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SINC-COLLOCATION METHOD WITH ORTHOGONALIZATION 
FOR SINGULAR POISSON-LIKE PROBLEMS 

GUANGYAN YIN 

ABSTRACT. This paper uses the Sinc-collocation method to solve singular 
Poisson-like problems (a first- or higher-order partial derivative of the exact so- 
lution is unbounded on the boundary). A linear system is obtained which is the 
same as that obtained by using the Sinc-Galerkin method. With a smart choice 
of the stepsize and the number of the gridpoints, the orthogonalization tech- 
nique is successfully applied to solve the linear system obtained, and a numer- 
ical approximation is obtained with an exponential accuracy O(exp(-cN7)), 
where N is a truncation parameter and c is a constant independent of N. 

1. INTRODUCTION 

We first consider the two-dimensional Poisson problem (PP): 

(1.1) 02U 02U f(x,y) (x, y) Q, 
ul,Q = 0, 

where the domain Q _ (al, b1) x (a2, b2), and where the first- or higher-order 
partial derivative of the exact solution is unbounded on the boundary. The stan- 
dard finite difference or finite element method will experience some difficulties 
with the above singular PP [12]. To overcome the difficulties, Stenger [9, 10] 
and Lund et al. [3, 4] used the Sinc-Galerkin method to solve PP by finding the 
inverse of the matrix associated with the Sylvester equation, and thus obtained 
the numerical solutions with an accuracy of exponential order O(exp(-cN2)) . 

In this paper, we use the Sinc-collocation method with the orthogonalization 
technique to establish a scheme to solve PP and obtain a numerical solution 
with an accuracy of the same exponential order O(exp(-cN2)) . 

In ?2 we review some basic facts about the Sinc approximation and derive 
useful Sinc-collocation formulas in two dimensions. 

In ?3 we apply the Sinc-collocation method for PP to construct a numerical 
scheme and obtain the Sylvester equation, which is the same as that obtained by 
using an entirely different procedure (the Sinc-Galerkin method) [4]. Then we 
prove that if a smart choice is made of the stepsize and the gridpoint number, 
the Sylvester equation can be solved by an orthogonalization technique, which 
permits a significant reduction in both storage and computation compared with 
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what would be required by traditional methods. Some numerical results are 
given in the same section. 

In ?4 we consider a Poisson-like problem: 

I 0 4 + a = f(x, y), (x, y) E Q _ (al, bl) x (a2, b2), 

Ulan = uxlan = uyl,i = 0, 

and prove that this kind of problem can also be solved by the same technique 
described in ?3. Some numerical examples are also given in this section. 

2. SINC APPROXIMATION 

2. 1. Notation and background. The goal of this section is to recall notation and 
definitions of the Sinc function, state some known results, and derive useful 
formulas that are important for this paper. 

First we denote the set of all integers, the set of all real numbers, and the set 
of all complex numbers by Z, R, and C, respectively. 

Nota ion 2.1. (1) sinc(z) = sin(7z)/zz, z E Z. 
Note that I sinc(x)l < 1 for any x E R. 
(2) S(n, h)(z) =sinc((z - nh)/h), z EC, h > O. 
(3) C(f, h, x) = Z?=-f(kh)S(k, h)(x), h > 0. 
Here, C(f, h, x) is called the Whittaker cardinal function of f(x) when- 

ever this series converges. 
(4) CN(f, h, x) = ENk= Nf(kh)S(k, h)(x). 

Definition 2.1. Let d > 0, and let _2rd denote the region {z = x + iy: IyI < d} 
in the complex plane, and X the conformal map of a simply connected domain 
9 in the complex plane onto Qd such that 0(a) = -oo and 0 (b) = oo, where 
a and b are boundary points of 0, i.e., a, b E aO. Let y, denote the 
inverse map of b, and let the arc 7, with endpoints a and b (a, b , F), 
be given by F = Vg(-oo, oc). For h > 0, let the points Xk on F be given by 
Xk = y(kh), k E Z. 

For example, if the finite interval is (a, b), take 

q(x) =ln X a 

and 

a + bew a + bekh 

(2.1) V/(w)= -Xk 1+ekh 

Definition 2.2. Let B(s) denote the family of all functions f that are analytic 
in 0 such that for x real, 

I( lf(z) dzl 0 (x -, o), W(x+L) 

where L = {iy: -d < y < d}, and such that 

) c fi ) = lim JC If(z) dzI < oo, 

where C is a simple closed contour in S . 
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The following important theorems were proved by Stenger [7]. 

Theorem 2.1. If f E B(?2r), then 

|f(x) - C(f, h, x)lI00 < 27d sinh(7rd/h) - 7rd 

provided h < 27,d/ ln 2. 

Theorem 2.2. Let f E B(?), and let f satisfy lf(x)I < Ce-aixi for all x E R, 
where C and a are positive constants. Then, by choosing h = ad/aN < 
27,d/ ln 2, we have 

(2.2) itf(x) - CN(f, h, x)lt00 < C1VNKexp (- idaN), 

where C1 is a constant depending only on f and a. 

