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ON THE SPLINE COLLOCATION METHOD FOR THE 
SINGLE-LAYER HEAT OPERATOR EQUATION 

MARTTI HAMINA AND JUKKA SARANEN 

ABSTRACT. We consider a boundary element collocation method for the heat 
equation. As trial functions we use the tensor products of continuous piecewise 
linear splines with collocation at the nodal points. Convergence and stability 
is proved in the case where the spatial domain is a disc. Moreover, practical 
implementation is discussed in some detail. Numerical experiments confirm 
our results. 

INTRODUCTION 

Recently, the Boundary Element Method has been applied to the solution 
of various time-dependent phenomena such as heat conduction governed by 
homogeneous parabolic equations [7, 8, 15, 16, 19, 20] and wave propagation 
governed by hyperbolic equations [5, 6]. The BEM solution of time-dependent 
problems requires a large computational effort, since results from all previous 
steps are saved in the computer memory. In addition, careful numerical inte- 
gration has to be carried out for setting up the matrix equations, which means 
increasing computing time. Thus, there is a need to reduce the effort, for ex- 
ample by applying simple discretization methods such as collocation or the 
quadrature method instead of the Galerkin approximation. 

In the above-mentioned articles [7, 19] only the Galerkin solution is analyzed. 
The work [20] of Onishi describes a collocation scheme for the heat equation 
when the boundary integral equation is of the second kind. On the other hand, 
there are well-known situations which lead to boundary integral equations of the 
first kind. In such time-dependent cases no results for the collocation method 
seem to be available. Therefore, we are inevitably faced with the question of 
effectively solving such equations. For time-independent problems the colloca- 
tion, and more recently the quadrature methods, have been analyzed [23, 24]. 

In this paper we construct and analyze a spline collocation scheme for solv- 
ing the single-layer heat operator equation, assuming that the spatial domain 
is two-dimensional and has a smooth boundary. As trial functions we use ten- 
sor products of continuous piecewise linear functions with collocation at the 
nodal points. For the proof of stability and convergence we limit ourselves here 
to the case of the circle. However, the method can be applied to all smooth 
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closed curves, although the theory remains to be developed. For our choice 
of trial functions we are able to establish linear convergence, but it is obvious 
that faster methods could be defined (by raising the degree of the trial functions) 
and similarly analyzed. We have carried out some numerical experiments which 
confirm convergence, indicating even a quadratic rate of convergence. The nu- 
merical implementation of the scheme, covering also the general case, will be 
explained in some detail. Some of our theoretical results were already given in 
[1 1]. 

1. SINGLE-LAYER HEAT OPERATOR EQUATION 

Considering the heat conduction problem, we first introduce two boundary in- 
tegral approaches for the solution of the homogeneous heat equation with given 
Dirichlet-type boundary condition and vanishing initial data. For convenience 
of the reader, we briefly recall some basic situations in which the single-layer 
heat operator equation arises. For more details see [7, 16]. 

Let Q C JR2 be a bounded domain with the smooth boundary F. With 
O < T < oo, we have the heat conduction problem 

-_A?D + Ot(D= 0 in QT = Q X (0, T), 
(1.1) (IX Y-T -g on IT = F X (0, T), 

((x, 0) = 0, X E Q. 

We consider the direct method and the single-layer method for solving the 
above problem. For this, let 

10, t<>0 (1.2) E(x, t)= 47tteX( ) t>O 

be the fundamental solution of the two-dimensional heat equation, and let V 
and W denote the classical single-layer and double-layer heat potentials 

ot 
(1.3i) (Vu)(x, t) = j jcr(y, r)E(x-y, t-T)dFydT, (x, t) E QTUQ Q, 

(1.3ii) 
rt 

(W,u)(x, t) = J Ju(y, T)DnyE(x-y, t- T)dd1ydT, (x, t) E QTUQ Q, 

where Qc = QC x (0, T), Oc R 2\Q and Ony is the exterior normal deriva- 
tive. For sufficiently smooth functions a and ,u the potentials Va and W,u 
have the well-known boundary behavior 

(1.4i) VaIET = Sr-C, 

(1.4ii) = (Dr - 1I)u (interior limit), 

where Sr is the single-layer heat operator 

(1.5) (Spa)(x, t)= j fa(y, T)E(x - y, t -T )dFy dT, xE F, 

and Dr is the double-layer heat operator 
(t r 

(1.6) (DI,u) (x, t)= | ,(y, T:)OnVE(x - y t -T )dy dT , x c 17. 
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In the direct method the heat potential 1D in (1.1) is given by means of the 
representation 

(1.7) (D V - Wg, 

which by (1 .4ii) yields the single-layer heat operator equation 

(1.8) Sru = (I+ Dr')g 

of the first kind. In the indirect single-layer method we use the representation 

(1.9) D = Va, 
which by (1.4i) implies 

(1.10) Sr&=g. 

Thus, both of the above approaches lead to a solution of the single-layer heat 
operator equation 

(1.1 1) Srur = gr 

We recall that, in a proper setting of function spaces, the equation (1.1 1) is 
uniquely solvable. Moreover, the solutions a, & in (1.8), (1.10) have the inter- 
pretations 

(I.12i) a- , 

(I.12ii) a = an?D -anoDo 

where + and - denote the exterior and interior limits on the boundary ST. 

2. PRELIMINARIES 

In this section we introduce some notations and define appropriate function 
spaces which are used for the analysis. Let x(0), 0 C 11E, be a smooth 1- 
periodic parametric representation of the boundary curve F. We assume that 
the Jacobian is positive, i.e., jx'(6)f > 0. Denoting u(O, t) I Ix'()Iurv(x(O), t), 
we obtain 

(2.1) (Srur)(x(O), t) = (Su)(0, t), 
where S is the single-layer heat operator 
(2.2) 

(Su)(O, t) = jJ u(y, T)E(x() -x(v), t-dr)d dT, (0, t) E Rx[0, T], 

acting in the space of 1-periodic functions with respect to the spatial variable. 
Thus, the boundary integral equation (1.1 1) transforms to the integral equation 

(2.3) (SU) (OI t) = f(O I t), (0, t) E R x-[O, T], 
where f (6, t) = gr(x(6), t) . 

For numerical purposes we discretize the space-time domain R x [0, T]. 
The one-dimensional meshes 0 = 00 < 61 < ... < ON = 1 with ho = 

max(0 - On-1I) and 0 = to < t, < ...< = T with ht = max(Itm - tm_i ) 
induce a rectangular mesh on R x [0, T]. For this, let AO = {O},nzz be the 
I-periodic extension of the mesh {6O }ft-I to R and let At = { tm }=0. Let Ih 
be the space of continuous piecewise linear 1-periodic splines with respect to 
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AO, and correspondingly let sh T be the space of piecewise linear continuous 
functions X such that $(O) - 0. In the space-time domain we use the tensor 
product spline space X Sh 0 SoTh. Further, we introduce the mean value 
functionals 

(2.4) (Ju)(t) j u(0, t) dO, ((Ot ? J)u)(t) j Otu(0, t) dO, 

and the trapezoidal rule approximations 

( JA u ) ( t) :=E 2 + J1a(On tJ), 2 
(2.5) ~~~~~~n=O 

(2.5) ((at & JA)U)(t) N:= 2 at U (On, t). 
n=O 

The basis of the tensor product space X/( is constructed as follows. Let { ln 1 < 
n < N} be the familiar Courant basis of Sh such that 

V (01) {1, =1 = n+vN, v E EZ 
01 l$n+vN, vEZ. 

