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DECIPHERING SINGULARITIES BY DISCRETE METHODS 

YVES TOURIGNY AND MICHAEL GRINFELD 

ABSTRACT. We consider the problem of estimating numerically the parame- 
ters of singularities of solutions of differential equations. We propose a novel 
approach which is based on discretizing the governing equation and "time- 
stepping" in the complex domain. Some applications to ordinary and partial 
differential equations are discussed. 

1. INTRODUCTION 

Many nonlinear differential problems feature local solutions which develop 
singularities. From a mathematical point of view, the question as to whether 
a singularity will occur is fundamental, since most global existence proofs are 
based upon extending the local solution. Further, the occurrence of singularities 
in mathematical models often has a physical interpretation (e.g., ignition in 
combustion, focusing in optics, cusps in free-surface flows, etc.), and it becomes 
important to determine the location and nature of the singularities, as well as 
their dependence on the data. 

Numerical investigations of singularities can be useful in many contexts. 
They may provide a practical means of testing mathematical results or may 
serve as a heuristic tool in forming plausible conjectures. In addition, there 
are many examples in numerical analysis where the presence of singular points 
leads to a severe loss of computational efficiency. In such circumstances, much 
could be gained by making appropriate use of information on the troublesome 
singularities. 

Following Sulem et al. [23], we may divide the methods which have been used 
for the detection and decipherment of singularities into two broad classes: those 
based upon expanding the solution in a Taylor series, using some known initial 
or boundary data, and those based upon discretizing the governing equation. 

Methods based upon discretization offer great flexibility and are generally 
easy to implement. In the development of such methods, considerable thought 
must be given to the problem of extracting estimates for the singularity parame- 
ters from a sample of the values taken by the discrete solution. Sulem et al. [23] 
describe a technique which exploits the structure of the Fourier spectrum (in 
space) of the discrete solution. Tourigny and Sanz-Serna [24] obtain estimates 
via least squares fitting. In the latter case, the formulae for the singularity pa- 
rameters are valid only asymptotically as the singularity is approached. In this 
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limit, it is necessary to adjust the mesh size so as to maintain the accuracy of the 
discretization. For this reason, the development of special adaptive techniques 
[2, 9] has received some attention. 

By contrast, in techniques based on Taylor series, the accuracy of the esti- 
mates for the singularity parameters can, to some extent, be monitored "away" 
from the singularity by processing a sufficiently large number of Taylor coef- 
ficients. This approach has a sound mathematical basis [5, 6, 14]. However, 
its success depends upon the possibility of computing the coefficient sequence 
efficiently. Meiron et al. [19] give some indication of the computational effort 
required to generate Taylor coefficients in a nontrivial context. 

Of course, in addition to the two classes described above, one may also envis- 
age the development of "hybrid" methods. In [16], discretization formulae are 
proposed which incorporate the singularity parameters as additional unknowns. 
Estimates for the singularity parameters are then found by maximizing the or- 
der of consistency. As it turns out, the resulting estimates are identical to those 
obtained by Chang and Corliss [5] on the basis of Darboux's theorem. In order 
to avoid evaluating high-order derivatives, Shaw [22] proposed a modification 
of the basic method which requires divided differences instead. 

In most applications, the independent variables have a physical meaning and 
are usually restricted to the real axis. However, for the purpose of investigating 
singularities, it is more fruitful, as anticipated by Corliss [6], to take a broader 
view and continue the solution along complex paths. In this work, we make 
systematic use of integration in the complex domain and show how this can 
assist in the numerical analysis of singularities. In our approach, the computa- 
tional basis is provided by "classical" discretization schemes (notably those of 
the Runge-Kutta class). A link with methods of Taylor series type is provided 
by an algorithm due to Lyness [18] which, in essence, is a discrete version of 
Cauchy's integral formula for a circular contour. This enables the calculation 
of approximate Taylor coefficients via Fast Fourier Transform. 