If x is on the curve F, we obtain the following theorem by introducing the 
conformal map X . 

Theorem 2.3. Let q'f E B(O). Then 

f(x) - Z f(xk)S(k, h) o Xb(x) < 2cd sinh(7d/h) 

(2.3) k=-oo 
2r ih7dh 

< "'Xd ) e-nd/h, X E F. 

Moreover, if If(x)I < Ce-ak0(x)I, x E F, for some positive constants C and a, 
and if the selection h = Vn/aN < 27rd/1 n 2 is made in (2.3), then 

N 

f(x)- E f(xk)S(k,h)oq$(x) <C2 Nexp(- -da), x E F, 

k=-N 

where C2 depends only on f, d and a. 

2.2. Approximation of derivatives on F. As indicated by Stenger in [9], the 
formula (2.3) is got useful for accurately approximating derivatives of f on 
F, except on R, since the terms q'S(k, h) o X are unbounded on F. Hence, 
a "nullifier" function g is introduced to get a formula for approximating f(m) 
on F. 

Let g be an analytic function defined on 0, and for k E Z set 

(2.4) Sk(z)=g(z)sinc [q$() kh 1g(z)S(k,h)oq$(z), ze 0. 

The following theorem has been established in [5]. Since part of the proof 
of this theorem will be used later, the proof is included here. 

Theorem 2.4. Let m be a nonnegative integer, and let Ob'f/g E B(s) . Let there 

exist positive constants a, C2 depending only on m, d, and g, a constant C1 
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depending only on m and g, and a constant Co depending only on g and f, 
such that 

(2.5) f(x) < Coe-aI(x)l x e F, 
g (x) 

(2.6) (\c) Sk(x) < Clh-n Vx e F, n=O,1,... , m, 

d n g(x) sin[7fo(x)/h] 
(2.7) dx J (z) - q$(x) f 

< C2h-n Vx : IF, z c: 0-1, n = O, 1, M..m 

Then there exists a constant K depending only on m, d, a, g, and f such 
that if h = rd/aN, then 

f(n)(x) - f3 f(x ]Sn)(x) < KN 2 exp(-V7rdaN) 

for all x e F, andfor n = O, 1, ..,m, where q (xj) = jh. 

Proof It is easy to show from the residual theorem that if q'f/g E B(2), then 
for each x E F, 

f(x)- E fg(x Sj(x)=f(x)- S g( g)g(x)S(j,h)o#(x) 

g(x) sin[7q$(x)/h] J [f(z)q$'(z)/g(z)] d z 
27r i Ja,[O(z) - O (x)] sin[7ro(z)/h]' 

Differentiating both sides of (2.8) n times with respect to x, using (2.7), and 
noting that JQ$O(z)j = d for all z E 02 so that Isin[7q$(z)/h]j > sinh(7rd/h), 
we find that 

f(n)(x)- f(x i)S(n)(x) 
j=.0g(x1)J 

d n g(x) sin[7q$(x)/h] f (z)q$'(z)/g(z) 
(2.9) 

< 
27 d x O(z) -( O sin[7(z)/h]d 

C2n j f(z) b' (z)d 
<27 sinh(7Td/h) g(z) 

d 

< 2C2hn e-7d/h 
f (z) $ (z) dz 

since 1i d < -d p i h 2lg(z) 

since 1I/ sinh (7d/h) < 4e-"d/h provided h < 27d/ In 2. 
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Now from the triangle inequality we have that 

f(X)- E - E S )(x) 

?f~(n) SE f(x)s (n)(X) + Z f(xi)Sn (X). 
g (x1) 'iN(x1) 

Recalling that q$(xj) = jh and applying (2.5) and (2.6), we get that 

z f(Xi)s(n) (x) < E Coe-a10(xJ)ICih-n 

ljl>N ljl>N 

2ChC? I -ajh 2CC e-aNh. 

j=N+l 

Hence, the above inequality with (2.9) gives 

f (n) (x)- _ 1: (. S (2) (x) 
(2.10) j=-N g J 

<__ en 7rd1h f f(zk)I (z) 2C0C1 -aNh <2Ch-~ e~ dz +an1e 
eh 

1~ir g(z) 

Since 0(&2) = O??rd, the integral fa,j I "(z'z dzI is a constant depending 
only on f, g, and d. The proof is then completed if we set h = rd/aN 

andK=max{Kn,n=0,1,... ,m},where 

= 2C2 f( z)$' (z) (a) + 2COC, a Kn 
7t ~ g(z) dz r a 7rd .L 

It should be noted that the function g takes on different forms for different 
functions 0; usually, g(x) = ($'(x))-m is satisfactory, which was verified by 
Lundin and Stenger in [5] for the cases of approximation over (-1, 1) and 
(O, oo). 

2.3. Extension of the approximation to two dimensions. For the sake of sim- 
plicity, we consider in the rest of this section only the two-dimensional case, 
although the following procedure works for any dimension. We will develop 
some useful results of the Sinc-collocation approximation for two dimensions. 