Then we have 

3 (On-On-1),l On+vN-1 < f < On+vN, V E Z, 

(2.6) 90&Vn(y(0) = -(n+l - On)-' On+vN < 0 < On+vN+, V e Z, 

{ 0, elsewhere, 
and 

(2.7) Jyin = On+1-On-I 1 <n<N. 
2 

Correspondingly, we fix the basis functions qOnm of S T by defining 

(2.8) O$m(tV{jm O<ttm,?m< 
8 = tm < t < T, 1 < m < M. 

With vm,n(0, t) = -Vn(6)qm(t), the set {vm,nl 1 < n < N, 1 < m < M} is a 
basis of the spline space X', and any function v C X has the representation 

N M 

(2.9) v(0, t) = E E am,nVm,n(O, t). 
n=1 m=1 

For the analysis of the collocation method we need the anisotropic Sobolev 
spaces. Having introduced the parametric representation for the boundary curve 
F, it is enough to consider functions which are 1 -periodic with respect to the 
spatial variable. First, for any r E IR, let Hr be the Sobolev space of 1-periodic 
functions on lR. The anisotropic spaces 

Hrs:= H?(R; Hr )n Hs(Ri;HO) rIS E R, 

are defined in the usual way ([17, p. 87], [18, p. 8]). In terms of the Fourier 
transform 

(S9[u)(6, T) = J u(0, t)e-itdt, 
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the norm in the space Hrs is given by 

r~~~~? (2.10) IIUIIl1, s = (IIGtu)(. wt)||2 r + ItrI25IIQ5i7u)(., t~)II|o)dt~. 

The space Hr , s(RT), r, s > 0, 0 < T < x, is the space of restrictions to 
RT = R x (0, T) of functions belonging to Hrs5. Again, we have the Hilbert 
space 

Hr s(RT) = HO((O, T); Hr) n Hs((O, T); H), 0 < T < 0, 

endowed with the norm 

(2.11) IIUIIH,s(RT) = (jT IIU(- t)IIrdt+ IIUIIHS((0,T);H?)) 0 < T < x0. 

We also use equivalent norms defined by 

T 

IIUIIHr,s(RT) = fT IIu(, t)IHr dt 

(2.12) AT 1 TIIU(, t) u(., T)II dtd2 , 0<s 

and 

(2.13) 

IIUII1II,s(RT) = j; IIU(5 t)112, dt + j IIu(O, *)IIUiS(o T) dO, O < s < 1. 

Moreover, we introduce the subspace 

Ho6(RT) = {U U = UIRT: U E Hr,s', U(, t)=0, t < 0}, 0 < T < oo. 

Thus, for example, Hor6s(Roo) is the space of those functions in Hr s(Roo) for 
which the zero extension with respect to the time-variable t remains in Hr ,. 
Finally, we need the negative-order space Ho-or -s (RT) for 0 < r < 1, 0 < s < 
I . These spaces are defined as dual spaces Ho-or -s (RT) = (Hor6 s(RT))' . If there 

is no danger of confusion, we use the notations 

11 * 11 = 
11 *IIo' ? 11 * 11r,s = 11 * IlHrS (lRT). 

An analogous convention applies to the one-dimensional case. In the anisotropic 

Sobolev spaces the following mapping property is valid [7, 14, 19]. 

Theorem 2.1. The single-layer heat operator 

H 6 ___) r+1IL 
(2.14) S: H 0 '2 (RT ) HO (RT 

is an isomorphism for all r > - 2 Furthermore, it is coercive such that 

(2.15) (SW2W) ? cIIwII?i 

for all w e Hoo1 4 (RT) . Here we assume that T is finite. 

In the formula (2.15) the duality pairing extends the HO, 0(RT) inner product. 

3. ANALYSIS OF THE COLLOCATION EQUATIONS 

We apply piecewise linear approximation both in space and time, together 

with nodal point collocation. The collocation equations corresponding to the 
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equation Su = f are: Find UA E X such that 

(3.1) (SUA)(On, tm) = f(On , tm) I 1 < n < N 1 < m < M. 
We adapt the method developed by Arnold and Wendland [3] for the one- 
dimensional case and extended by Arnold and Saranen [2] for biperiodic prob- 
lems. In this approach the collocation problem is reduced to a Galerkin problem. 
In order to establish the required equivalence, we define the bilinear form 

BA(w, v) = (ataSW ltaVo) + ((at ? JA)W I (at ? J)v) 

(3.2) = j jat0ao(, t)ataov(O, t)dOdt 
T 

+ ] ((Os ? JA)W)(t)((at ? J)v)(t) d t. 

For the equivalent characterization of the collocation equations (3.1) we need 
some regularity assumptions on the given right-hand side f . Let (i(T) be 
the space of continuous functions f (O, t) on the closure RT of RT such that 
f is 1-periodic with respect to the variable 0. Moreover, we define the spaces 

FOO(lT) = {f E F(RT) If (d, 0) -}, 

zoo(li T) = {f E WOO(RiT) I aOf, At0 , ataof = aoatf E F(RTT)}. 
Next we give sufficient conditions on the function u to guarantee the property 
SU E Xoc(llRT) . Recall that a measurable function u is essentially bounded on 
RT if there exists C > 0 such that ju(O, t)I < C for almost all (0, t) E RT. 

First we observe the following continuity property. 

Lemma 3.1. Assume that u is a measurable and essentially boundedfunction on 
RT. Then f = Su E WOO(RT). 
Proof. Let (Oo, to) E 1RT. We consider only the case with 0 < to < t and 
t - to < 3 < do, 10 - 0o0 < 45 . Introducing the intervals 

I(oo) = [do-2 n 0? + 2] I, (00) = [00 - , 00 + 6] 

I2(00) =[00 -200 - ] u [00?+ '0?+2] 

we obtain, owing to periodicity with respect to the space variable, 

(Su)(O, t) - (Su)(Oo, to) 
rto 

= J 12(J0) u((o, T)[E(x(0) - x(q), t - - E(x(o) - x((p), to -)]d(pd 
? 2(00) 

rto OQ+J 

+?] J u((p, r)[E(x(0) - x(q), t - - E(x(o) - x((p), to - r)] d(pdT 

+ J j u(( , T)E(x(0) - x(q), t - Tr) d odT. 

