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ON FABER POLYNOMIALS GENERATED BY AN m-STAR 

J. BARTOLOMEO AND MATTHEW HE 

ABSTRACT. In this paper, we study the Faber polynomials Fn (z) generated by 
a regular mr-star (m = 3, 4, ... ) 

Sm-{xwk; O < x < 41/m, k = 0, 1, . m -1, (Om = 1}. 

An explicit and precise expression for Fn (z) is obtained by computing the co- 
efficients via a Cauchy integral formula. The location and limiting distribution 
of zeros of Fn(z) are explored. We also find a class of second-order hyper- 
geometric differential equations satisfied by Fn(z). Our results extend some 
classical results of Chebyshev polynomials for a segment [-2, 21 in the case 
when m = 2. 

1. INTRODUCTION 

Let E be a compact set (not a single point) whose complement C*\E with 
respect to the extended plane is simply connected. The Riemann mapping the- 
orem asserts that there exists a conformal mapping w = ?(z) of C*\E onto 
the exterior of a circle jw I = PE in the w-plane. For a unique choice of PE, 
we can insist that 

O(D() = Do, V'(oo) = 1, 

so that, in a neighborhood of infinity, 

(l.l) @~~~((z) = z + aO + a, 
+ a2+**- z z2 

The polynomial part of {D(z)}n, denoted byFn(z) = zn + , is called the 
Faber polynomial of degree n generated by the set E. 

Let 

(1.2) T(w) =w +boO+ bl + 22 + 

be the inverse function of w = ((z). Thus, I(w) maps the domain IWI > PE 
conformally onto C* \E. Faber [2] proved that 

(1.3) v (w) = E0 Fn (Z) |W| > PE, Z E E. TP(w) - z E Wn) 
n=O 

The Faber polynomials play an important role in approximation theory and 
geometric function theory. It can be shown that, under suitable conditions, a 
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function analytic in the inner domain of a Jordan curve J can be expanded 
into a series of Faber polynomials that come from the mapping function of the 
outer domain of J (cf. [ 1]). 

The explicit construction of the Faber polynomials of a given set E depends 
essentially on the knowledge of the mapping function D(z). For E = [-2, 2], 
we know that ?D(z) = (z + /z2- 4)/2 with inverse 43(w) = w + 1/w. For 
n > 1, the polynomial part of {FD(z)}n is the same as the polynomial part of 

Fn(z) + cD-n(z) = wn + w-n 

which reduces to 2 cos nO, when w = e i. Thus the Faber polynomials are 
(apart from a multiplicative constant) the same as the classical Chebyshev poly- 
nomials Tn(x) for [-2, 2]. 

The following properties for Tn(x) are well known [7]: 
(i) For n > 1, 

(1.4) Tn(x) = nZL(-_ -j - 1) n-2j 

j=0 (n - 2j)!j! 

where 

n [ 2 if n is even 

[2] l n-1 if n is odd. 

(ii) Tn(x) satisfies the following differential equation: 

(1.5) (4 - x2)y" - xy'+ n2y = 0. 

(iii) The zeros of Tn(x) are located on (-2, 2) for every n > 1. 
(iv) The asymptotic behavior of the zeros of Tn(x) is given by the arcsine 

distribution 

(1.6) dt(t) =- dt. 
7( 4t2 

In this paper we shall study the Faber polynomials generated by a regular 
m-star (m=2,3,...) 

(1.7) Sm ={Xk; O< x < 4l/m k= , 1, ..., m-1, m = 1}. 

Clearly, Sm becomes [-2, 2] when m = 2. It is natural to ask what can be 
said about Faber polynomials when m = 3, 4, 5, .... By using the properties 
and characteristics of the Chebyshev polynomials as a motivation, we are able 
to compute an explicit representation for Fn (z). In addition, the Fn (z) are 
found to be a family of solutions to a class of second-order hypergeometric 
differential equations when n 0 (mod m). We also found that the zeros of 
Fn(z) when n 0 (mod m), or n 2- (mod m) if m is even, are located 
on Sm. The asymptotic behavior of the zeros of Fn (z) is also determined 
explicitly. Numerical results for the zeros of Fn (z) will be given in ?3. 