We set x = (x, y) . Later, a bar over some letter always means that this letter 
refers to the y-coordinate. 

Given d = (d1, d2) E R2 with di > 0 for i = 1, 2 and conformal maps 
d, --+ _1 and : >d2 -2, set rd = d, x d2 and 9 = -1 x 22, 

define _: rd ' GJ in coordinate-wise fashion, so qV = l x tV . Set IF = V(R) 
and 12 = i(R) , and set F = V(R2) = -F x 12 . 

Furthermore, set, as usual, q$ = v-l. Given h = (h1, h2) E R2 with 
positive components hi (i = 1, 2), and given k E Z2, define (Xk,, Yk2) = 
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(y(kihi), tV(k2h2)) and 

Sk(x) = g(x)S(k, hi)q(x), Sk(y) = g(y)S(k, h2) (y), 

where k E Z. 
We will note some analogues of the previous theorems as they apply to the 

complex functions F: 2 - C. Let 

?/ = Y1 X r2, ?2' = FI X 22 

We say that F E B('2j) if F E B(?ifj) by fixing the remaining variable. 
Analogous to Theorem 2.4, it is not difficult to get 

Lemma2.1. (1) If f(x, y)q'(x)/g(x) E B(911), then for any (x, y) E F, we 
have 

00 f (Xk, Y) 
f(x, y)- E g(Xk) Sk(X) 

k=-oo 

_ g(x) sin[7q$(x)/hi] f f(z, Y)q' (Z)/g(Z) dz 
27i J<c,[q(z) - q(x)] sin[7q5(z)/h i] 

(2) Let f (x, y)q0'(x)/g(x) E B('). Assume 

|(d )e{g(x) sin[7fO(x)/hj] }|<C h 

\dx/ 1. q(z) - q$(x ?1,2y 
for any x E F, z E O21, and hi < 27di/ In 2. Then 

( dV~ 00 
f?k Y 

(dx) {f(x, y)} - E g(Xk) dX) Sk(X) 

(2.11) C1,2hfe JO| f(z, dz 
- 27sin[7dl/hl] 0, g(z) 

< 2C1 2- - | |L f(z, Y)q (Z)d 

_ hIe 9 IOQ g(z) d 

(3) If all the conditions in (2) are satisfied and 

f (X, y) < Coe |e(xl V(x, y) E F, 
g(x) 

and 

(d) Sk(x)| < C, llhV Vx E Fl, 

then 

( d Nj 
ff(x y)_ g(Xk Yx) dy) Sk(x)} 

< 2C 2h-erdl f f(z, Y)q (Z) 2C0C1 I ajNjhj 
hVr ~ , g(z) dz? 

leh Nh1 
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A similar formula can be obtained for the y-coordinate. 
We always assume later F1 = (a,, b1) and F2 = (a2, b2) to be finite, so 

(2.12) (x) =In x-al (x - aj)fli (bi - x)fl 
q () nb, gx (x)= (b - ai)Ihl ' fi>0, 

(2.13) 0(y)=lnY-a2 (> iva2)f2(b2-y)f2 
b2 - Y 0~(2- a2 ) fl2 bO 

It then follows that 

(2.14) Ig(x)f < (b - ai)fi fora <x<bi, 4/hl 

(2.15) ()f ? (b2 a2)f2 fora2 <y < b2 
4_3 

Lemma 2.2. Let q(x) and g(x) be defined as in (2.12) and fl, > e, where e 
is a nonnegative integer. If h1 > 0 is uniformly bounded by h*, then 

S(k)(x)I = d(x {g(x)S(k, h1) o q(x)} 

< CohV'(x - ai)f1-e (bi - x)fil-e < Kh-7 Vx E 1, 

where Co and K depend only on fli, ?, a1, b1, and h*. 

Proof. The proof is almost the same as that of Theorem 6.3 in [5] by a transla- 
tion argument. o 

Remark 2.1. It is interesting to note that the constant K does not depend on 
k E Z, which means that the condition IS((x)l < Kh- for all x E F1 

implies IS(f)(x)l < KhVe for all x E F1 and all k E Z. There is an analogous 
result for IS(j(y) . 

Lemma 2.3. Let f(x, y) satisfy 
(1) 

g(x)g(y) 
< Coe-cei*x)le (X, y) E 

(2) 

f (x , Y) O'(x) c-B(,~ f (x, y) +(y) ,EB(11' g(x) E (1) (y) B ) 

(3) 

1 ( d )fn { g(X) sin [Tq$(x)/hu<] } <Clh n for all x E F1, z E 012, 

where C1 - C1(n, g, a1, b1), and 

g(y) sin [7r(y)/h2] < C2 for all y _ F> Z e O2, 

C)- 0(y) 
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where C2= C2(g, a2, b2), 