Those approximate Taylor coefficients may be used to locate the singular 
points and also to determine the order of poles [10]. In order to determine 
the nature of algebraic branch points, we propose a novel technique based on 
"numerical continuation". In short, this method yields estimates for the order 
by processing the variation in the discrete solution after it has been continued 
along a closed path surrounding the singularity. 

The remainder of the paper is structured as follows: In ?2, we briefly review 
Lyness's algorithm for the approximate calculation of Taylor coefficients. The 
application of this algorithm to the problem of locating singularities of solutions 
of differential equations is discussed in ?3. In ?4, we apply this technique to 
a semilinear parabolic equation and study the motion of complex singularities 
for a one-parameter family of initial data. In ?5, we examine the problem of 
finding the order of branch points by numerical continuation. Finally, ?6 is 
devoted to a summary of our conclusions. 

2. THE CALCULATION OF DISCRETE TAYLOR COEFFICIENTS 

In order to simplify the exposition, we shall, for the moment, restrict our 
attention to the scalar Cauchy problem 

(2.1) dx = f(x, t), x(0) = xo, dt 
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where f is analytic at (xo, 0). The solution x may be represented by a Taylor 
series 

00 

(2.2) x(t)=Zant', Itl <R, 
n=O 

where R is the radius of convergence. The nearest singularities of x lie on 
the circle of convergence. If, in addition, we assume that xo is real and that f 
is real for real values of x and t, then the singularities are either on the real 
axis, or else occur as complex conjugate pairs. In either case, the location of 
the singularities may be estimated in terms of the sequence {an } (cf. ?3). 

Brent and Kung [3] describe an algorithm applicable to a large class of ordi- 
nary differential equations which can, in principle, generate the first n Taylor 
coefficients in O(n log n) operations. This algorithm is based on linearizing the 
differential equation via Newton's method. It uses the Fast Fourier Transform 
in order to compute products of polynomials. However, the practical use of 
this algorithm is limited by the fact that a sufficient (a priori unknown) num- 
ber of the first coefficients must be available initially in order to guarantee the 
convergence of Newton's iteration. The algorithm implemented by Corliss and 
Chang [8] is based on Leibniz's rule and computes the first n coefficients in 
0(n2) operations. The algorithms used in symbolic packages such as MAPLE, 
REDUCE, or MACSYMA are generally impractical unless the function f in 
(2.1) is particularly simple. 

In terms of flexibility and ease of implementation, it may be more profitable 
to calculate approximate rather than exact coefficients. In the remainder of this 
section, we review an algorithm due to Lyness [18]. 

Cauchy's integral formula applied to a circular contour of radius r < R 
centered at the origin yields 

an= [] x(re'o)e-ino dJ 

The expression within brackets is the nth Fourier coefficient of the periodic 
function x(rei0). Lyness [18] suggests the approximation 

FNi1 
(2.3) an= n I: x(re'0i)e-in0] 

r N 

for an , where Oj = 27rj/N. The expression within brackets in (2.3) is a discrete 
Fourier coefficient of x(rei0). Thus, the N approximate Taylor coefficients 
a(N), n = 0,', ...I , N - 1, may be computed in O(NlogN) operations via 
Fast Fourier Transform. 

The formula (2.3) requires the evaluation of the solution x at equally spaced 
points along the circle of radius r centered at the origin. The algorithm can 
therefore be used in conjunction with time-stepping procedures. Assuming that 
a method has been selected for the discretization of (2.1), we define the discrete 
Taylor coefficient ah via 

N-1 

(2.4) rn ah = xhe -in 

j=O 
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where x4 is the discrete approximation to x(rei0). 
We now discuss the accuracy of this procedure. We have 

(2.5) rn an-r ah = (r an-r a(N) + (rna N) - r a). 

By standard approximation theory, 
00 

rna (N) _ rn an= 'n+kN kN, O < n < N - 1. 
k=1 

Thus, the difference between a(fN) and an depends on the decay rate of the 
Taylor coefficients of x. Cauchy's estimate yields 

(2.6) Irna(N) - rnaI < ? max Ix(pe'0)I, O < n < N- 1 1 <0<27r 

where A = r/p and p is any positive number in (r, R). This shows that the 

error in approximating an by a(fN) (n and r fixed) decays exponentially as N 
increases. 

