , we saw that Uh was the Ritz approxi- 
mation to u and ch = Uh . In a similar way, we can eliminate ch from Problem 
1I h . Using the second equation, we find that 

Ch h (hj IJa(x)) 
and substituting this in the first equation, we find that Uh E Wh satisfies 

31 1 

(3.8) J| ahuhv' dx= ] fVdx for all v E Wh, 
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where ah(x) is the piecewise harmonic average of a(x), i.e., 

ah h(Jj a(X)) 

Problem (3.8) is called a Generalized Displacement Method (for the determi- 
nation of Uh ) (cf. [2]). 

As mentioned above, we will now comment further on the fact that the Ritz 
approximation is inaccurate. Let N be a large even integer and suppose 

2, k < X < , k 1, 3, ...,N- 1, 
\,kNI < X < k k =2, 4, .. N, 

and consider Problem (3.1)-(3.2) with this a(x). Let (Uh, Uh) be the approx- 
imate solution defined by Problem IIh and temporarily let (6h, Uh) be the 
approximate solution defined by Problem I h . We know that Uh is character- 
ized by (3.8) and ch = ahUh, and that Uh is characterized by (3.3) (and is thus 
the Ritz approximation to u ) and Th = U . Suppose h is an even multiple 
of N-1. Then ah(x) = 3/2 and ah(x) = 4/3. Thus Uh is also the Ritz 
approximation to the problem: 

-2 w =f, O<x < 1, w(O) = 0, wb(l) =0, 

and Uh is the Ritz approximation to the problem 

4w = f, 0 < x < 1, w(O) = O, w(l) =O. 

Now we know from (3.7) that Uh is a very accurate approximation to u, and 
from standard error estimates for the Ritz method that Uh is a very accurate ap- 
proximation to w and that u is a very accurate approximation to wi . However, 
it is easy to see that w is not close to wi (since they solve different differential 
equations). Hence, we conclude that -h is not a good approximation to u. In 
fact Uh stays away from u (and close to w ) as long as h is an even multiple of 
N-1 . As soon as h is a fraction of N-1 (i.e., h = N-lk-I, k = 1, 2, ... ), 
the Ritz approximation Uh gets close to u. However, if N is very large, we 
may not be able to take h as small as N-I in practical computations. 

To analyze the approximation Illh, we may again apply Theorem 2.1, ob- 
taining 

11 - ah1L2(0 1) < C(V, J)h11f1HL2(0 1)' 

IU - Uh11L2(0,1) < C(v, u)h11f1HL2(o 1). 

Standard inverse estimates then imply for quasi-uniform meshes that 

11- Oh11HH(O, 1) < C(v, 1)H1f1HL2(0, 1) 

The key ingredients in the proof are again to show that Zh = Z is the set 
of global constants, and that we may now take 7rh to be the piecewise linear 
interpolant and Xh to be the L2 projection. Once again, hypotheses (2.7) and 
(2.8) are easily verified. 
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4. TWO-DIMENSIONAL RESULTS 

We begin this section by considering a variational formulation of Problem 
(2.1)-(2.2) that is the two-dimensional analogue of formulation I of ?3, and 
which arises by letting a = grad u . 

I. Find a E L2(Q?), u E Hi (Q) satisfying 

- Aca gradv dxdy= fv dx dy for all v c Ho (Q), 

JAc* Tdxdy-| Agradu*rTdxdy=O foralITEL2(Q). 

To obtain a simple finite element discretization, we let _, 0 < h < 1 , be a 
triangulation of Q with triangles T of diameter less than or equal to h, and 
assume that {3h} satisfies the minimal-angle condition. We then discretize 
Problem I according to the framework described in ?2 by choosing 

Vh = {'r c L2(Q2): IT = constant for all T c h}, 

Wh {v Ho (Q): u IT = linear for all T E h}. 

This leads to the approximate problem: 
I h * Find ah C Vh, Uh E Wh satisfying 

- jAah gradv dx dy = - fv dx dy for all v c Wh, 

jA(h * T dx dy-j A grad Uh * T dx dy = 0 for all T c Vh. 