By using the separation of singularities [10, 22], we have for the kernel the 
absolutely integrable bounds 

(33)0)-x(f ) f t-t) < (t - xr)IX(0) - X'((p) 
2 <- <u 

E(x(Oo)-x(qP) , to-T) < (< < 
-(to - T) I X (00) - X2 <' 1 -<2u1. 
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The estimates (3.3) together with 

(.) CIO - 
(PI < lx(O) 

- x((P)l < CIO 
- (P, 1 0 

yield for any positive c 
(3.5) 

Ito j0+5 ] / u((, -r)E(x(O)-x(q), t-Tr) dydT < CIu 52u1 <E 

rto 00?+6 

10 J u ((, -r)E(x(00) - x(q), to - r) d od-r < C||u|l0j2"u < 'e 

t 0?+ 

J J u(q, T)E(x(O) - x(q), t - r) d dT <? CIIuI(t - to)1- <8 

t0 0 - 2 

if Jo is small enough. Here, IIuII0, denotes the essential supremum of u on 
RT . Moreover, the function E(x(0) - x(y), 4) is uniformly continuous in the 
domain 

{01 10 - 0o0 < 2} x I2(00) x [O, T], 

and therefore 
(3.6) 

to 
IIJ u(q, r) [E(x(0) - x(qp), t - r) - E(x(0o) - x(q), to - tr)] d ( dT < 8, 
0 '2(00) 

if 6 is sufficiently small. The continuity follows from (3.5), (3.6). o 

Now we introduce the space 

Woto(RT) = {f I f (0, *) is continuous for almost all 0 and f (0, 0) = O}. 

The space XIoo(RT) consists of functions f E Woto(RT) such that Dof e Foto(RT) 

and the partial derivatives Otf, OtOof = OoOtf are measurable, essentially 
bounded functions on RT. We emphasize that I is a subspace of XOO(RT). 

The previous lemma is valid for general smooth curves. In the following lemma 
it is essential that the boundary curve is a circle. 

Lemma 3.2. Let u E 0o(llRT). Then we have Su e toc(RT), and the following 
commutation relations are true: 

(3.7) 00(Su)(0, t) = (S(aD,u))(O, t), 

(3.8) at(SU)(0 , t) = (S(0 u))( , t), 

(3.9) atOo(Su)(0, t) = (S(OzOq,u))(0 , t) = 00t(SU)(0, t), 

(3.10) J(Su)(t) = S(Ju)(t), 

(3.11) ((Ot 0 J)(Su))(t) = (S(OT ? J)u)(t). 

Proof. Using the heat kernel corresponding to the circle with radius r, 

( r2sin 2 (7i(t 
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we have 

(Su)(O + 6, t) - (Su)(0, t) 

=jt fu(+ ?6, T)u(, T)E,(o - (, t - ) d(fdT 

/11o Jo ( d jf $Ou(u, r) duY) Er,( - (p, t - r) d(pdr. 

The existence of the partial derivative 0 u implies that the limit 

lim 5u ( 5 r 
1 -( 

, f4u(', T li mo 0s f u(u, r) dux = lim a(? u ,( r) - u(p 

exists for almost all (o E I, T E (0, t). Furthermore, since 0, u is essentially 
bounded, we have 

10J,au(c, r)l du < C, 

and the limit 

lim , [(Su)(0 + , t) - (Su)(0, t)] = j 9 jo ,u((o, r)Er(O - (p, t - r) d(pdr 

exists by the Lebesgue dominated convergence theorem, proving (3.7). Next we 
consider (3.8). The condition u(O, 0) = 0 yields 

(Su)(0, t) - (Su)(O, t - 6) 

= jt j, (~. j, ,/ o0u(, a) du) Er(O - (p, t - r) dgpdr 

+ f,j (j ,u(, au) du) Er(0 - p, t -Tr) d(pdr. 

Again, the Lebesgue dominated convergence theorem implies the existence of 
the limit 

lim , [(Su)(0, t) - (Su)(0, t - 6)] j jO Ou((o, r)Er(O - O, t - r) d(odr, 

and (3.8) is proved. Similarly, we get 

(OtOo(Su))(O, t) = (Ot(S&qu))(o, t) = (S(AOrOu))(O, t) 

by using the assumption 0 u((o, 0) = 0 . On the other hand, we have 

(00at(Su))(O, t) = (&0(S9rU))(O, t) = (S (0QOrU))(O, t) = (S(OT 0'u))(O, t), 

where we need only the condition u(O, 0) = 0. To prove (3.10), we consider 
the mean value J with respect to the spatial variable, 

(J(Su))(t) = 14u(0, r)1 1 e 2(tT d d 
t) 

t I - 1 1 - 1 cos(2ir(6-0)) 10 
u((P T) 2(te- T -) e 2(t-T) dO) d (odT. 
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In terms of the modified Bessel function of order zero [1] 

Io(z)= ij ezos(0)dO 

we have 

(3.13) e cos(22(O-)) dO I=(2(t) 

Observe that the integral in (3.13) is independent of the variable (o. Thus, 
(3.12) becomes 

~t 1 (Ju) (-r) 1 

(3.14) (J(Su))(t)=1 4 t-T e 2(1-T) Io(2(t' )) dT. 

On the other hand, by (3.13), 

(t t = j 1 i I 1-cos(27z(O- V)) 

(Sju)(O, t) =j J f u) (r) e 2(t -T) d fpdr 

J (41 (JU)(T) e2(1-) Io 2(tz)T) dT = (J(Su))(t), 

which proves (3.10). Finally, the commutation relation (3.11) follows from 
(3.8), (3.10). The property Su E tjI(RT) is a consequence of Lemma 3.1 and 
(3.9). o 

Theorem 3.1. Let u E Xoo(lRT) be the solution of the equation Su = f. Then 
the function UA E X' is a solution of the collocation problem (3.1) if and only if 
the equations 

(3.15) BA(SUA, V)=BA(Su, v), vE ex, 

are valid. 

Proof. We denote tb = w - f, where w = SuA. From (2.6), (2.8) we obtain 

I T 
jl t &otb)(O, t)Ot&0Vm,n(O, t) dOdt 

1 J1 [ Jtt Oo 7,b (O , t) d tg Oo YJn (fJ) d 0 
(3.16) tm j j 

=~ j[00b (O, tm)-0b (0, 0)] 0& &n (O) dO 
tm 

1 [b (On, tm) - tb-(On-I tm) _ t(On+i, tm) - b(On , tm) 

tm L On On-I On+1 -n j 

where in the last step the property tb (6, 0) = 0 was used. Moreover, we have 

J 
,ln 0 < t < tm , 

(O () ) m,fn) Ljt - 
t , tj 
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which by (2.5) yields 

T 
((&t 0 JA)tb)(t)((9t 0 J)Vm,n)(t) dt 

(3.17) & a 1i t ja~(06 t)dt 
tm1=0 

2 

N-i1 
Jtmn : 01+1 -01-1,b(l, tm), 

tm1=0 
2 

where we have again used the property tb(01, 0) = 0. 
After these preparations we are able to prove our assertion. Suppose first 

that UA satisfies the collocation equations, i.e., the nodal values zw(6n, tm) 
vanish. According to (3.2), (2.9), (3.16) and (3.17) the bilinear form BA(QLL, v) 
reduces to a linear combination of the nodal values of tb, and consequently 
BA(tU, v) = 0 for all v E 9. Conversely, assume that (3.15) is valid. We use 
the identity 

fT 

(3.18) BA(Zt', Jv) = ((at o JA )b) (t)((&t ? J)v)(t) dt. 