It is also easily seen that, if p is the order of consistency of the discretization 
employed, then 

Irna (N) -rnahl < Cr,phP, 

where Cr,p is a constant independent of n and h which, roughly speaking, is 
the size of x(P+0 along the circle parametrized by reiO . In practice, the error 
due to the discretization clearly dominates in (2.5). 

3. LOCATING SINGULARITIES: FIRST EXAMPLE 

The discrete Taylor coefficients may be used to locate singularities. For the 
purpose of illustration, consider the model problem 

dx 31_t) (3.1) =x3(1-t), x(O) = Xo, 
dt 

where xo is real. The solution 

x(t) = (1/x2 - 2t + t2)?-/2 

has algebraic branch points at 

t* = 1 ? (1 -1 2)1/2 

(For xo = 1, the two branch points merge into a pole.) Thus, x has no 
real singularities if lxoI < 1. This situation is typical of many differential 
problems for which global existence for t > 0 is only guaranteed if the size of 
the initial datum is below a certain threshold [17]. We use the classical Runge- 
Kutta method [4] for the discretization of (3.1). This is a fourth-order explicit 
scheme. 

We begin with the case xo > 1. This gives rise to a real singularity located 
at 

t* =R= 1 -(1-/X2)i2. 

The parameter R may be estimated from the following formulae [5, 14]: 

(3.2) 1 _ an + O(n-1) (ratio test), 
R an2- 

(3.3) 1 n (n - 1)anfI + O(n-2) (three-term test). 
R a - ,- 
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Replacing a, by ah in (3.2) and (3.3), we obtain discrete estimates of R. 
In Table 1, the results obtained by using discrete and exact Taylor coefficients 
in each test is summarized. These calculations, as all those reported in this 
paper, were carried out on a network of Sun computers using double-precision 
complex arithmetic. In the present case, the value r = .2 was used. The 
quantity h = 1/N denotes the reciprocal of the number of steps used to march 
along the circle. 

TABLE 1. X0 XV2, R = .29289322 
n Ratio test Three-term test 

Exact h - 2-8 h - 2-9 Exact h = 2-8 h = 2-9 
10 .30851892 .30851895 .30851892 .29261669 .29261681 .29261670 
20 .30044749 .30044784 .30044751 .29284385 .29284516 .29284393 
40 .29661094 .29661430 .29661113 .29288247 .29289637 .29288318 
80 .29473777 .29452297 .29522056 .29289070 .33463291 .40358805 

These results, and more particularly those corresponding to n = 80, are best 
explained in terms of the relative error 

eh = rah _ rna 
n rn an 

incurred in approximating rnan We have 

ah_ an 1+ eh 

ah anI 1I + ehn- 

Thus, we see that in order to approximate the ratio an /an- to a good accuracy, 
we need to select h and r in such a way that 

leh_11, lehl < e 

where e is a given tolerance. Assuming that the error due to the discretization 
dominates in (2.5), we are led to the requirement 

(3.4) Cr,phP < ern anl < e(r/R)n, 

approximately for large n, using Hadamard's formula. This shows that, for a 
fixed value of r < R, only O(p log h ) of the ratios may be approximated to a 
good accuracy as h -- 0. As a consequence, if the formulae (3.2) and (3.3) are 
used for the approximation of R, then the procedure described above converges 
extremely slowly as the stepsize is reduced. 

In some instances, however, it is possible to obtain estimates for R which 
converge at the rate O(hP). For the particular problem (3.1), this can be 
achieved by applying the ratio test to the logarithmic derivative of x rather 
than to x itself [1]. Indeed, note that the derivative of log x(t) has a pole at 
t = R, and thus 

31 ?bn + O(,un) (d-log ratio test), 
R bn-l 

where bn denotes the nth Taylor coefficient of (dx/dt)/x, and 0 < u < 1 is 
the ratio of the distances to the two branch points. In the context of Lyness's 
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algorithm, this idea is easily implemented. We simply set 

(3.6) rn N (x, re 6)e -in0i 

where Oj and x: are just as in (2.4), and where f(x, t) is the right-hand side 
of the first equality in (3.1). The results of numerical computations with r = .2 
are displayed in Table 2. 