As in the one-dimensional case, we immediately see that Uh c Wh satisfies 

JAh grad uh * grad v dx dy = Jfv dx dy for all v E Wh, 

and 
ah = grad Uh, 

where Ah is the piecewise average of A, i.e., 

Ah IT = IT Adxdy for all T c h. 

Thus, Uh is the usual Ritz approximation to u based on continuous, piecewise 
linear approximating functions. 

As mentioned above, and as elaborated on for the one-dimensional case in 
?3, the Ritz method does not in general provide good approximations to prob- 
lems with rough coefficients. Thus, method I h cannot generally be expected to 
provide good approximations for problems with rough coeficients. However, 
this does not mean that it works poorly on all problems with rough coefficients. 

To see this, consider the application of method I h to the boundary value 
problem 

(4. 1) - a11(y) 0-2a12a2 - a22(x)0 = f in 02 _ (0, 1) x (0, 1), 

(4.2) u=O onOaQ, 
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where all depends only on y, a12 is constant, a22 depends only on x, and 
aij satisfies (2.3) (or (2.15)). Although the equation (4.1) is in nondivergence 
form (so we can apply the Bernstein Theorem), in this special case it can also 
be written in the divergence form of equation (2.1). Hence, method I h and the 
Ritz method, are applicable. Using the Bernstein result and the usual analysis 
of the Ritz method, we find that 

(4.3) |U- UhH1L2(Q) + hllu -UhIIHH(Q) < Ch2H f 1L2(Q), 

where C depends only on v and ,u in (2.3). In the context of the mixed 
method lh, (4.3) becomes 

IIU - UhIIH1(Q) + Ila - ahlL2(Q) < ChllfIIL2(Q). 

Hence, we have an example of a mixed method that provides accurate approx- 
imations for some problems with rough coefficients, but not others. Of course, 
our mixed method is equivalent to a displacement method that provides similar 
approximations. 

Next, consider the two-dimensional analogue of formulation II of ?3, which 
arises by letting a = A grad u . 

II. Find a E L2( Q), u E Ho'() satisfying 

-Ja gradv dxddy =- fvdxdy for all v E Ho'(), 

jA-la Tdxdyxjgradu.-rdxdy = O for all x E L2(i). 

Choosing Vh and Wh as in method Ih leads to the approximate problem: 
II h* Find ah E Vh, Uh E Wh satisfying 

jah * grad v dx dy =- fv dx dy for all v E Wh, 

JAlch * Tdxdy j graduh * .dxdy = O for all T E Vh. 

In ? 3, we saw that this method is accurate and robust for problems with rough 
coefficients in one dimension. We will now see that the situation is very different 
in the two-dimensional case. We first note that, as in the one-dimensional case, 
Uh E Wh satisfies 

(4.4) JAh grad Uh . grad v dx dy = fv dx dy for all v c Wh, 

and 
ah = Ah grad Uh, 

where Ah is the piecewise harmonic average of A, i.e., 

AhIT A-'=dxdy) for all TeSh. 

As mentioned in ?3, (4.4) is referred to as a Generalized Displacement Method. 
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Consider the application of method Ilh to the boundary value problem 

(4.5) -0 (a(x) ) - ya(x)t ) ==f in Q_ (O, 1) x (O, 1), 
(4.6) u=O on&AQ, 

where a = a(x) is a function of x only. In variational formulation II, a = 
Agradu, so in the case of (4.5), we see that a = a(x)gradu. We now show 
that a cannot be smooth if a(x) is rough. 

Toward this end, we introduce the change of variables 

xj X | ds, y = y. 