(4) 
|S("(x)f < C4hj-n VxISO, So(y)I < C5 Vy E F2, 

where C4 = C4(f13, n, a,, b1, h*) and C5 = C5(fl2, a2, b2, h*). 
Let hj = 7rd}/ajNj < h*, j = 1, 2. Then there exists a constant C 

depending on g, g, n, /3j, aj, and bj (j = 1, 2) such that 

( d n )Nk, - fk-N, k-2 Sk n - dx fx 5 ) S 12 Ski X)Sk2 (y) 
k1=-N1 k2=-N2 

< CNi (E1 Ig(y)j e-12 1(Y)l + N22E2) 

where fk,k2 = f(xk, Yk2), gk, = g(xk), gk2 = g(yk2), and Ej = e 

Proof. We can get 

d n ~N, N2 
f,k n X 

(dx) f(x Y) j E k (x)Sk2(Y) < JI + J2, 
k1=-N1 k2=-N2 gk A 

where 

\UX/ 
~~~k1=-N, k 

N S(dx) t(X N )2 k () 

k,=- k) [fXk, 5 Y) - f ( Sk2 (y)1 
glkN L k2=-N2 2]2 

Using Lemma 2.1(3), we have 

J 2 ? j-n h f(x, y>;'(x) 
ii 

< 2C' h- e-7'dl, |(,() x dx| 

2C1'? g (x) d 

2COC4 Ig(y) Iea2A(Y)1 a-N h 
+ 

alhnl 
e- 

(2.16) < hl -n e- hig(y)Ie-Ce2A0Y)1 ; e-al I (x) I 1(x) d 
?r e 

7r~~~~~~~~~~~~~~~~~,r 

+ g(y)2 e-a22*(Y)1e-a1Nihi 

<K1Ig(y)Ie-a21$(Y)jNj 2 e-V7rdiaNj 

where the constant K1 depends only on n, g, a1, b1, d1, al, and h* . 
Using Lemma 2.1(3) again, we get 

N2 Ykf ) Y2)- 

k2=-N2 k 

2C0C5 ~~~~~~~~2C2 - d12 f J(Xkl Y) ~(Y)d 
< 2ChC5 g(Xk,)Ie -a,10(Xkl)le 0a2N2h2 + _e h2 j (k ) Ydy| 

a< 2 h| g 2 )) 
~~~~- ,1(k) N 7I d2a N , 
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where the constant K' depends only on g, a2, b2, d2, a2, and h*. Hence, 

N, 

<2 < ( ISi) (X)|e1k0(xkl)) KNI e V7rd2a2N2 

kl=-N, 

Noting condition (4), and recalling Remark 2.1, we know that 

IS(n)(X)I < C4h n for any k1 E Z. 

Therefore, 

N1 N, 
IS()(x)AeajIj0(xk1)j < C4hj -n eal 0(Xkl)I 

kl=-N, ki =-N, 

= C4h7 n eN a 1 kl h, < C4hy [I + 2h) 

< C4h n (I + 2hi) < C4? 
(n+l) 

Thus, we obtain 

(n?1) i 
(2.17) J2 < K2NI 2 N2 2a-N 

where K2 depends only on n, , gg, aj, bj, dj, aj (j = 1, 2), and h* . 
Combining (2.16) and (2.17) completes the proof. o 

In the following we denote (njl+n2/xflXjayn2)f(x, y) by f(nl,n2)(X, y). 

Theorem 2.5. Let f(x, y) satisfy 
(1) 

f(O n2)(X Y) < Coe-a 0(x)Ie-a2I(Y)I V(x, y) EE _ 
g(x)g(y)- 

g (x) g(y)- 

(2) 

f(?, n2) (X, y) 0 (x) P (), fx, YW6'(Y) B(' 
g (x) 91 (y) 

(3) 
(d )nl{ g(x) sin[7rq(x)/h1] } | c1ihy ' 

dx C~q5Z) -q(x)I 

for all x E Fl, z E ?21, where Ci = Ci(nj, g, a,, bi), and 

(d )f2{ g(y) sin[7rc(y)/h2] }I < C1i-n2 
q5(z)-q<!Cv) 
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for all y E F2, z E a& 2, where C2= C2(n2, g, a2, b2), 
(4) 

IS(n')(x)n I C3hn, Vx e 17, IS(n2) (y) I <? C4hj2 Vy e F2, 

where Cj (j = 3, 4) depend only on 8jy, nj, aj, bj, and h*. 
Let hi = V7rdj/a1jNj < h*, j = 1, 2. Then there exists a constant C 

depending on g, g, nj, /3j, aj, and bj (j = 1, 2) such that 

N, N2 
(nl n2) (X y) N N_ fk1k2 S(n )(n2) (y) 

where E1 (j j-1, 2) are defined as in Lemma 2.3. 
Proof: First we have 

(nl n2)(X ) y) gk g2 Sk, (X) Sk2 ()<H 2 

k k=-N1 k2=-N2 gg 12 

where 

H1 f(fl1 f2)(x,y). N1 f(Of2(xkl 'YS(n1)(X), 

H2 N= S(fll)(X) [ LN2 (2 

Using Lemma 2.1 and Lemma 2.3, we get 

H1 < K1 |g(y)Je-(2Il(Y)I NJ 2 e-.Yla11 
Using Lemma 2.1(3) again, we then obtain 

f(Oln 2)(xkX, 
N 

fk- 
N2 

S 
k2 ) (Y) 