2. MAIN RESULTS AND PROOFS 

As we shall see, the Faber polynomials for Sm with m > 2 enjoy certain 
properties that are similar to those satisfied by Chebyshev polynomials. Our 
main results in this direction are the following: 
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Theorem. Let F,(z) be the Faber polynomials of Sm of degree n. Then 
(i) For n > 1, 

(2.1) Zn (z) = 2nm 
,(1 r 

_ 
2j _ l)j! j 

J-o E F(2n-2j +1)j! 

where 
n 

n lm if n 0 O (mod m), 

m l-m if n -=k (mod m), k =0, 1, 2, ..., m -,1. 

(ii) If n 0 (mod m), then Fn (z) satisfies thefollowing differential equation: 

(2.2) (4- zm)zy" - [zm + 2m - 4]y' + n2zmily = 0. 

(iii) If n - 0 (mod m), or n =m (mod m) when m is even, then the zeros 

of Fn (z) are located on Sm. 
(iv) For n > 1, the zero distribution of Fn(z) for Sm is given by 

1 t(m-2)/2 
(2.3) d/l(t) 7- /4 dt t E Sm. 

One can see that the above theorem generalizes (1.4), (1.5), and (1.6) when 
m = 2. We now proceed to prove our theorem. 

Proof of (i). It is known [3, p. 395] that for m = 2, 3, 

(2.4) z = (w) = w (1 + m) 

maps lwl > 1 conformally onto C*\Sm. Let ?(Dz) be its inverse. It follows 
from the definition of Faber polynomials that Fn(z) generated by Sm is given 
by 

n 
Fn(z) =Cn-jZn- 

j=0 

where c,nj is the Laurent coefficient in the expansion of {D(z)}n, that is, for 
j =O, 2, 3, ... n, 

I' {D(z)}'n 
Cn= ])zR zni+j dz, 

with R chosen sufficiently large so that Sm is contained in the interior of the 
region bounded by the circle Izl = R. Alternatively, using the substitution 
z = T(w), we obtain for j= 0, 2, 3, ..., n, 

Cnj =jIrp wnTP'(w) dw. n- |w l=r>po JT(w) }n-J+ 1 

By the symmetry of Sm, we see that T(w) is an m-fold symmetric mapping 
function (i.e., T(exp(2k,iw)) = exp(2k"i)T(w), k = 0, 1, ..., m - 1). It is 
easy to see that Cnj- = 0 if j :A 0 (mod m). Thus, Fn(z) has the following 
form: 

[m] 

Fn(z) = ZCn-mjZnmI. 

j=0 
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By Cauchy's Theorem, we see that the coefficients Cn_mj are the same as 
those of I in the expansion of WnYI(W)/[T(W)]n-mj+l . Using (2.4), we get w 

\ 1 \ (2-m)/m 

(W) ( Wm) I + m) 

Thus, 

wnT'Y(w) - mWn 1(1 i) 
( >-(m+2n-2mj)/m 

[T(W)]n-mJ+l m m 

I 1 -(m+2n-2m j)/m 

- W 1 ; 1 \-(m+2n-2mj)/m 
- wmj-m- (i +;/ 

Noticing that I w> 1, we have 

(1 I 
-Winmj/ (l)i(m + 2fl-2m1) W;min 

(+W w )jo ( m )ii 
where 

(a)i = a(a+ 1)(a+ 2)... (a+ i-1), (a)o = 1, (a)-i= O. 

Thus, the coefficient of I is given by 
m+2n-2m j m2-2m 

Cn-mj = (-1)J- m~ J-(-) (i+f2nJ-)t 

- (2m + 1 -2j)(j_+ 1 -2jn+ 1).* (2+ 1-2j?-2) 
n~~~~~~~~~~ 

n j! 

( 2n F(2n j) 
-(-1)]-- inJ 

m F(2n -2j +1)j! 

Proof of (ii). Let x = zm in (2.2). Then we have the following hypergeometric 
differential equation: 

(2.5) x(4 - x)y" + (2 - x)y' + n2y = 0. 