If we set u(x, y) = u(x, y), the boundary value problem (4.5)-(4.6) becomes 

(4.7) j7_ _-a2 __2=af inQ, 

(4.8) u=O on &Q, 

where Q = (0, f0 a-Ids) x (0, 1). Since (4.7) is in nondivergence form, it 
follows from the Bernstein result that u(x, y) E H2(Q) and hence that u- - 

aux, uy = uy E HI((Q). Thus, auy and hence a = (aux, auy) cannot be 
smooth. A specific example illustrating this is obtained by letting 

f(x,Y)=- y(y-1)-2a(x)j; [jud -jxds1 

With this f, 

a [ a L a] 

and we see that 

a = agradu = ([j? a-2j?? jY(1 Y) 

a(x) j s [j(ds j] - 2y) 

In particular, a2 cannot be smooth if a(x) is rough. 
The importance of showing that a is not smooth is that this implies that 

it cannot be accurately approximated by piecewise constant functions. Hence, 
Ila - ahllL2((Q) cannot have a good rate of convergence. Since the difference 
between this approximation scheme and the previous one amounts to the re- 
placement of the piecewise average of the coefficient by the piecewise harmonic 
average, we also see that unlike the situation in one dimension, the use of the 
harmonic average in two dimensions is not sufficient to give accurate and robust 
approximations to problems with rough coefficients. 

We now turn to a two-dimensional analogue of formulation III of ?3. 
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III. Find as E H(div, Q), u E L2(Q) satisfying 

jdivavdxdy=-jfvdxdy forallv eL2(Q), 

jA-'o - rdxdy + Xj udiv Tdxdy - 0 for all T E H(div, Q). 

Choosing Vh to be the space of lowest-order Raviart-Thomas elements and 
Wh to be the space of piecewise constants, we obtain method Illh. First we 
apply method Illh to Problem (4.5)-(4.6). We have (as in formulation II) 
a = A grad u = a(x) grad u, and we have seen that a is not smooth if a(x) is 
rough. Since we will be approximating a by a special type of discontinuous 
linear element, and this works well only if a is smooth, ah again cannot be 
expected to be an accurate approximation to a. 

It is also of interest to consider the boundary value problem 

-,0 2-a(x),2- in.Q, 

u= O onY.Q, 

which is a special case of (4.1)-(4.2). From the Bernstein result, we see that u E 
H2(Q) and hence uy E HI (Q) . Thus, on the one hand the Ritz method works 
well, while on the other hand, since a(x) is rough, a = A grad u = (us, a(x)uy) 
cannot be smooth. In particular, a = A grad u ? H1 (Q) . A specific example 
illustrating this is obtained by letting 

f =2y(1- y) +2xa(x)(1 -x), Q= (O, l)x (O, 1). 
With this f, we have u(x, y) = xy(I - x)(I - y) . Thus, 

cy = (--, aa = ((2x - I)y(y - 1), a(x)(2y - I)x(x - 1)), 

and we see that a2 - a(x)(2y - I)x(x - 1) is clearly not smooth. Thus, we 
cannot approximate a to order h by any element in the subspace, and hence 
ah cannot be an order-h approximation to a. Thus we have a problem for 
which a standard mixed method produces a worse approximation to the "stress" 
variable a than the approximation obtained by the Ritz method by forming 
A grad Uh . 

Despite these negative results, there is a situation in two dimensions in which 
some mixed methods work well, and that is when a = A grad u is a smoother 
variable than might be expected, i.e., when u E HI (Q), u , H2(Q), but 
a E H1(Q). In this case, we can approximate the boundary value problem 
(2.1)-(2.2) by method IIIh, using the lowest-order Raviart-Thomas elements, 
and use Theorem 2.1 to derive the error estimates 

Il ahlIL2(Q) < ChIlaIIHI(Q) 

IU- UhIL2(Q) < Ch (HIUIIHI(Q) + llallHI(Q)) 

Note that for this method, it is well known that all our hypotheses are valid. 
We have already seen how a special regularity result of this type occurs in a 

one-dimensional problem, and it is not difficult to extend examples of this type 
to boundary value problems, which although formally two-dimensional, have a 
coefficient and a solution that depends only on a single variable. For example, 
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consider the boundary value problem 

at3 (a(x)t3 )a - a (a(x)3 
au 

=f(x) in Q- (0, 1) x (0, 1), 

u(0,y)=u(l,y)=0, O<y< 1, 

au(x, 0) = au O <x< 1. 