For v E 4 we also have Jv E 0. Therefore, (3.18) and (3.15) imply 

T 

(3.19) j((at ? JA)zi)(t)((&t ? J)v)(t)dt = 0, v E A, 

and (3.2) thus yields 

(3.20) (&taotIlatOov) = 0, V E . 

By virtue of (3.20) and (3.16), 

(3.21) wzb(On+1 , tm)-b(On, tm) z(On , tm) - (6n- , tm) 0 
(6n+1 - On On- On-I 

for I < n < N, 1 < m < M. Let m be fixed. Then we have for all n= 

(3.22) 
7 W(On+i , tm) -1(On , tm) _ D(On , tm) b(On- I, tm) -c 

(6n+1- On On--6 n-M 

Using the periodicity of wb with respect to 0, we obtain 

N 

(3.23) Z(tb(6n tm) - b(n-1 , tm)) = W(ON, tm) -b(00, tm) = 0. 
n=1 

On the other hand, (3.22) implies 

N N 

(3.24) E (Wd(On,S tm)- -7v(On -I W m) = Cm (f9n-On-1) =Cm,9 
n=1 n=l 

which, with (3.23), gives Cm 0. Inserting this back into (3.22), we have 

(3.25) b(On, tm) =J (00, tm), 1 < n < N. 
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Finally, according to (3.17), (3.19), (3.25), 

(3.26) 0= t \ E 2l (0+l , tm) = t O(0l, tm). 
tm I 0 2 -_iiO,t) 

Since J Y1n is nonzero, the value wd (00, tm) vanishes and, in view of the formula 
(3.25), all nodal values zb(0, tm) vanish. Thus, uA satisfies the collocation 
equations (3.1). El 

4. STABILITY ANALYSIS 

Here we prove the unique solvability of the collocation equations (3.1) if the 
spatial discretization parameter ho is small enough. This result is a consequence 
of a coercivity estimate for the bilinear form BA(Su, v), which yields stability 
and convergence of the method. To prove the coercivity, we consider the form 
BA(w, v) as a small perturbation of the bilinear form 

(4.1) B(w, v) = (ataowlatOov) + ((&t 0 J)wl(&t 0 J)v). 

For brevity, we introduce the notation 

(4.2) lllvlll-2 I = Il&toVKl-< I + 11(&t 0 J)VIl_ ,. 

In any space of functions where this expression is well defined and finite, it gives 
a seminorm. It is essential to see that III- I II -l _ I is a norm in the subspace 
X. This is proved in the following lemma. 

Lemma 4.1. The mapping v I > I V I I I defines a norm in the space 9 = 

Sh 0So,Th 

Proof. It suffices to show that the condition 

(4.3) Illvlll-, _ =0 for v e 

implies v(O, t) 0 O. Now, assuming (4.3), we obtain from the representation 
(2.9) 

M N 

(4.4) (ataV ) ( 0, t) = at (E E: am, n A0 Vln) ( 0) Om (t)) 
m=l n=l 

and 
M N 

(4.5) ((0t (9J)V)(t)-=at ( EEam,n(JYn)Om(t)) - 
m=l n=1 

According to (4.3), (4.4) we have 
M N 

( 4. 6) E ( a (m, n At3 Yn ) ( fJ) O tm ( t) - C ( 0J) - 
m=l n=l 

In fact, C(0) = 0, since Om(0) = 0 for all m = 1, ..., M. This yields 
N 

(4.7) M(m(0l)6)- =1,...M. 
n=l1 



52 MARTTI HAMINA AND JUKKA SARANEN 

Analogously, from (4.3), (4.5) we deduce that 

N 

(4.8) E am,n(4Y/n) = m = 1,... , M. 

n=1 

Adding (4.7) and (4.8) together gives 

N N 

am,n(o + J)Yn = 
(o + J)(XmnYn-O m=l1. . . ,M. 

n=1 n=l 

The operator (Do + J) is an isomorphism from Sh to the space of piecewise 
constant periodic splines. Thus, 

N 

2_ a>m, nVn = ?, m = 1,.., M , 
n=1 

which implies that all the coefficients amm, n vanish, proving our statement. O 

Our next aim is to establish the required continuity and coercivity of the 
form BA(Su, v). These properties are valid in the space 2OO(J1T). First we 
consider the form B(Su, v). 

Lemma 4.2. We have the continuity estimate 

(4.9) IB(Su, v)I < cIIIulIII1_, jIIrIvII_, i 

for all u, v E 20'(]RT) and the coercivity 

(4.10) B(Sv, v) > CIIrIV112 I _1 V E O'(RiT). 

Proof. We have by the commutation relations (3.9), (3.1 1) 

(4.11) B(Su, v) = (Sat9ouIat9ov) + (S(Qt ? J)uI(9t ? J)v). 

The mapping property (2.14) gives 

IB(Su, v)I < lISataoull II .AItDoI KI,_4 + IIS(&t 0 J)VI| IhI(0t ? J)VII2' 4 

<c (IlatOouII ,_ IIt&00VII_- II+ II(&t ?J)uII_ ,_41I(8t 0 J)VIII-,1_) 
? cl Ilul I -, I , - IIIIV II_1- I - , 

which proves (4.9). From (4.11), (2.15) we have 

B(Sv, v) = (Sat&ovIataov) + (S(&t ? J)v I (at 0 J)v) 

C c(Ilat&ovI12 1I + II(at 0 J)V 12,_1) 

> l CIVII12 I -4 
2' 

which yields (4.10). E 

Concerning the difference B - BA, we have the following lemma. 
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Lemma 4.3. For all u, v e XTOO(RT) there holds 

(4.12) JB(Su, v)-BA(Su, v)l < choIIJulH _ I _ _ 

Proof. Using the commutation relations 

(at 0 J)Su = JSatu, (at 0 JA)Su = JASOtu, 

which follow from (2.4), (2.5), (3.8), we obtain 

JB(Su, v)-BA(Su, v)l = (Ot 0 (J-JA)(Su)&(at 0 J)v)| 
(4.13) = ((J - JA)(S&tu)I(at 0 J)v) 1 

?l(J - JA)(Satu)HH(, I 11(&t o J)VIK_ _ 

Define w = Satu. Since (J - JA)w(, t) is independent of the variable 0, we 
have by the accuracy of the trapezoidal rule 

(4.14) II(J - JA)w( , t)JJ = i(J - JA)w( , t)l < chollw(., t),IH1 

According to (3.7), (3.10), and (2.14), 

(4.15) k90ow0 II, I= I loS&tuIIH,, - =HS&oatu II, I < C&906atu ,I _ 14 

11JwH , I 
= HlJS&tull, I = IISJ&tullH , < cII(&t 0 J)ullKI -1. 