< K2|g(xk1)Jea1I (2(xk1)lkI 2 e 7yd2<N I 

where the constant K2 depends only on g, a2, b2, d2, 0a2, and h* . Hence, 

Y) ki 2 2n11) (n+1 

H2 < K2N12= N2 2 e 7dN 

where K2 depends only on n1, g, g, a1, b1, d1, a1 (j = 1,2), and h*. The 
proof is completed. o 

Remark 2.2. In condition (1), f(OfN2) can beXreplaced by 
f(.n 

0) 

Recalling (2.14) and (2.15), we can improve the result of Theorem 2.5 and 
get 
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Theorem 2.6. Suppose all the conditions in Theorem 2.5 are satisfied. Then 

N1 N2 

f(nl~ Y n Xy- E g g Sk (X) Sk2 2(y) 

k1=-N, k2=-N2 kl k2 

< CN2 (El +N2 2 E2) 

Moreover, if we let 

(2.18) Nj=N, dj=d, a1=a (j= 1, 2), 

then 

k1=-N, k2=-N2 

< CN 22 exp( dN) < Ci exp (-C2 N) 

where C, C1, and C2 are independent of h and N. 

Note that the last inequality comes from the well-known formula [1, p. 278] 

tke-t < C(O)e-6t 0 E (0, 1), t > 0. 

It should be noted that when we take 0, g as in (2.12) and q5 g as in 
(2.13), conditions (2)-(4) in Theorem 2.5 or in Theorem 2.6 can be proved to 
be automatically satisfied, and that the results in these theorems can be improved 
when n 1 = n2 = 0 [ 1 1, Theorem 6.5.2]. 

3. SOLUTION OF PP 

3.1. Numerical scheme and the Sylvester equation. Several authors have used 
Sinc methods to solve the singular Poisson problem PP; for instance, Stenger [9, 
10] applied the Sinc-Galerkin method to PP and got a linear system, and Lund 
et al. [3, 4] got a symmetric linear system by choosing a suitable weight function. 
The same exponential convergence rate was obtained in all their papers. 

Here we use the Sinc-collocation method to solve PP. First, for some non- 
negative integer k, we set 

6(k) d 
(3.1) - = k d [S(j, h) o 0(z)]IZ=X,' 

By the well-known formula 

(3.2) S(k, h) o 0(x) = e[ h (x)-khIt dt, 

it is easy to verify that 

(3.3) 
6 

= {O 
if j= jf 0if j :, 
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ifjy_, 
(3.4) 20-i) if I#t?, 

(0 ifi =e, 
(3.6) 5 j( 3 )J )-f if 

and 

[7 if j=-f, 

( (j -)4) [24 4-2( 4 )2] if] #. 

Now let 
(3.8) VN (X Y) _`_ N V-! Ski(X) Sk2 (y). 

( 3 . 8) VN(X,Y) kl=-N, k2=-N2 gk Ik2 

The coefficients Vk,k2 ( 1k1 I < N1, Ik2 : ? N2) are determined by requiring that 

(3.9) V2 VN(X, Y)lx=x, I ' = f(xi, yi2), 

where Iil <N1, 'i21 <N2. 
Plugging (3.8) into (3.9) gives 

V31) k1k2 (S/ (Xil )Sk2(yi2) + Ski (xi,)k2(ys2)) (3.10) 
~kl=~-N, k2=-N2 g k 

= Ji1i2 = f(Xi , Yi2) , 1i I < N1, Ii21 ? N2 

Note that (3.10) can be written in matrix-vector form as 

(3.11) -v =Y 

where 

Sk (S (Xi)Sk2 (Yi2 ) + Sk2 (Y 

\V gk1 gk, A2 

and where in the vector v (Vk1k2, IkI 1 ? N1, Ik2l < N2) the natural ordering 
of gridpoints from left to right, bottom to top is used, and similarly for the 
vector Y = (fi 12). As indicated in [4], the structure of the matrix 'V in the 
equation (3.11) is inherently vectorizable. We now use another procedure to 
solve this equation. 
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It follows from (3.3) that 

(3.12) Ski (xil) _,(o) d Sk2(Yi2) a(,) (3.12) 
9~(Xkl) k1ii Iad (Yk2) k2i2 

so (3.10) becomes 

NA Vk iSl N2 ik 
(3.13) L Z Vik (xi,+ E l Sk2(Yi2) fili2. 

kl=-N1 k2=-N2 

Let Dm(g) denote the m x m (where m = 2N + 1) diagonal matrix with 
diagonal elements g(xj) (j = -N, ... , N). Set N1 = 2N1 + 1 and N2 = 
2N2 + 1; then it is not difficult to get the Sylvester equation 

(3.14) SXDN, 
I 

U + UDN2 ( =W, 

where Sx is the N1 x N1 matrix whose (ik)th entries are Sk(xt), and Sy is the 
N2 x N2 matrix whose (ik)th entries are Sk(y1), respectively. The matrices U 

and W are N1 x N2 with (ik)th entries equal to Vik and fik, respectively. 
Usually, as recommended by Stenger [8] and carried out by Bowers and 