TABLE 2. D-log ratio test. xo = V2_, R = .29289322 

n EXaCt h = 2-6 h = 2-7 h = 2-8 h = 2-9 
5 .29292929 .29292901 .29292928 .29292929 .29292929 

10 .29289322 .29289773 .29289350 .29289324 .29289323 
15 .29289322 .29291568 .29289447 .29289329 .29289322 
20 .29289322 .29296250 .29289658 .29289341 .29289323 

It should be pointed out that the result of applying the ratio test to the loga- 
rithmic derivative of x is not always as spectacular as in the present case. The 
estimate (3.5) is valid for solutions of the form 

x(t) = ( - t/tt*)-y(t) 

where y is analytic in a disk of radius greater than it.l. However, the solu- 
tions of even relatively simple ordinary differential equations often have a more 
complicated structure (cf. ?5). Nevertheless, the d-log ratio test often improves 
upon the accuracy of the ratio test by a power of n-I . 

We now turn to the case Ixo I < 1. This gives rise to complex conjugate 
singularities and, in this case, the previous formulae will lead to oscillating 
divergent sequences. For singularities located at t* Re?iO, the formulae 
(four-term test) 

(3.7) R2 _an2 - an3anl 2RIcos0 an-2an- na3an 
an - -anan-2 a2 -an-2an 

may be used. Note that these formulae are exact when applied to the logarithmic 
derivative of x. The results of sample computations with xo = 1/11 and 
r = .6 are summarized in Table 3, where estimates for the imaginary part of t* 
are shown. 

TABLE 3. xo= 0, Rsin0 = .31622777 

Four-term test D-log four-term test 
n Exact h= 2-9 h = 2-10 n Exact k = 2-9 k = 2-10 
5 .25148727 .25148726 .25148727 5 .31622777 .31622776 .31622777 

10 .31260602 .31260601 .31260602 10 .31622777 .31622775 .31622777 
20 .31980348 .31980362 .31980349 20 .31622777 .31622780 .31622777 
40 .31904765 .31904920 .31904887 40 .31622777 .31622780 .31622777 
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4. APPLICATION TO A SEMILINEAR PARABOLIC PROBLEM 

It is natural to ask whether the approach described in the previous section 
may also be used in the context of partial differential equations. This is indeed 
the case provided that the solution enjoys some analyticity properties in a suit- 
able region of the complex domain. One possible line of development is to com- 
plexify each independent variable and deal with multiple power series. In this 
respect, note that a generalization of Cauchy's integral formula is available in 
several complex variables. Thus, in principle, multiple Fast Fourier Transforms 
enable the calculation of approximate Taylor coefficients as before. However, 
before this program can be carried out, one requires a means of "numerically 
continuing" the solution in the complex hyperplane. Further, in several vari- 
ables, some theoretical work is needed in order to determine the relationship 
between the Taylor coefficients and the singularity parameters. 

For evolution problems, a simpler expedient is to reduce the problem to 
a system of ordinary differential equations via spatial discretization. In this 
section, we apply this procedure to the model problem 

(4.1) Ut = U2 +U (x, t) E (0, 1) x C+, 

(4.2) u(0, t) =u(1 , t)-=0, t EC+, 
(4.3) u(x, 0) = a sin7rx, x E [0, 1], 

where C+ is the set of complex numbers with positive real part and a is a 
real positive parameter. This problem and its generalizations have received 
considerable attention in the literature [17, 21]. In this section, we propose to 
trace numerically the motion of the singularities in the complex plane as the 
parameter a varies. This type of question is important in many contexts, but 
is still beyond the scope of rigorous analytical methods [15] . Nakagawa [20] 
has studied this problem by a finite difference method with a variable time-step 
and has proved the convergence of an estimate for the location of real positive 
singularities. 