The norm (2.12) together with (4.14) yields 

1J(-jA)W1 12? 4 
2 

T 

ooIt - tXlt2 

? ch 2 II W(., t)112 ,d t + cho 20| ( : 3 ff H d td t 

? Cha2 / (lHoW(., t) 1 2 + IJw(t)12) dt 

+ ch2 J 0T (II&ow(. t) -aW(., t)IJJO + I(JW)(t) - (JW)(t')2 1dd2 

< cho(H&owHi +2 HJwj jt) 

and hence, by (4.15), 

(4.16) I}(J -J]A)S&tuH 2,~ 4?< cholUIHuHI t _ t . 

The required estimate (4.12) follows from (4.13) and (4.16). C1 

Combining Lemmas 4.2 and 4.3, we obtain 

Lemma 4.4. For all u, v E A00(RT) we have the continuity estimate 

(4.17) IBA(Su,v)l<clIlllulill_ -4||lv|||_-,__. 

Moreover, there exists a constant ho such that for all 0 < ho < ho there holds 

(4.18) BA(Sv, v) > c211vIII12 I_, V E XOO(RT). 

We can now state the main result of this section. 
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Theorem 4.1. Assume that the solution u of the equation (2.3) satisfies u E 
XOO(RT). Then, for all 0 < ho < ho, there exists a unique solution uA of the 
collocation equations (3.1). Moreover, we have the stability 

(4.19) U I AI I, - I < 'I llulill I _ 

and the quasi-optimal approximation result 

(4.20) Illu - uAlJll_ < (1 + ?l) infIu - vlllIK i. 

Proof. For u E ZOO(1RT) the collocation problem (3.1) is, by Theorem 3.1, 
equivalent to the equations 

(4.21) BA(SuA, v) = BA(Su, v), v eX. 

If 0 < ho < ho, the existence of a unique solution for the finite-dimensional 
problem (4.21) follows from the coercivity (4.18), since lv I ll is a norm 
in the subspace X#. By (4.18), (4.21), (4.17) there holds 

C21UI I2U I _1 < BA(SuA, uA) = BA(Su, uA) < cl I IJulI1- IlluAlIl_ 

which yields the stability result (4.19). Now (4.20) follows, since 

Illu - uAlll-i I. < Illu - vlll- ? I + Hllv - uAlll-l I 

< I1 + 
c, 

l IU- vlll-2A- C2~~~~2 

for all v E X El 

5. CONVERGENCE ANALYSIS 

In this section we analyze the order of convergence of the collocation approx- 
imation (3.1). Based on the quasi-optimal error estimate (4.20), we first discuss 
the asymptotic accuracy of the approximation when the error is measured by 
means of the norm * _ . For this, we need error estimates for the L2 

orthogonal projection Po,t Po 0 Pt = Pt Po L2(RT) -+ .. Here, Po and 
Pt are the one-dimensional L2 orthogonal projections such that P: HO 0 Sh 
and Pt: H?(0, T) -_ SOh,T. From now on, we require that the meshes AO 
and At are quasi-uniform. Under this assumption the 1-dimensional inverse 
estimates 

(5.1) II/Ilr < ch6 (r s)HYIIIs, y E Sh, s < r < 1, 

and 

(5.2) 1101ir < ch ( )rs)t loX, s ESohT, s<r< 1, 

are available [4]. Moreover, the projection operator Po satisfies the approxi- 
mation result [9] 

(5.3) I|U- PUIjHr < chswrflUlIHs, u E Hs, 

0 < r < s < 2, r < 3 . In the case of the projection Pt we confine ourselves to 
the (easily verified) property 

(5.4) |IU PtUlHHr(O,T) < Chsr IUlIHS(O,T) U E Hs(O, T), 
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where O < r < 1, s takes the values s = 1, 2, and u e Hs(O, T), u(O) = O. 
In the following proof we use the further estimates 

(5.5) OOU||-,O < CHjUHj1-r,O, u E H'-r O(RT), 0 < r < 1, 

and 

(5.6) 3latullo, -s ? cHulHlo,S, U E HO 1-s(RT), 0 < S < 2. 

These results can be verified using the eigenfunction representation of the aniso- 
tropic norms, as described, e.g., in [17, pp. 86-88]. 

For the proof of our convergence results we make additional regularity as- 
sumptions on the solution u of (2.3). It is obvious that these conditions can 
be weakened in many ways, but we prefer to keep the presentation short and 
elementary. 

Lemma 5.1. Assume that u E XO(1RT) such that u(O, .), (aou)(0, *) E H2(0, T) 
for almost all 0, and (atU)(*, t) E H2 for almost all t. Then we have the 
approximation result 

(5.7) I [ u - Po,tuI [ _ 2_ < chS 
I 

latUl 12, 0 + cht (h' + ht4) (IJlUJIO, 2 + liaO Ul l0,2) . 

Proof. We use the decomposition 

(5.8) 0a0t(u - Po,tu) = 0o(I-P)0tu + at(I-Pt)0ou - ao(I-Po)0t(I - Pt)u. 
By (5.5), (5.3) there holds 

1 1ao(I -pO)atUl 12 I < lia (I _ po)tl1 < Cl I(I _ po)tl1 

< (I-Po)0tU(., t)112 1 dt 

< cho2H) I9tu(, t)II2rdt, r = 1, 2, 

which yields 

(5.9) lI0o(I-Po)0tuI Ki i < ch 2I|l0tUlIr,o r = 1, 2. 

Analogously, by (5.6), (5.4), 

Ilat(I - Pt)aoU112 I < Hlat(I - Pt)aou12 I < cI(I -Pt)0ou11 
2 

(5.10) j Pt)0gu(0, Ha(O,T) - 

? c I'-)12 dO < ch7 lIaoUH12. 