Replacing n by nm in (2.1) and substituting zm for x, we get 

Y :=Fnmn(z)=-2nZ (-1)F2f(1 )l)!Xn*j 
j=0 F(2n-2j + I)j! 

It is easy to verify that y is the polynomial solution of (2.5). Therefore, Fnmi(z) 
is the polynomial solution of (2.2). o 

Proof of (iii). If n _ 0 (mod m), or n =m (mod m) (m is even), then by 
(1.4) 

nl4) F(2n-2j?l)]! 

Fnin?n(Z) = (2n + 1)zin/2 1)_n(2m (+1 -j1) !ni-mj 

J Z= F(n F2n?1-2)j?1j 
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Comparing Fmn(z) and Fmn+m12(Z) with (1.4) yields 

(2.6) Fmn(Z) = T2n(Zm/2), Fmn+m/2(Z) = T2n+l(Zm/2) 

Since the zeros of T2n(x) and T2n+l (x) are located on [-2, 2], it follows from 
(2.6) that the zeros of Fmn(z) and Fmn+?,12(z) are located on Sm El 

Remark. Using (2.4), we can derive the relations 

?D(Z) - {0(zm/2)}2/m and T(z) = IV/(Zm/2)j2/m' 
where ql(w) = w + W and q$(z) is the inverse mapping function of q(w). By 
the above equations and the definition of the Faber polynomials, one can also 
obtain (2.6). 

Proof of (iv). In order to prove (iv), we first develop some notation. The term 
"capacity" means inner logarithmic capacity (cf. [8, p. 55]). For any set E c C, 
the capacity of E will be denoted by C(E) . If E is a compact set with positive 
capacity, then PE shall denote the unique unit equilibrium measure on E with 
the property that 

J log Ix - ti dIlE(t) = log C(E) 

quasi-everywhere (q.e.) on E (cf. [8, p. 60]). A property is said to hold q.e. 
on a set A if the subset E of A where it does not hold satisfies C(E) = 0. 

To each Pn (Z) = rHn= (Z - Zk), we associate the normalized zero distribution 
measure V (Pn) defined by 

V (Pn) - 1:1Z n 
k=1 

where Jzk is the point distribution with total mass 1 at Zk. 
We now prove the following lemma. 

Lemma. Let E be a compact subset (not a single point) whose complement C* \E 
is simply connected. Assume that E has empty interior. Then the asymptotic 
distribution of zeros of Faber polynomials Fn (z) coincides with the equilibrium 
measure of the set E. More precisely, the normalized zero distribution measures 
v (F,) converge in the weak-star topology to E'E. 

Proof. By Theorem 2.3 in [6], we need only to prove that Faber polynomials 
are an asymptotically minimal norm sequence of monic polynomials, that is, 
(2.7) lim sup II Fn lIp(ln) < cap(E) = 1, 

n--+oo SPCE 

where ,UE is the equilibrium distribution of E. It is known from [5, p. 108] 
that for r > 1, 

I 
I(D(Z)In < IFn(Z)I < 31?D(Z)In, 

where z is on or exterior to Cr = {IV(z)l = r}. For n large enough we know 
that 
(2.8) lIFn IIE < lFn ICr < -r 

Taking the nth roots in (2.8), we get lnfill/n < (2)/lnr, so we have 

lim sup II Fn 11 E/ < r. 
nL-eoo 

Letting r -- I1, we get (2.7). El 
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We now go back to prove (iv). Clearly, the m-star has empty interior. 
According to our lemma, we know that the limiting distribution of the zeros 
of Faber polynomials associated with Sm coincides with equilibrium measure 
du*(t) for Sm. We now determine d/l*(t). Define 

(2.9) Mk :=j tkdu*(t), k=O, 1, ..., 

where Mk is the so-called kth moment of the equilibrium distribution on Sm. 
On the other hand, Mk can also be expressed as (cf. [4, p. 345]) 

(2.10) Mk = iJ[ T(s)]k?ds 
(2.10) ~~~~~7ri lsl=r s 

for r > 1, where z = T(w) = w(1 + l/wm)2/m maps the exterior of wi = 1 
onto the exterior of Sm (cf. [3, p. 395]). 