For illustrative purposes, we have chosen the spatial discretization 

(4.4) dJ - 1(uj-l -2uj+uj+,)+ u,. J, dt X 
where Ax = 1/(J + 1) and uj(t) denotes an approximation to u(jAx, t). In 
the above expression, uo(t) = uj+ (t) 0. The time-stepping algorithm used 
is a fourth-order implicit Runge-Kutta method characterized by the table [4] 

y 0 0 y 
1/2 - y y 0 1/2 

2y 1 - 4y y 1 - y 

,B 1 - 2,B , 

where y = 1/2 + 1 /V3 cos(7r/ 18) and ,B = [6(1 - 2y)2]-f . As in the previous 
section, h denotes the reciprocal of the number of steps. 

In order to locate the singularities, we have chosen to expand uj(t) with 
j = (J + 1)/2. Alternatively, one could expand a suitable functional such as, 
for instance, the discrete counterpart of f u2(x, t) dx. This would present no 
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difficulty, since all that is required is the evaluation of the given quantity on a 
circle in the complex domain. In choosing the center and radius of the circle, 
one should however be careful to avoid the imaginary axis which, for the partial 
differential problem, constitutes the left-hand boundary of the region where u 
is expected to be analytic. Thus, we are interested only in the nearest singular 
points with strictly positive real part. 

For a fixed value of the meshsize Ax, we may locate the singularities by 
choosing a suitable point of expansion, and adjusting r and h appropriately. 
In our computations, we have observed that it is necessary to expand very near 
the singular point in order to ensure that the ratios a,l/an_ are accurately com- 
puted. This requirement becomes more severe as Ax is reduced. The imple- 
mentation only catered for points of expansion situated on the real axis. This 
made it difficult to accurately locate complex conjugate pairs of singularities 
since, in this case, only the first few Taylor coefficients could be well approxi- 
mated. For instance, in the case Ax = 1/20, a = 11.48, and r = 10-3, only 
the first six coefficients could be relied upon, as indicated in Table 4. 

TABLE 4. Four-term test for the imaginary part of the singular 
point nearest to t = .7 

n h= 2-6 h = 2-7 h =2-8 h =2-9 h = 2-10 h =2-1 
3 .35615107 .35652587 .35657155 .35657663 .35657715 .35657717 
4 .34899790 .34858438 .34850191 .34848921 .34848772 .34848793 
5 .36825079 .32551869 .31960534 .31883033 .31869438 .31879080 
6 - .30296600 .31784852 .32192211 .32011844 .31668660 

However, bearing in mind that the singularities for (4.4) should resemble poles, 
the number of coefficients obtained was still sufficient to guarantee two correct 
digits after the decimal point. Our findings are summarized qualitatively in 
Figure 1 and quantitatively in Table 5. 

TABLE 5. Estimated location of the singularities 
a 11.40 11.45 11.46 11.47 11.48 
t* .48 ? .321 .57 ? .32i .58 ? .32i .64 ? .32i .72 ? .321 
a 11.488842 11.488843 11.488844 11.488845 11.488846 
t* 1.53 ? 32i 1.57 + .321 1.66 ? .32i 1.76 1.60 
a 11.4889 11.49 11.495 11.5 11.6 
tF 1.36 .92 .75 .69 .46 

The results suggest the existence of a critical value acrit such that, for a < acrit 
the singularities move along an imaginary line. For ae > acrit, the nearest sin- 
gularity moves towards the origin along the real axis. Interestingly, the trajec- 
tory of the complex singularities does not join smoothly with the real axis as 
a -- Oct 

Naturally, those findings apply only to the semidiscretization (4.4) with the 
particular choice Ax = 1/20. Indeed, for a fixed value of a, the position of the 
nearest singularity will alter with the meshsize. As Table 6 indicates, however, 
a limiting value is achieved as Ax -- 0. 
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TABLE 6. t. as a function of the meshsize Ax (a = 11.6) 

Ax 10-1 20-1 30-1 40-1 50-1 60-1 
t* .4111 .4624 .4759 .4810 .4836 .4849 

Computations performed with the meshsize Ax = 1/30 have in fact confirmed 
the qualitative picture presented in Figure 1. 