For the last term in (5.8) we first use (5.9), 

{l0oI-P00t(-Pt)| 12I I< chol lat(I -P)l 2O 

< cho j (lat(I - Pt)a0u(o, )HO(O ,T) + Iat(I - Pt)U(0, )HO(O, T))dO 

K choh2(IIuI12 + H0OUHo2) <COt2 (I IU1 2 + I 0S 10 2) 

This, with (5.8), (5.9), and (5.10), gives the estimate 

(1)laoat(u - Po,tU) -i i- < ch2h(latu12,O + Ch 4 110 10u 2 

+chi2ht(IJuIIo,2 + |laOU11052). 
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Slightly modifying the proof of (5.1 1), we get 

(5.12) lI(at (80 J)(u - P,tu)I_ II <? t 

and (5.7) follows by (5.1 1), (5.12). El 

From Theorem 4.1 and Lemma 5.1 we obtain 

Theorem 5.1. Assume that the solution u of the equation Su = f satisfies the 
assumptions u c Xoo(1RT) such that u(O, .), (aou)(0, *) c H2(0, T) for almost 
all 0, and (atu)(., t) c H2 for almost all t. Then the collocation approximation 
uA E-J( defined by (3.1) furnishes the asymptotic error estimate 

(5.13) |Iu - uAII_1 < ch2IlatUl12,0 + cht(h2 + h74)(HuUIIo,2 + Ilaou1lo,2). 

By the estimate (5.13) the time step ht dominates the order of convergence. 
This effect can be compensated by letting the time-discretization be finer than 
the discretization in the space variable. 

Theorem 5.2. Let the assumptions of Theorem 5.1 be valid. Moreover, suppose 
that ho < h and ht < chv, where h < ho is sufficiently small. Then the 
collocation approximation uA satisfies 

(5.14) Illu - uAlI l- < chIlatUl12, 0+ chmin(5v v+ )(JuHIo,2 + 11&oullo,2) 

and in particular for v> 6 
-5, 

(5.15) Illu - uAll-IK _ < chi (IJuJIO,2 + OIuoIa0,2 + HlatuH12,O). 

The final aim of this section is to establish pointwise and L2 convergence 
results for the collocation solution. For this, we need the following inverse 
estimate. 

Lemma 5.2. In the space A' we have 

(5.16) flat&ovlo,o + II(at 0 J)vIlo,o < cmax(h , ht 47)IIIV I,_ 

Proof. We prove the estimates 

(5.17) IIvII0,0 < cmax(hr, h-2)IVIIr,-2 0? < r < 1, 

(5.18) IIata0vHI0,0 < cmax(hhr, h7)2ItaOvII-r,-2 O< r< 

(5.19) II(9t 0 J)vIIo,o < ch721(9t (0 J)VIK-r,-. 0 < r < 1. 

Then the assertion follows from (5.18), (5.19). Let v E A4f and 0 < r < 1 . By 
(2.13), (5.1), (5.2), 

|V||12 r < C I||v( t)j1 2r dt [ c I 
Ilv(O 1)2 L dO 

(5.20) ?iT< chj 2r v(, t) | 1Ho dt +j cht r IIv (0 )II T d 

< c(h -2r + h-r)IIVI2Io 0< c(max(ho r , h7))2HvII,0. 
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We use the duality Hr( 2(RT) = (Ho1 21(RT)) for 0 < r < 1. The Schwarz 
inequality implies 

(5.21) ivio0 ? lIvi1r, r IIVIIrr K- < cmax(h r , ht )lIVIr, IIVIIo,O, 

which yields (5.17). The estimate (5.18) follows similarly for 0 < r < 2 since 
the derivative t(O9v is a piecewise constant function. To see (5.18) for r = 

we use 

(5.22) Ikat9ov(Io,o < cmax(h 4, h7 )jIIt&9ovIj- 4, 
- 

, 

which further gives 

liataOV112 4 8< IlatOOV110tollat90VII IS- 

< c max(h^ 4 , ht ) 1 l9toov 1 , {|toov I -2I 

and therefore 

II8tOovK I I < c max(hS 4, ht 8)jIta0vjI l. 

Using this with (5.22), we obtain (5.18) with r . The proof of (5.19) is 
analogous. O 

Next we consider convergence by using 

IIIVIIo,o0 = lat&OVIIo,o + VO(at 0 J)VfI0,o. 

We have the approximation property 

(5.23) Illu - Po,tu(IIo,o < ch(ll(tuf12,0 + cht(tfuf(0,2 + |1&ou110,2) 

for u E XoO(RT) satisfying the assumptions of Lemma 5.1. The proof of this 
result is a simplified version of the proof of (5.7) and therefore is omitted. Now 
we obtain 

Theorem 5.3. Let the assumptions of Theorem 5.1 be valid. Further, let coh < 
ho < h and coh2 < ht < chv, where h < ho is sufficiently small and v > 65. 

Then we have for the collocation approximation uA 

(5.24) IIIu - uAf(jo,O < ch(I(ulJO,2 + 1(9u0Io,2 + IatulI2,0). 

Proof. Because of the lower bounds coh < ho, coh2 < ht the inverse property 
(5.16) implies 

I((u - uA(f(o,o < IIIu - P0,tu(IIo,o + (((Po,tu - uA(IO,o 

fIlu - Po,tulIo0,o + ch- (IIIPo,tu - UAjj. + uu4 

< Illlu - Po,tulllo,o + ch-' (IIIPO,tu - ulli- , IIIUA - Ulil- _1) 

which together with (5.7), (5.15), and (5.23) yields the assertion (5.24). U 

Finally, we have the following result for pointwise and L2 convergence. 
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Theorem 5.4. Under the assumptions of Theorem 5.3 there holds 

max l(u - uA)(0, t)l < ct h(IIuIo0,2 + 1 10OUII0,2 + 1l19tull2,o), 
(5.25) OE[O, 11 

0< t < T, 

(5.26) IIu - UAII0,RT ? ch(IjuJI0,2 + laoU110,2 + IlatuI12,0). 

Proof. Since (u- uA)(0, 0) = 0, we get 

t 2 

l(U - UA)(0, t)12 = a(u - UA)(O, z) dz 
(5.27) 0 

< t la(u _ UA)(0, z)12 dr. 

On the other hand, the Sobolev embedding theorem yields 
I 

Ia,(U - UA)(O, z)12 < cj (ja&q,&(U - UA)( , z)12 + I(a, 0 J)(u - UA)(T)l ) dqo. 

Inserting this into (5.27), we obtain 

K(U _ UA)(0, t)12 < Ct(ja0at(U _ UA)11o2T + 11(at 0 J)(u - uA)11o2IT) 

which together with (5.24) gives the estimate (5.25). The second assertion fol- 
lows from (5.25). El 

6. NUMERICAL IMPLEMENTATION 

In this section we discuss the numerical solution of the single-layer heat op- 
erator equation. For numerical computation we use the basis functions YInXm 
of 9. Here, q/i = Y/n(O) are the 1-periodic functions introduced in ?2, and 
Xm = Xm(t) are the Courant functions such that 

( l, =m 
Xm(ti){0 

Writing 
N M 

UA(f, t) = s E Zem, n Vn (O)Xm (t), 
n=1 m=1 

we obtain the collocation equations 
N M 

(SUA)(Oi I t) = E E 01m,n(S(VQnXm))(0i, tj) = f(Oi, ti), 
n=1 m=l 

1 <i<N, 1 < j<M. 