Lund [2, 4], a procedure to solve (3.14) is as follows. First we choose g = 0-2 
and g = X-2 (g = 0-1 and g = 0-I are chosen in the Sinc-Galerkin method). 
We know that there exist two nonsingular matrices EN1 X N1 and EN2 X N2 which 
diagonalize SxDN( (g()) and D 2((1I))S', respectively, i.e., 

SXDN, (I ) = E-'AE DN (()Sy'E -A'E 5 

where A = (AzR,xN , and A' = (A') R2 R2 are the diagonal matrices whose 

diagonal entries are eigenvalues of SxDV, (g()) and DN2 ( 1 )SY, respectively. 
Hence, it is easy to get from (3.14) that AY + YA' = X, where Y = (Yik)NI XN2 = 

EUE-1 and X = (Xik)RN XN2= EWE-1. The solution is then 

(3.15) y 
( -Xik 

This procedure is preferable in view of storage considerations and the ability to 
handle very singular problems. But it is not very economical computationally 
since the inverses of E and E, or some linear systems, need to be computed in 
order to get X, Y, and U, and also, theoretically, there is a potential difficulty 
in (3.15) if )ii + )L = 0. 

3.2. Orthogonalization method. Here we solve (3.14) by an orthogonalization 
technique which is computationally much more economical although in theory 
applicable to a more restrictive class of problems (with respect to the singular 
behavior of the problems) than the above procedure. 
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Let Sik = S" (xi). The relation (2.4) yields 

(3.16) S'(xi) - g"a(0) + (2g1'$ + giXr) hk + g ki 

Taking g = 2 and using the identity [4] 

(3.17) 4'-2(?'-l)" - 

we get 
lf/2 (6(2) 1AO 

Sik = 
T2 i ki hl'-ki 

If the choice g 2-t is made, we can also write 

= (kY i) =2 ki~U Sik =Sk() h2i (ki - 4h2J 
2 4 

Now we let I(,) be the m x m matrices (m =2N + 1) whose (jl)th entry is 
k), given by (3.3)-(3.7). Then the equation (3.14) takes the form 

(3.18) AxY + YAY = h2W', 

where 

(3.19) 
Ax = DNI (0'(x)) AIDN1 (q'f(X)) 

(3) Ay = DN2 (0'(Y)) A2DN2 (X'(Y)) 

(3.20) Y = D RI 
(X2 (x))UDg2(02 (Y)) 

WI = DI (q51 2(x)) WDN2 (02 (y)), 

and 

(3.21) Aj = (aik)RxN = (2) - h2()) = I(2) h2I j = 1, 2. 

It should be pointed out that the system (3.18) is identical with the system 
obtained by using an entirely different procedure (the weighted Sinc-Galerkin 
method) [4]. There are few classes of basis functions where the collocation 
method and the Galerkin method yield the same discrete system. Typically, the 
former is advertised as the one with the simpler assembly, while the latter is 
usually more accurate. Here, the Sinc function gives the best of both worlds. 

Lemma 3.1. Both matrices Ax and Ay are symmetric negative definite. 

The proof of this lemma is easy if we notice that the Aj, given by (3.21), 
are symmetric negative definite [8] and the diagonal matrices Dk1 (q$'(x)) and 

DN2 (0' (y)) are nonsingular. 

Lemma 3.2. If h, = h2 = h and N1 = N2 = N, then Ay - K2Ax where 
K = (b1 - al)/(b2 - a2). 
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Proof. It is easy to show from (2.12) and (2.13) that 

(I+eh2 / (I+eh2 
(1e i)h and 0 (= ? ih) (b1 - ai)eh(2 - a2)elh 

Thus, DN (X'(Y)) = KDN (0'(X)) . The relationships N1 = N2 = N yield Al = 
A2- A. The proof is then completed by using the formulas (3.19). n 

From now on, we shall choose h1 = h2 = h and N1 = N2 = N. Thus, all 
of the matrices in (3.18) are m x m (m = 2N + 1), so the subscripts on the 
matrices are omitted in the rest of the paper. 

The symmetry of the matrix Ax implies that there exists an orthogonal ma- 
trix Q with the property that Ax = QAQt, where A = (Ai) is the diago- 
nal matrix with the eigenvalues of Ax as diagonal entries. It is obvious that 
A_ =K 2QAQt. Hence, (3.18) becomes 

(3.22) AY'+ K 2Y'A = h2Z 

where Y' = (ylk) = QtYQ and Z = (Zik) - QtW'Q. The solution of (3.22) is 
then 

-(h2Zik 
(3.23) Y = (\Yik) -A + K2Ak 

Lemma 3.1 implies Ai + K2 Ak < 0, so the potential difficulty appearing in (3.15) 
is avoided. 

To calculate the original U from D(q$2 (x))QY'QtD($'2 (y)) requires only 
matrix-matrix products, which can be easily done in parallel. 