Since a = a(x) and f = f(x) are functions of x only, u is also a function 
only of x and satisfies the boundary value problem (3.1)-(3.2). Hence, the one- 
dimensional regularity results apply and the variable a = (aux, auy) = (aux, 0) 
will be smooth. 

A somewhat more interesting class of examples can be constructed in the 
following way. Consider the boundary value problem (2.1)-(2.2), where Q is 
convex and A = aI. Let t be the solution of 

-At = f in Q, t = 0 on aQ. 

By standard regularity results, if f E L2(Q2), then t E H2(Q). Denote by 
T_ and T+ the minimum and maximum values of t over Q2. Let +$(t) E 

W1'??(T_, T+) and satisfy q(0) = 0, X'(t) > k > 0. For example, if 
(T_ + T+)/2 > 0, set 

It T_ < t < (T_ + T+)/2 
t 2t-(T_ + T+)/2 (T_ + T+)/2 < t < T+. 

Setting 
u(x, y) = (t(x, y)), a(x, y) = 1/'(t(x, y)), 

we observe that a E L??(Q), u solves the boundary value problem (2.1)-(2.2), 
u E H1(Q), and u 0 H2(Q), but a =_ agradu = gradt E H1(Q). A simple 
special case in which all quantities can be made explicit is when Q is the unit 
disk and fE4 . Then t(x, y) = x - X2 y2, 1T_ = 0, and T+ = I . Note that 
examples of this type are quite special, with a strong connection between the 
coefficient a and the right-hand side f. 

A third example for which we can prove a regularity result of this type is 
obtained if we consider (2.1)-(2.2) and assume Q = (0, 1) x (0, 1) and A is a 
diagonal matrix with All = a1 (x) and A22 = a22(y) . We are thus considering 
the boundary value problem 

(4.9) - (al (x) ) -+ (a22(Ya) = f in Q, 

(4.10) u =0 on AI. 

If we introduce the change of variables 

(4.11) x= ds, Y dt 

and set u(x, y) = u(x, y), then (4.9)-(4.10) becomes 

(4.12) -in Q, (4.1_3 - = )0 2n =Q 

(4.13) au=0 on&QC, 
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where Q2 = (0, Ic, a-l' ds) x (0, fI a-'J dt). Since (4.12)-(4.13) is in nondiver- 
gence form, it follows directly from the Bernstein theorem that u c H2(Q). 
Hence, 

a-Agradu- (ali(x)j-,2()g =( E H'(Q), 

and we have the desired regularity result. 
We have shown that except in very special situations, Method IIIh does 

not provide accurate approximations to a. It is of interest to ask whether it 
provides accurate approximations to u. We will end this section by giving a 
negative answer to this question by comparing U - Uh I L2(Q) and 1la - Ch121 L2(Q) 
Let g E L2(Q) , let (yg, wg) E V x W be the solution of Problem P with right- 
hand side - fQ gv dxdy, and let (Ygh, Wgh) be the solution of P h with this 
right-hand side. Then from the definitions of Problems P and P h and of Eh 
we obtain 

(Uh - u)g dxdy = b(yg, U -Uh) 

= b(yg - Ygh, U - Uh) + b(Ygh, U - Uh) 

= b(yg -Ygh, U - thU) + a(ah - a, Ygh) 

b(yg - Ygh, U - XhU) + a(ah - a, Ygh - Yg) + a(ah - 0, yg) 

(4.14) =b(yg - Ygh, u-Xhu) + a(ah-a, Ygh-Yg) + b(-ah, wg) 

-a(ah -a, Ygh - Yg) + b(yg, U - XhU) + b(a - ah, Wg - hWg) 

-a(ah - , Ygh - Yg) + b(yg, U - ZhU) + b(a, Wg -XhWg) 

= a(ah - Ygh - Yg) - g(u-Ehu) dxdy 

- j f(wg - ZhWg) dxdy. 

Letting g = f in (4.14), we have 

(Uh - u)f dxdy = a(h -,r - a) - 2 f(u - hu) dxdy 

> _- uIIL2() -2 Jf(U -Zhu) dxdy 

Since E,h can be taken to be the L2(0)-projection onto Wh, we have 

(Uh - u)f dxdy > VIIoh _ |I L2(2)- ChIIUIIH (Q)IIfIIL2(Q). 