The representation formula (2.2) yields 

(6.1) 

(S(qinXm))(0i, tj) 
1 

Vn ((P) tJ Xm(T() exp (Ix(Oi)- x(y)I2) dd 
47r ~(tj T ') 4tj-r)J 

In the direct method (see (1.1 1), (2.3), (1.6)) we have the right-hand side func- 
tion 

f(0, t) = 2g(x(O), t) + (D-g)(x(0), t) = 'g(x(O), t) + (D(g)x'j))(0, t) 
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with the double-layer heat operator 

/4I/4, (x(O) - X() 
(Du)(0, t) = 1010 u(( T) 2(t T ) E(x(O) - x(9p), t - T)dp dT. 

We replace the exact values f(Oi, tj) by the approximations 

f(Oi, t1) = _g(x(O1), tj) + D(glx'j)(01, tj), 

where glx'l E , is the nodal point interpolant of the function g(x(O), t)lx'(O)I. 
Therefore, we need the values 

(D(y1nXm))(0j, tj) = 8 j ((9) n,p * (x(0 1) - x(?9)) 

x 
[ti 

Xm(T) exp ( x(O,) 
- 

x() 2 dTdp. 

In (6.1) and (6.2) we abbreviate 

(tj - T) ( 4() - T) 

(6.4) bj,m(i, (o) = x(6 ) - x(9o) 2 j ' Xm (T) exp ( IX(OI) X(P) 1)2 dT 

and define the N x N square matrices Aj,m, Bj,m , 1 < j, m < M, by 

(6.5) (Aj,m)i,n = 4 i/i Yn(p)aaj, (im p)dy, 1 < i, n < N, 

(6.6) (Bj, m) i, n =I f n (V)flX((0() bX( ))bm(i, (p)dVp, 

1 < i, n < N. 

From (6.3), (6.4) there follows Aj,m = Bj,m = 0, j < m, and moreover, 

Aj,m = Aj_m+,I =: Ajim+i Bjm=Bjm+I =: Bjm+ , j > m, 

which yield the block lower triangular matrices V - (Aj, m), = (Bj, m), 

( AI 0 ... 0 \ 1 0 .. 
=,A2 A1 ? 01 1 ).. O 

Am . .. A Bm ... ... B 

Introducing the N-dimensional vectors 

Cem, g(X(01) S tm) g(x(01), tm)|x (Oi)l0 
am Gm * ( Gm= I * 

\ Cem , N , < g (X(ON), tmi) g(x(ON) , tm) X'(ON)) 

we have for the direct method the right-hand side 

F2 G2 B2 0, ... ? G2 

F;n) Gm \Bm Bm- B ). B Gm) 
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This gives the linear equations _V a = 9, where the components ai are ob- 
tained by applying the formulas 

k-I 

A1ae1 = F1, Alak =Fk- Ak+l-vav, k = 2, ...,M. 
v=1 

Because of the coercivity of the single-layer operator, the matrix X, or equiv- 
alently, A1 is invertible. In the computations we have used the Gaussian algo- 
rithm for inversion of the matrix A1 . 

Let us turn to the evaluation of the matrix elements. We compute the double 
integrals in the matrix elements by using analytical integration with respect to 
the time-variable. For this we introduce the exponential integral function [1] 

roo e-z 
El(z)= e -dz, 

z 

which has the logarithmic singularity ( y is Euler's constant) 

El (z) = -y - log(z)-E(k) 7k I argzl < 7r, 
k=l 

at the origin z = 0. When z is approaching infinity, the function E1 (z) decays 
exponentially. Denoting 

ks(z) = El (z) + zEl(z) - e-z, fd(z) = zEl(z) - e-z, 

we obtain 

aj m(i, yP) = (I -m+ ?1)fsI (4 
_ 

- (P) 1)2) 2(j - m)fs (I X(O) _ X(t)i) 
?(j-m-1)f 

, 
( _xXoi) ) 12< <m?j -2, 

+ 
- M - Ofs ~4(j - m - 1)ht 

and 

aj,m(i, 2) 
I 

X(=2f ) - x(Go)2 2 (f lX(Oi) x(- , = 
2 ) 

8ht 4ht 

ajm(i, IP) fs (I X() - 
X()p)12) m = j. 

41ht 
For bj, m (i, qp) we have similar expressions with the function fs replaced by 
fd A 

With respect to the space-variable, numerical integration has to be applied. 
We decompose the integrand in (6.5) into a singular part with logarithmic sin- 
gularity and a smooth part. Exact integration is used for the singular part. For 
the smooth part, Gaussian quadrature with three integration points in the refer- 
ence interval is applied. This method is analogous to the computations for the 
harmonic single-layer operator [12, 13]. We remark that the integrand in (6.6) 
is a continuous function but the first derivatives have a logarithmic singularity. 
This fact has been taken into account in the numerical integration. 

7. NUMERICAL RESULTS 

In the following examples the spatial domain is the unit circle Q = {xl lxi < 
1 } with boundary F. We use the direct boundary integral approach, which leads 
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to the single-layer operator equation Su = f. For the solution we have u = 

ix'1O,(D, where 0O, is equal to the interior limit of the normal derivative. The 
examples are taken from [19], where the Galerkin approximation is considered. 
For other results see [21, 25]. 

First we consider the heat conduction problem 

O- A(D-A =0 inQx(0, 1), 
(7.1) ZT =t on F x (O, 1), 

'D(x,0)=0, xEQ, 

which has the solution 

(7.2) D(r, 0, t) = t2 -4 z 
J 

(0o kr) [t (- ] ' 
g3 ~~~~~flo, k) 

with the normal derivative 

(7.3) 4n(6(f, t) = t - 4 (1 4 
k=1 0, k 

In the formulas (7.2), (7.3), Jo(z) and J1(z) are Bessel functions and the 
numbers A,b k are the positive zeros of Jo(z). In problem (7.1), the bound- 
ary condition and the exact normal derivative are independent of the space 
variable. The same property is also satisfied by the collocation approxima- 
tion. We have calculated the numerical solution to the single-layer operator 
equation. The corresponding L2 errors with 8, 16, 32, 64 nodes on the spa- 
tial boundary, and 8, 16, 32, 64, 128 nodes on the time boundary [0,1], are 
presented in Table 1. The results indicate that convergence is slightly faster 
than quadratic with respect to the time-step. The rate is computed by using 
the formula ln(e(64)/e(128))/ln2, where e(128), e(64) are the L2 errors for 
h 12 6 I' respectively. 