3.3. Computational results. The Sinc-collocation method with orthogonaliza- 
tion has been tested on a large family of problems, both analytic and singu- 
lar. As is indicated in [2], one of the advantages of the Sinc method is that it 
automatically determines the graded mesh. So there is no modification in the 
discrete system (3.18) when it passes from analytic problems to singular prob- 
lems. All the following three examples are singular, and the second derivatives 
of their true solutions are undefined on the boundary. 

The discussion in the previous section leads us to recommend the following 
parameter selections. The positive parameter a should be chosen so that the 
true solution u(x, y) satisfies the decay condition 

Ju(x, y)l ? C((x - a)(b -y))c,+/2 

Then the parameter h is given by h = (d ) 2 where the angle d is taken to 
be 2 for the problems considered. 

The maximum absolute error between the numerical approximation VN(X, y) 
and the true solution u(x, y) at the Sinc grid points is defined as IE lg and 
the maximum absolute error at the 100 equally spaced points is defined as 
EHIU, where these equally spaced points (xl, yJ) are chosen to be xl = a, + 

(b, - a1) and yj = a2 + 1 (b2 - a2). The predicted asymptotic conver- 
gence rate is O(e-(7tdcN) I). The code was run in double precision using the 
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FORTRAN-77 compiler on a DECstation/UNIX computer. The numerical re- 
sults for different N are shown in the following tables. 

Example 3.1. 

a2+02=f(x,Y), U(X, y)=(x2) (y 1)2 (4 y)2 

where Q = (-1, 1) x (1, 4). The parameter a is chosen to be a = 5/4. The 
result is shown in Table 1. 

TABLE 1 

N | h |_ {EJlg | IJEJlu | asymptotic error 
2 1.404963 1.0802D-1 1.1046D-1 2.9825D-2 
4 0.993459 1.1282D-2 1.1887D-2 6.9620D-3 
8 0.702481 1.0286D-3 1.0048D-3 8.8953D-4 
16 0.496729 2.4315D-5 2.3147D-5 4.8469D-5 
32 0.351241 9.5987D-8 9.2376D-8 7.9127D-7 

Example 3.2. 

a2U + a2U = (X, Y), u(x, y) = (X3/2 _ X)(y312 _ y) 

where Q = (0, 1) x (0, 1). This example is found in [2], where the authors 
used it to illustrate the ability of the Sinc method to solve singular problems, 
and where they compared it with the difficulties inherent in the standard finite 
difference or finite element methods presented in [12]. The parameter a is here 
chosen to be a = 1/2. The result is shown in Table 2. 

TABLE 2 

N h IIEIK - IIEIIu asymptotic error 
2 2.221441 2.5315D-4 7.4670D-4 1.0845D-1 
4 11.570796 7.0055D-5 1.2511D-4 4.3214D-2 
8 1.110721 _7.7647D-6 1.3159D-5 _ 1.1762D-2 
16 0.785398 2.5963D-7 _5.1589D-7 1.8674D-3 
32 0.555360 1.7498D-9 8.6613D-9 1.3834D-4 

Example 3.3. 
02u 02u 

-2U+ 2 = f(X, Y), u(x, y) = xylnxlny, 

where Q = (0, 1) x (0, 1). This example is also found in [2] and illustrates a 
logarithmic singularity. The parameter a can be chosen as large as possible in 
this case, i.e., a = 1/2. The result is shown in Table 3. 
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TABLE 3 

N h I E |l|g I |E | | asymptotic error 
2 2.221441 3.9517D-3 8.1485D-3 1.0845D-1 
4 1.570796 1.3048D-3 2.0009D-3 4.3214D-2 
8 1.110721 1.8299D-4 2.6689D-4 1.1762D-2 
16 0.785398 8.5641D-6 1.7600D-5 1.8674D-3 
32 0.555360 7.9693D-8 5.7605D-7 1.3834D-4 

4. SOLUTION OF FOURTH-ORDER POISSON-LIKE PROBLEMS 

We now consider the fourth-order Poisson-like problem: 

(1 X4 aOU =f(x, y), (x, y) e Q _ (a,, bi) x (a2, b2), 

au a u 
Ulan-- =0. 

ax yan Y lan 
Smith et al. [6] have discussed the one-dimensional case of the above problem 
by using the Sinc-Galerkin method and got an accurate numerical solution to 
an order of O(e- 7rdaN). 

Here we can still solve (4.1) by using the Sinc-collocation method with the 
orthogonalization technique described in ?3.2. 

Let VN(X, y) be defined by (3.8) with the choice hI = h2 = h and N1 = 

N2 = N, where Vk1k2 will be determined by 

N N 

(4.2) Z Vk1i2 S"(Xi,) + Z V-k2 (Yi2) =I 

k,=-N k,k2=-N k 

Analogous to ?3.2, a matrix representation of the equation (4.2) can be ob- 
tained in the form 

(4.3) SxD ))U+UD ( ))SY,=W, 

where Sx and Sy are m x m matrices whose (ik)th entries are Sk""(xi) and 
S'l"(y-), respectively. The matrices U and W are also m x m, with (ik)th 
entries given by Vik and fik, respectively. 