Finally, let us mention that a spatial discretization based on a spectral 
Galerkin method with sines as basis functions would very probably have enabled 
a much more accurate resolution. Indeed, Professor C. Hunter [13] pointed out 
that the single-mode approximation 

u(x, t) U(t)sinix 

leads to the ordinary differential equation 

dU _72u + 8 u2, U0= . dU 
7.r 

U+U U(O)=a 
dt 7 

Im t* 

a= 11.40 a 11.488844 
0.32 X _ 

a=11.5 a=11.488845 

1.0 2.0 Ret* 

-0.32 X x x 

FIGURE 1 
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After integration, it is readily seen that U has a pole at 

t* - - log (1 - p3) 

This yields a,it 37(3/8 11.63. Further, for a 3737( /8, the nearest singular 
points are given by the complex conjugate pair 

( 
370 1 

1 2 log ( -ii -i. 7r 8a / r 
Since 1/7r 0.318, this is in remarkable agreement with our finite-difference 
calculation using 19 grid-points. Clearly, the transition from complex to real 
singularities in this problem deserves further study. 

5. THE ORDER OF BRANCH POINTS 

We now examine the problem of determining the nature of the singularities. 
The special case of polar singularities is a classical topic discussed by Hadamard 
at the turn of the century. We refer to Henrici [101 for a detailed exposition. In 
this paper, we shall concentrate on algebraic branch points. The basic principle 
can also be applied to logarithmic branch points. 

In principle, the order of branch points may be extracted from the sequence 
of Taylor coefficients. The formulae derived by Chang and Corliss [5] and 
Hunter and Guerrieri [14] are such that the location and order parameters are 
coupled. As a rule of thumb, the error in estimating the order is usually larger 
by a factor 0(n) than the error in estimating the location. Such formulae for 
the order often involve powers of n as factors, and this tends to amplify any 
error incurred in the approximation of the Taylor coefficients. 

In this section, we describe an alternative approach based on "numerical 
continuation". In order to motivate this approach, consider the simple case in 
which the solution x takes the form 

(5.1) x(t) = (t* - t)-y, 

where y is not an integer. Pose x(to) = xo. If x is continued along a simple 
closed curve surrounding the singular point, then its value after completing one 
circuit is 

-i27 

and thus 

(5.2) y= 2 (log(xo/xl). 

This suggests that we can obtain estimates for the order of an algebraic branch 
point by numerically integrating in the complex domain along closed curves. 
There are only two restrictions to observe: first, the branch point should be the 
only singularity enclosed by the curve; second, the discretization scheme should 
be consistent with the concept of Weierstrassian continuation. In particular, for 
evolution problems, the effect of taking one "time-step" should be equivalent to 
evaluating the solution from a truncated power series. Runge-Kutta methods 
obviously satisfy this requirement. One of the advantages of this technique is 
that the estimate for y is, to some extent, unaffected by small inaccuracies in 
locating the singularity. 
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If the singularities arising from differential equations were of the simple form 
(5.1), then the estimate (5.2) would be exact to within the discretization error. 
Save in exceptional cases, however, (5.1) is only valid asymptotically as t -) t* . 
The structure of the solution in the neighborhood of the branch point may be 
much more complicated. To give but a simple example, consider the case where 
the right-hand side f in the first equality in (2.1) is a rational function of x 
with coefficients algebraic in t. Assume that the numerator and denominator 
are of degree I and m, respectively, with / - m > 2. Following Hille [12], we 
may show that branch points exist for suitable values of xo, and that 

00 

(5.3) x(t) = E cj(t* - WY 
j=- 1 

for It - t*I < p, where p is some positive constant and y = 1/(l - m - 1). 
With this representation, we see that (5.2) should be replaced by 

1 
(5.4) Y = 2i log(xo/xl) + O(RY), 27(1 

where R = t* - to. Thus, we can estimate y accurately only as the singularity is 
approached. Further, for strong nonlinearities, i.e., for y small, the convergence 
of this estimate is very slow as R -> 0. 