Thus, 

(4.15) hlUh - UI1L2(Q) > f(Uh - u)f dxdy VI Lh - ChIIuIIH,(2) 

For the case of a rough coefficient, in which we do not expect a to have much 
regularity beyond L2(Q), the inequality (4.15) essentially implies that the error 
hluh - U1IL2(Q) cannot be smaller than the square of the error hlurh - iIIL2(Q) . In 
particular, in the case when ah coniverges to r, but not with any positive rate 
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of convergence, then Uh will converge to u, but (4.15) implies that this also 
will not occur with any positive rate of convergence. On the other hand, one 
can show that Iju - UhIIL2(Q) is essentially no bigger than o(I Ia - Ohl L2(K)) . 

5. COMMENTS ON SPECIAL FINITE ELEMENT METHODS 

Another approach to developing finite element methods that work well for 
problems with rough coefficients is to use special approximating functions- 
referred to as special elements-that depend on the coefficients. This idea is 
most easily illustrated by considering the approximation of the one-dimensional 
boundary value problem (3.1)-(3.2). For this problem, it was shown in [2] that 
the method defined by: 

Find ih E Wh _{v E H'(O, 1): II, cE span [1, a1(s)ds], j=1,...,n} 
satisfying 

(5.1) ]aii' 'dx ] fvdx forallv) E Wh, 

is accurate and robust. Here, the variational formulation is the usual displace- 
ment formulation, but the approximating functions are linear combinations of 
1 and fa-' ds. 

One way to motivate the special element method (5.1) is by an appropriate 
change of variables. If we let x = fx a-I ds and set u(x) = u(x), the boundary 
value problem (3.1)-(3.2) is transformed to 

(5.2) -u"(x) = a(x)f(x), 0 < x < d, u(O) = u(d) = 0, 

where d = jI a- ds . The solution u of (5.2) is in H2(0, d), and thus the Ritz 
method using piecewise linear approximating functions gives a good approxi- 
mation. Transforming back to the x-variable, we are led to the special element 
method (5.1). Note that the mesh {xj} on [0, 1] is obtained by transform- 
ing the mesh {x;} on [0, d], and that the mesh parameters h and h satisfy 
,u- I h < h < v'- I h, where v and ,u are lower and upper bounds on a(x) . For 
the remainder of this section, we will suppress the bar on h. 

It is also possible to apply the technique of constructing special elements via a 
change of variables in the context of mixed methods. To illustrate this, we again 
consider (3.1)-(3.2) and its transformed version (5.2). Since a E H2(O, d), a 
good mixed method for (5.2) is I h. For (5.2), the variational formulation I is: 

Find a c L2(0, d), Ho' (O, d)) satisfying 
d d 

(5.3) -j a v'dx= A afvdx forallv E Ho'(, d), 

rd rd 

(5.4) J Cdx - J f -Idx o 0 for all r E L2(0, d). 

Method Ih is obtained from I by approximating a by piecewise linears and 
a = du/dx by piecewise constants. The result of transforming I h is: 

Find 6rh E Vh space of piecewise constants, Uh E Wh satisfying 
1 rl~~~~~~~~~~~~ 

(5.5) -j&hv'dx - fjfdx forall ) vE Jh, 

(5.6) j a -'h dx- j f4zdx 0 for all z E Vh. 
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This is a special element mixed method, and it is equivalent to the special 
element displacement method (5.1). Specifically, the functions Uh produced by 
the two methods are identical and 

ah(X) -h(X) dUh(x)/dx = a(x)dfih(x)/dx. 

To see this, observe that the Ritz method applied to (5.2) is equivalent to method 
Ih applied to (5.3)-(5.4) and then use the change of variables. 