We now compute the kth moment Mk from (2.10). Let 

I 2/m 
t-=T (s) = s (1 + Sm) - (Sm/2 + S-m/2)2/m 

in (2.10). Then 

dt = (Sm/2 + S-m/2)2/m-1 (Sm/2-1 
_ 5-m/2-1) ds 

= (Sm!2 + -m/22)-(m-2)/m (Sm2 _ S-m/2)S - tds I-m/2 4- 
ds 

S S 

and so 

Mk =^A[I(s)] kd=sX tk dt) 

where Cr is the image of Iw = r under the mapping T(w). 
Letting r -* 1 , we get 

Mk= tk t dt. 
7r 4-tin 

By (2.9) we have 

tk dy*(t) = Mk = tk dt, k = , 1. IS m~~~JS m J 4-tm~ 

Thus, du*(t) = d,u(t), where d,u(t) is defined in (2.3). 0 

We have completed the proof of the theorem. 
The situation for obtaining the locations of the zeros of F (z) for every n 

is not so favorable. However, supported by (iii) in our theorem, and numerical 
experiments, we formulate the following. 

Conjecture. The zeros of Faber polynomials generated by the regular m-star Sm 
(m = 3, 4, . .. ) are located on Sm for every n > 1 . 

For a sequence of polynomials Fnm(z) , and Fnm+m/2(Z) when m is even, our 
theorem confirmed this conjecture. For other sequences of Faber polynomials, 
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we provide in ?3 numerical results produced by Matlab in the cases when m = 

3, 4, and 5. 

3. NUMERICAL RESULTS ON THE ZEROS OF FABER POLYNOMIALS 

We first briefly state our algorithm for computing the zeros of Faber polyno- 
mials generated by a set E. 

Let 

(3.1) '(z) =w+ bo + w + w2 + w w2 

be the mapping function as in (1.2) associated with a set E. Then 

(3.2) T(w)-z E n+1 ' Iwj > PE, z E. 
n= 

It follows from (3.2) that Fn(z) satisfies the recurrence relation 

n-1 

(3.3) Fn+ I(z) = (z-bo)Fn (z) - bkFnk(z))- (n + 1)bn , 
k=1 

with initial condition Fo(z) = 1 . This difference equation for Faber polynomi- 
als plays a very important role in computing the zeros of Fn (z) . Our algorithm 
consists of four steps: 

Step 1. Determine the coefficients bk 's of the mapping function ?(w) as in 
(3.1). 

Step 2. Compute the coefficients of F,(z) by using (3.3). 
Step 3. Find the zeros of Fn(z) . 
Step 4. Plot the zeros in the complex plane. 
We now apply the algorithm to compute the zeros of Fn (z) for Sm The 

results are shown in Figures 1-6 (see pp. 284-286). 
For m = 2, 3, ..., we normalize the mapping function such that 

/ \2/m 
P(W) =W ( + m) 

Then 

'P(w) = w + Z bmk-1 

k= 1 

where 

b I)~k-lI 2(m - 2) (2m - 2) ..((k - I)m - 2) 
bmk-1 = (-1) mkk! 

By the recurrence relation (3.3), we find, in particular for m = 3, 

Fo(z) = 1, Fi(z) = z, F2(z) = z2, 

F3(z)=z3-2, F4(z) = z4 -_ z F5(z) = z5 _ IOZ2 

F6()=Z64z +32, F7(z)=z7-14z4+ 35z, F8(z)=z8_ 165+ 56 2 

Fg(z) = z9-6z6 + z3 - 2, Flo(z) = z10 _ 20z7 + I1OZ4 400_ 
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FIGURE 1. Zeros of F,(z) for 3-star when n = 31 
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FIGURE 2. Zeros of Fn(z) for 3-star when n = 32 
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FIGURE 3. Zeros of Fn (z) for 4-star when n - 31 
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FIGURE 4. Zeros of Fn (z) for 4-star when n = 33 
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FIGURE 5. Zeros of Fn(z) for 5-star when n = 31 
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FIGURE 6. Zeros of Fn(z) for 5-star when n = 32 
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