It turns out that the fractional power series development (5.3) is typical of 
functions with an algebraic branch point. Without knowledge of y2, it is possible 
to use this information to retrieve y with increasing accuracy by winding around 
the branch point a sufficient number of times. 

Let x, be the value at to obtained after continuing x by winding around 
the singular point n times. Pose 

co = e i27, a1 = cjRjy(wo' - 1), and An X n+ -Xn 

We have 

(5.5) An = a- Iw-)` + a, w)n + a2 +* -, for n 0, 1. 

We may also write 

Ao = a-, + a, + * + aN-1 + O(RNY), 

Ai a-1w + alw- + * * + aN-lwN + O(R NY), 
(5.6) 

N N 
AN = -a- + a,1 + * + aN-1w N(N-i1) + O(RNY) 

For given A0, ... , AN, we may form a closed system of equations for the un- 
knowns a_I, al, ... , aN_I, and wo by ignoring the terms of order O(RNY) in 
(5.6). In order to estimate wo, we may use Prony's method [11]. Let 

(5.7) PN(X) = Z -N_aNLZN-1 _- 

be the polynomial with roots o- 1, , ,.. , CN . We can obtain estimates for 
the coefficients ao, ..., CeN-I as follows: multiply the first equality in (5.6) by 
-ao, the second by -a,, etc. up to the penultimate equality and add to the 
last equality to obtain 

AN - aAO + a1A1 + + aN-1AN-1 + O(RN7). 
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A similar equation is obtained if we consider A1, ..I , AN-I instead. By con- 
tinuing this process, we arrive at 

AN = a0A0 + a1A1 + + + N-1NAN-1 + O(RNY), 

(5.8) 

A2N-1 = aOAN1 + aIAN + + aN-1A2N-1 + O(RNY). 

With the terms of order O(RNY) ignored, (5.8) reduces to a linear system which, 
if nonsingular, yields approximations &j of the coefficients aj of PN. 

For example, in the case N = 1 , (5.8) reduces to 

A1 =aoAo? + (RY). 

The root of z - &0 provides an estimate for o- 1 , and we are led to the formula 

C- 1 = X2-X1 + O(R2y). 
X1-Xo 

This formula is exact if y - 1/2. In the case N = 2, (5.8) becomes 

A2 = a0A0 + a1A1 + O(R2y 

A3 = a0A1 + a1A2 + O(R2y). 

The resulting system is nonsingular unless y is a multiple of 1/2. The roots 
of z - _&z - _&0 provide estimates for co-1 and co, and we obtain a formula 
in terms of xO, ... , X4 which is exact for y = 1/3. More generally, it is 
straightforward to show that this procedure is exact for y = 1/(N + 1) . In 
this respect, the main observation is that Eq. (5.5) then involves no coefficients 
which have multiples of N + 1 as subscripts. 

Example 5.1. We consider the problem 

dx 
(X +t)x2, x(O)=.5. d t 

This leads to a real singularity at t- = 1.2105092. In order to estimate y, we 
integrate numerically along a circle of radius R centered at t* . We emphasize 
that this particular choice of contour is by no means the only possible one. It 
is only used to demonstrate the convergence properties of the procedure. The 
stepsize is such that the discretization error may be disregarded. The results 
obtained are shown in Table 7. The case N = 0 corresponds to the estimate 
(5.2). Note that, as expected, the error for the case N 0 decays like 0(v)R. 