We next show that (5.5)-(5.6) is closely related to method 1 h, a standard 
method using ordinary elements, which was shown in ?3 to be accurate for 
problems with rough coefficents. To see this, we first note that 

jUhiV dXj =ha h(V )dx, j 
r =dx =j(h) dx, 

where (vb), denotes the piecewise linear interpolant of v. If we use these 
relations and replace fgl fv dx by f fQ(v), dx (the latter expression can be 
viewed as an approximation of the former one) in (5.5), (5.6), we obtain lh . 

Now "h turns out to be equivalent to the following modification of the 
special element method (5.1) (first analyzed in [2]): 

Find Wh E Wh satisfying 

(5.7) JatVi dx= J f(5)idx forallvE Wh. 

Specifically, if (Uh, Uh) is the solution of Ilh then Uh = wd and Uh = (hh)I 
To see this, suppose (Uh, Uh) is the solution of 11h and define Zh to be the 
Wh-interpolant of Uh. (Note this implies that Uh = (2h)I.) Then from the 
second equation inll h, we obtain 

J al(uh- a2)T dx = 0 
o~~~~~ 

for all piecewise constant T, which, together with the fact that a2' is a piece- 
wise constant, implies 6rh = a2' . Substituting a2' for crh in the first equation 
in l h, we get 

J a2zf5 dx a2= (v)' dx f(i5)j dx for all vJE Wh. 

From the uniqueness of the solution of (5.7), we conclude that Zh = Wh, and 
hence that uTh = ati and Uh = (dwh)I 

We next consider the use of special elements for the two-dimensional model 
problem (4.9)-(4. 10). A special finite element method for this problem can be 
obtained by making the change of variable (4.1 1). This leads to the boundary 
value problem (4.12)-(4.13) for u(x, y) = u(x, y). Since u E H2(Q), the 
usual Ritz method (applied in the bar variables) gives optimal results. Apply- 
ing this method and transforming the equations back to the original variables, 
one obtains a displacement method using special elements derived from piece- 
wise linear elements using the transformation u(x, y) = u(x, y). The special 
elements are now piecewise linear combinations of 

(5.8) 1, [X ds a2 ds. 
a, I ~~~~(s) 2(S 
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Note that the triangulation of Q is by curvilinear triangles obtained by trans- 
forming a triangulation of Q2 by ordinary triangles. For a further discussion of 
special element displacement methods, see Babuska, Caloz, and Osborn [1] and 
Babuska and Osborn [3]. 

As noted above for one-dimensional problems, one can apply the technique 
of constructing special element methods via a change of variables in the context 
of mixed methods. To illustrate this for two-dimensional problems, we again 
consider (4.9)-(4.10) and its transformed version (4.12)-(4.13). Since u E 
H2(Q2), a good mixed method for (4.12)-(4.13) is Ih. For this problem, the 
variational formulation I is: 

Find a e L2(Q), u C Ho() satisfying 

(5.9) - JB * grad v dx dy = - |afv dx d for allv E H(Q), 
Q~~~~~~~~~~~ Q 

(5.10) JB& * t dx dy - B grad u * t dx dy = 0 for all e L(Q) 

where 

- ( 
a, Iy OX 

) 

Method I h is obtained from I by approximating u by piecewise linears and 
a = (au, ua) by piecewise constants. 

Now both I and I h can be transformed back to the (x, y)-variables. Problem 
I, i.e., (5.9)-(5.10) becomes: 

Find r E L2(Q), u E Ho'(Q) satisfying 

(5.11) Ja| gradvdxdy =Jfv dx dy for all v e H ) 

(5.12) JA-la .rdxdy- Xgradu.*dxdy =0 forall T 2 
() 

where 

A= Ka, I(x) 0 
A-(al1V x) a22(y)) 

Note that (5.11)-(5.12) is mixed formulation II applied to equations (4.9)- 
(4.10). The result of transforming 1h amounts to approximating u and a in 
(5.11)-(5.12) by the elements (5.8) and piecewise constant functions, respec- 
tively. Using the equivalence of problems (5.11)-(5.12) with (5.9)-(5.10) and 
of (5.9)-(5.10) with (4.12)-(4.13), we immediately obtain the error estimate 

IIU - UhIIHI(Q) + Ia - ahIIL2(Q) ? ChIIfIIL2(Q), 

where C again depends only on the lower and upper bounds for a1 (x) and 
a22(y) . 