It is easy to verify from (2.4) that 

=i(i g11113 (0) + a'1(05) + Ia (2)3(2) +1a(3 + 3 g.0/4(3(4) 
Sk ki ki ki h3ii ki h4 I I ki) 

where 
a(') = 4g"'1' + 6g"q5" + 4g'qo"' + g90"", 

a(2) = 6g"oI+ 12g'?tolo" + 3gq$"2 + 4g$'q5"', 

a(3) = 4g'q5'3 + 6gq52 q5 

and the Ai'( j= O, ..., 4 are defined in (3.3)-(3.7). 
Take 

(4.4) g(x)= (0=(X))2 



38 GUANGYAN YIN 

then we get a(3)(x) =0. Direct verification, using (3.17), gives a(')(x) = 0 and 

a(2)(x) - 20q2 (x). It should be noted that, by using (4.4) and (3.17), we can 
prove that 

g 16 
It then follows that 

(4. 5) SiSk/ (xi) = h47 2 { <) - 2h22 k) + 1Ah46 i} . 

Similarly, we get 

(4.6) 3k"(y1) = 5hY {3) - 2h22i) + 9 h4A1} 

by taking 

(4.7) g(y) (7Y(y)) -2 

Using the same procedure as in ?3.2, we easily obtain 

(4.8) AxY + YAY = h4 W'. 

But now 

(4.9) Ax = D(O 2(x))AD(02 (x)), Ay =D(l (y))AD(2 (y)) 

(4.10) Y = D(0' 2 (x))UD(qY 2 (y)) 

W = D( b' 2(x))WDb(02 (Y)), 

and 

(4.11) A = (aik) = (35 (4) - 5 + -92h944?0)) = I)- 5h2I(2) + 9 h4I(?) k i 2 ki 16' k i -2 1 6 

Since the matrix I(4) is positive definite [6], we can show, in the same way as 
before, that both of the matrices A, and Ay are symmetric positive definite, 
and furthermore, under the assumption that h, = h2 = h, N1 = N2 = N, 
that we have Ay = K4Ax. Hence, the same procedure of our orthogonalization 
technique described in ?3.2 can be applied to the Poisson-like problem (4.1), 
except that the matrix Y' in the equation (3.23) must be replaced by 

Y/ =(Yik) - Qi + z4) 

Also, the positive parameter a should be selected to satisfy 

| U(X, y) | < C(x - a) (b _ y))Ol+ 32. 

Here we give some numerical results, where IlEl g, IIEIu, and d are defined 
as before. 

Example 4.1. 

4U 
?0U =f(x, y), U(X, y) = (1 - x2)3(y - 1)3(4 - y)3 
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where Q = (-1, 1) x (1, 4). This is a problem whose solution is known an- 
alytically. The parameter a is chosen to be a = 3/2. The result is shown in 
Table 4. 

TABLE 4 

N h IJEJig IIEIIu asymptotic error 
2 1.282550 9.4962D-1 9.5118D-1 2.1330D-2 1] 
4 0.906900 2.7328D-2 5.9729D-2 4.3334D-3 
8 0.641275 3.0343D-3 3.7935D-3 4.5496D-4 
16 0.453450 7.3851D-5 7.3851D-5 1.8779D-5 
32 0.320637 9.3745D-6 9.4706D-6 2.0699D-7 

Example 4.2. 

04U 
+ 04U = PX y) u(x,y) = y3(sinx)3 In3 y, 

where Q = (0, 7z) x (0, 1). This problem is singular in y. The parameter a 
is selected to be a = 3/2. The result is shown in Table 5. 

TABLE 5 

.N h IIElIg IJEII U aSYmPtOtiC errOr. 
2 1.282550 5.8964D-3 8.3871D-3 2.1330D-2 
4 0.906900 2.8201 D-3 2.9605D-3 4.3334D-3 
8 0.641275 5.4495D-4 5.4531D-4 4.5496D-4 
16 0.453450 2.9301D-5 2.9605D-5 1.8779D-5 
32 0.320637 2.5942D-7 2.6026D-7 2.0699D-7 

Example 4.3. 

- 

4 
P X, Y), U(X, Y) = (Wt 

- X)) 2 (y(2 -y)) 3 , X-4+ 09y4 -f() 

where - = (0, 1) x (0, 2). This example illustrates the highest degree of singu- 
larity (u has fourth partial derivatives which are undefined on the boundary.) 
The parameter a is chosen to be a = 11/6. The result is shown in Table 6. 

TABLE 6 

N h I_E_g I_E_u I asymptotic error 1 
2 1.160110 8.5673D-4 8.5673D-4 1.4211D-2 
4 0.820322 1.3176D-5 3.4646D-5 2.4402D-3 1 
8 0.580055 1.0888D-6 1.48 1OD-6 2.0196D-4 
16 0.410161 1.5501D-8 1.6013D-8 5.9544D-6 ] 
32 0.290027 3.4867D-10 3.4871D-10 4.0786D-8 
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