TABLE 7. Estimates for the order of the singularity (y = 1/2) 
N=0 N= 1 

R Re y Im y Re y Im y 
1 .50000000e + 0 .89638197e - 1 .50000000e + 0 -.21203698e - 15 

2-1 .50000000e + 0 .95781585e - 1 .50000000e + 0 -.53009245e - 15 
2-2 .50000000e + 0 .79329707e - 1 .50000000e + 0 -.27564807e - 14 
2-3 .50000000e + 0 .60190474e - 1 .50000000e + 0 -.40993816e - 14 
2-4 .50000000e + 0 .44011445e - 1 .50000000e + 0 -.59016959e - 14 
2-5 .50000000e + 0 .31646490e - 1 .50000000e + 0 -.92589481e - 14 
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Example 5.2. Consider the problem 

dx = (x + t)x5, x(O) = .5. 
dt 

A real singularity is located at t* = 2.2864. The error incurred for the cases 
N = 0, 1, 2, and 3 are displayed in Table 8, together with the observed local 
rate of convergence as R -? 0. This is calculated by taking the logarithm of the 
ratio of successive errors and dividing by log 2. 

TABLE 8. Decay of the error (y 50 

N=0 N= 1 N=2 N=3 
R Error Rate Error Rate Error Rate Error Rate 
1 .35856e- 1 - .514855e- 1 - .571157e- 1 - .483825e- 1 - 

2-1 .356372e - I .01 .499021e - 1 .04 .566304e - 1 .01 .473218e - 1 .03 
2-2 .345054e - 1 .05 .479263e - 1 .06 .564901e - 1 .00 .453104e - 1 .06 
2-3 .329129e- 1 .07 .443135e- 1 .11 .560674e- 1 .01 .426686e- 1 .09 
2-4 .310526e - 1 .08 .386535e - 1 .20 .269176e - 1 1.06 .710014e - 2 2.59 
2-5 .290351e - 1 .10 .320395e - 1 .27 .181389e - 1 .57 .452980e - 2 .65 
2-6 .269368e - 1 .11 .257759e - 1 .31 .119042e - 1 .61 .276609e - 2 .71 
2-7 .248167e - 1 .12 .204135e - 1 .34 .776732e - 2 .62 .166030e -2 .74 
2-8 .227230e - 1 .13 .160242e - 1 .35 .508354e - 2 .61 .985732e - 3 .75 
2-9 .206956e - 1 .13 .125141e - 1 .36 .333694e - 2 .61 .587477e - 3 .75 
2-10 .187693e - 1 .14 .975028e - 2 .36 .220257e - 2 .60 .349089e - 3 .75 

This procedure yields N approximate roots of the polynomial PN in (5.7). 
Each of these roots leads to a different approximate value of the order y and 
hence, in the case N > 1, this introduces an element of choice. Our compu- 
tational experience suggests that the root corresponding to (O- often leads to 
a substantially more accurate estimate of y. The estimates reported in Table 
8 were based on that choice. The table indicates that each increment of N 
improves the rate of convergence by a factor of (roughly) y. This seems to be 
typical of the general case, and we conjecture that this procedure achieves an 
accuracy of O(R(N+l)y) for N < (1 - y)/y. 

Assuming that (5.3) holds, we may pursue the numerical analysis of the so- 
lution near the singular point still further. Having obtained an estimate for y, 
we can substitute in (5.6) to obtain, after truncation, a linear system for the 
unknown approximate values of aj. The results can then be translated into 
estimates for the coefficients cj in (5.3) by making use of an estimate for R. 

6. CONCLUSION 

In this paper, we have described a novel approach to numerically deciphering 
singularities arising from differential equations, which is based on discrete meth- 
ods employed in the complex domain. We have shown how Lyness's method for 
the generation of approximate Taylor coefficients may be succesfully combined 
with standard time-stepping procedures to yield an algorithm for the detection 
of the nearest singular points. We have also proposed a technique for the estima- 
tion of the order of algebraic branch points which uses numerical continuation. 
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One of the initial aims of this research project had been to develop numerical 
techniques for the estimation of the singularity parameters which would perform 
well without the need to compute excessively close to the singular point. As our 
numerical experiments show, we have been only partly successful in this respect. 
Nevertheless, the techniques described have the advantages of flexibility and 
ease of implementation. They are also amenable to rigorous analysis and should 
therefore deserve further development. In particular, it would be desirable to 
generalize those techniques to cater for multidimensional problems. 
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