For the one-dimensional problem, we saw that there was an equivalence be- 
tween a modified special element displacement method and a standard mixed 
method. A reasonable question to ask is whether a similar equivalence holds in 
two dimensions. To answer this, first recall that method I h applied to the trans- 
formed problem (4.12)-(4.13) is equivalent to the usual Ritz method applied to 
that problem. Transforming the Ritz method back to the original variables gives 
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the special element displacement method described previously. Hence, this spe- 
cial element method is equivalent to the special element mixed method based 
on mixed formulation II described above. Specifically, the functions Uh pro- 
duced by the two methods are identical and Uh = A gradUh . However, unlike 
the one-dimensional case, there is no simple way to replace the special elements 
by ordinary elements to produce a standard mixed method. In particular, it is 
no longer possible to introduce a piecewise linear function Zh such that 

J grad(zh - Uh) * r dx = 0 for all piecewise constant r. 

We remark that it is also possible to formulate accurate special element meth- 
ods that use ordinary rather than curvilinear triangles. In particular, if we 
discretize (5.11)-(5.12) using ordinary triangles, approximate u by special el- 
ements, approximate a by piecewise constants, and use piecewise linears and 
piecewise constants for v and x, respectively, we get a special element mixed 
method that is accurate for problems with rough coefficients. This method is 
equivalent to a special element displacement method known to be accurate for 
problems with rough coefficients (cf. [1] and [3]). Note that both of these 
methods use different test and trial functions. 

It is also illuminating to consider a similar technique applied to the approx- 
imation of the boundary value problem (4.5)-(4.6), i.e., 

+ (a(x) ) - a (a(x) a) =f in Q, u = O on aQ, 
where a = a(x) is a function of x only. To obtain a good approximation 
scheme for this problem, we make the change of variables 

xjX|l-ds, y=y, 
Joa 

and obtain for u(x, y) = u(x, y) the boundary value problem 

- -a2 o)=f in Q, a = O on af, 

where Q = (0, j a-l ds) x (0, 1). Since by the Bernstein result, u E H2(Q), 
we again apply the Ritz method (in the bar variables) and then transform the 
equations back to the original variables. We thus obtain a displacement method 
whose special elements are now linear combinations of 1, f a-1 ds, and y. 
In the context of mixed methods, we have 

/9a &i~ (au &9uN 
(,x , a) y _(x, y) =_ c(x, y) - aaxU , )a . 

Because a E H2(Q2), we see that cT E H1 (). Thus, the smooth vector vari- 
able for the boundary value problem (4.5)-(4.6) is the vector a = (aux, uy). 
Again, a good mixed method for this problem is method Ih, for which the 
corresponding variational formulation I is: 

Find E L2(Q), uEH() satisfying 

- fAs grad v dxd y afv dxdy for all v E Ho (Q), 

JA . -tdxdy - JAgrad- tdxdy=O foralltEL 2(Q) 
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where 

A = 0 a, ) 
Transforming back to the (x, y) variables, we obtain the variational problem: 

Find af E L2(Q), u E HJO () satisfying 

(5.13) J(? ?)a.gradvdxdy= fvdxdy forallvEHoj(Q), 

(5.14) j(a? a)-T dxdy J( )gradu rdxdy = O 

for all T E L2(Q). 

The result of transforming I h leads to approximation of a- by piecewise con- 
stants and of u by the special elements used in the special element displacement 
method derived above for this problem. Although it is clear from the derivation 
that the special element displacement and mixed methods are equivalent, it is 
interesting to note that (5.13)-(5.14) is a mixed formulation of the boundary 
value problem that we have not previously considered, since the new variable 
introduced is a = (aux, uy). If one views the development of a good finite 
element method for problems with rough coefficients as the search for an ap- 
propriate variational principle combined with a good choice of approximating 
functions, then this mixed method indicates that a wide variety of mixed vari- 
ational principles may prove useful. 
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