TABLE 1. Absolute L2-errors 

8 16 32 64 128 rate 
8 0.0003920 0.0000750 0.0000148 0.0000033 0.00000113 1.5 
16 0.0002761 0.0000523 0.0000099 0.0000018 0.00000037 2.3 
32 0.0001952 0.0000369 0.0000069 0.0000019 0.00000024 2.4 
64 0.0001380 0.0000261 0.0000049 0.0000009 0.00000017 2.4 

In the second example, 

O t(D - A(D = 0 in Q x (0 , 1), 

0yI, = t2 cos(27rO) on F x (0, 1), 

t ?(x, 0) = 0, Xe EQ, 

the given boundary data depends on both variables 0 and t. The solution 
00 r [ 

(D(r, 0, t) = rt - 4 J1(fl,kr I-~1~ cos(27r0) 
g 2(l,k) L Jl 
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has the normal derivative 

0,(D(O , t) = t2 + 0.5t -4 E 
e 

( ,k) cos(27rO), 
k=1 il,k 

where the numbers fll, k are the positive roots of the function J1 (z) . In Table 
2 we have listed the L2 errors with 8, 16, 32, 64 nodes on the spatial boundary, 
and 4, 8, 16, 32, 64, 128 nodes on the time boundary [0, 1]. 

TABLE 2. Absolute L2 errors 

4 8 16 32 64 128 
8 0.003615 0.003077 0.002339 0.001700 0.001216 0.000864 
16 0.000935 0.000518 0.000426 0.000319 0.000230 0.000164 
32 0.000742 0.000134 0.000070 0.000056 0.000042 0.000030 
64 0.000567 0.000105 0.000018 0.000009 0.000007 0.000005 

For this example we illustrate the L2 convergence in Figure 1. The curves 
corresponding to constant space steps ho = 1 1 1 1 are drawn by using 8, 16 3 2 '64 a logarithmic scale. Thus, the slope represents the rate of the convergence. 
The lines starting from the upper left corner correspond to convergence rates 
&(h), &(h ), &(h2) . It seems that convergence is quadratic with respect to the 
L2 norm if the time-step is sufficiently small compared to the space-step. 
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We have also done experiments regarding the run time of the program. In 
Table 3 the percentile distribution of execution time is presented when the 
program, written in Turbo C language, was run on a Everex Step 386 SX/387 
SX, 16 MHz. The data for Table 3 was collected from the output of the Turbo 
Profiler program. 

TABLE 3. Run time data for the program 

space/time meshes 16/16 32/16 16/32 
double-layer operator 23 24 19 
single-layer operator 20 22 17 
exponential integral 20 22 16 
other functions 04 02 04 
matrix multiplication 20 11 33 
matrix inversion 02 09 01 
others 11 10 10 
total execution time 37 sec 71 sec 85 sec 

It turns out that about 56-70% of the execution time is used for setting up the 
linear equations. We remark that special care must be taken in the computation 
of the exponential integral function. 

BIBLIOGRAPHY 

1. M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematicalfunctions with formulas, 
graphs and mathematical tables, U.S. Government Printing Office, Washington, DC, 1971. 

2. D. N. Arnold and J. Saranen, On the asymptotic convergence of spline collocation methods 
for partial differential equations, SIAM J. Numer. Anal. 21 (1984), 459-472. 

3. D. N. Arnold and W. L. Wendland, On the asymptotic convergence of collocation methods, 
Math. Comp. 41 (1983), 349-381. 

4. I. Babuska and A. K. Aziz, Survey lectures on the mathematical foundations of the finite 
element method, The Mathematical Foundations of the Finite Element Method with Ap- 
plications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 
1972, pp. 3-359. 

5. A. Bamberger and Duong T. Ha, Formulation variationnelle espace-temps pour le calcul par 
potentiel retarde de la diffraction d'une onde acoustique (I), Math. Methods Appl. Sci. 8 
(1986), 405-435. 

6. , Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par 
une surface rigide (II), Math. Methods Appl. Sci. 8 (1986), 598-608. 

7. M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator 
Theory 13(4) (1990), 498-552. 

8. M. Costabel, K. Onishi, and W. Wendland, A boundary element collocation method for the 
Neumann problem of the heat equation, Inverse and Ill-Posed Problems (H. W. Engl and 
C. W. Groetsch, eds.), Academic Press, New York, 1987, pp. 369-384. 

9. J. Elschner and G. Schmidt, On spline interpolation in periodic Sobolev spaces, Preprint 
01/83, Dept. Math. Akademie der Wissenschaften der DDR, Berlin, 1985. 

10. A. Friedman, Partial differential equations of parabolic type, Robert E. Krieger Publishing 
Co., Malabar, FL, 1983. 

11. M. Hamina and J. Saranen, On the collocation approximation for the single layer heat 
operator equation, Z. Angew. Math. Mech. 71 (1991), 629-631. 



64 MARTTI HAMINA AND JUKKA SARANEN 

12. G. C. Hsiao, P. Kopp, and W. L. Wendland, A Galerkin collocation methodfor some integral 
equations of the first kind, Computing 25 (1980), 89-130. 

13. , Some applications of a Galerkin-collocation method for boundary integral equations 
of thefirst kind, Math. Methods Appl. Sci. 6 (1984), 280-325. 

14. G. C. Hsiao and J. Saranen, Coercivity of the single layer heat operator, Technical Report 
89-2, Department of Mathematical Sciences, University of Delaware, 1989. 

15. , Boundary integral solution of some heat conduction problems, Proc. Intemat. Conf. 
on Integral Equations and Inverse Problems, Varna, September 18-23, 1989. 

16. , Boundary integral solution of the two-dimensional heat equation, Math. Methods 
Appl. Sci. 16 (1993), 87-114. 

17. J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, 
Springer-Verlag, Berlin, Heidelberg, New York, 1972. 

18. , Non-homogeneous boundary value problems and applications II, Springer-Verlag, 
Berlin, Heidelberg, New York, 1972. 

19. J. P. Noon, The single layer heat potential and Galerkin boundary element methods for the 
heat equation, Ph.D. Thesis, University of Maryland, 1988. 

20. K. Onishi, Convergence in the boundary element method for the heat equation, TRU Math. 
17 (1981), 213-225. 

21. H. G. L. Pina and J. L. M. Fernandes, Applications in transient heat conduction, Topics 
in Boundary Element Research 1 (C. A. Brebbia, ed.), Springer-Verlag, New York, 1972, 
pp. 41-58. 

22. W. Pogorzelski, Integral equations and their applications, Pergamon Press, Oxford, 1966. 
23. J. Saranen, The modified quadrature method for logarithmic-kernel integral equations on 

closed curves, J. Integral Equations Appl. 3 (1991), 575-600. 

24. J. Saranen and I. H. Sloan, Quadrature methods for logarithmic-kernel integral equations on 
closed curves, IMA J. Numer. Anal. 12 (1992), 167-187. 

25. F. Sgallari, A weak formulation of boundary integral equations for time dependent problems, 
Appl. Math. Modelling 9 (1985), 295-301. 

SECTION OF MATHEMATICS, FACULTY OF TECHNOLOGY, UNIVERSITY OF OULU, SF-90570 
OULU, FINLAND 


	Cit r43_c44: 
	Cit r32_c33: 
	Cit r44_c45: 


