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SOLVING HOMOGENEOUS LINEAR EQUATIONS OVER GF(2) 
VIA BLOCK WIEDEMANN ALGORITHM 

DON COPPERSMITH 

ABSTRACT. We propose a method of solving large sparse systems of homoge- 
neous linear equations over GF(2), the field with two elements. We modify 
an algorithm due to Wiedemann. A block version of the algorithm allows us 
to perform 32 matrix-vector operations for the cost of one. The resulting algo- 
rithm is competitive with structured Gaussian elimination in terms of time and 
has much lower space requirements. It may be useful in the last stage of integer 
factorization. 

1. INTRODUCTION 

We address here the problem of solving a large sparse system of homoge- 
neous linear equations over GF(2), the field with two elements. One important 
application, which motivates the present work, arises in integer factorization. 
During the last stage of most integer factorization algorithms, we are presented 
with a large sparse integer matrix and are asked to find linear combinations 
of the columns of this matrix which vanish modulo 2. For example [7], the 
matrix may have 100,000 columns, with an average of 15 nonzero entries per 
column. For this application we would like to obtain several solutions, because 
a given solution will lead to a nontrivial factorization with probability 1/2; 
with n independent solutions, our probability of finding a factorization rises 
to 1-2 . 

Structured Gaussian elimination can be used [7], but as problems get larger, 
it may become infeasible to store the matrices obtained in the intermediate 
stages of Gaussian elimination. The Wiedemann algorithm [9, 7] has smaller 
storage requirements (one need only store a few vectors and an encoding of a 
sparse matrix, not a dense matrix as occurs in Gaussian elimination after fill- 
in), and it may have fewer computational steps (since one takes advantage of 
the sparseness of the matrix). But its efficiency is hampered by the fact that 
the algorithm acts on only one bit at a time. In the present paper we work 
with blocks of vectors at a single time. By treating 32 vectors at a time (on a 
machine with 32-bit words), we can perform 32 matrix-vector products at once, 
thus considerably decreasing the cost of indexing. This can be viewed as a block 
Wiedemann algorithm. 

The main technical difficulty is in obtaining the correct generalization of the 
Berlekamp-Massey algorithm to a block version, namely, a multidimensional 
version of the extended Euclidean algorithm. 
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If we have N equations in N unknowns, the present method requires 3N/32 
matrix-vector products (sparse matrix times block of vectors); about 2N/32 
block inner products (multiplication of two matrices of sizes at most 32 x N 
and N x 32, respectively); and 3N/32 block scalar products (multiplication of 
two matrices of size 32 x 64 and 64 x N). As an example of running time, 
a square matrix of size 65,518, with 20 nonzeros per row, arising from integer 
factorization, was solved in 65 minutes on an IBM 390. The space requirements 
are minimal; we need to store the matrix B and about five vectors of N words 
each. 

In an earlier, similar paper [2], the author converted the Lanczos algorithm to 
a block form, with similar computational requirements. The present algorithm 
is somewhat easier to understand and to program. 

The algorithm is probabilistic. It will succeed with high probability unless 
the matrix B is pathological, that is, unless B has several nonzero eigenvalues 
of high multiplicity (at least 32). 

2. WIEDEMANN ALGORITHM 

Recall the Wiedemann algorithm [9], as applied to a singular square matrix 
B of size N x N. (We present the algorithm with some modifications, in order 
to emphasize the connections with the present algorithm.) The goal is to find a 
nonzero vector w such that 

Bw = 0. 

Begin with random vectors x, z, and set y Bz. Compute 

a(') = XT Bly, O < i < 2N, 

and let 
a(A) = a(Q)A. 

There is also a linear recurrence which would generate a(i) Namely, there 
are polynomials f(A), g(X) of degree at most N satisfying 

f(A)a(A) = g(o) mod A2N+ . 

In fact, if f is the minimal polynomial of B, its reversal 
JTCV(A) ( (deg f) A(l/1) 

can be used for f(A). 
In the Wiedemann algorithm, one applies the Berlekamp-Massey algorithm 

to the data a(') to obtain polynomials fi, g, such that g /fi -g/f; then one 
obtains f as the least common multiple of several versions of fpev. Once one 
has the minimal polynomial i of B, one can set f-(A) = f(A)/,k (dividing 
by the highest possible power of A), compute f-(B)z for any vector z, and 
apply powers of B successively until Bif-(B)z = 0; then w = Bi-lf-(B)z 
satisfies Bw = 0. 

The reason one needs about 2N data points {xTBiy, 0 < i < 2N}, rather 
than only N as one might initially expect, is that one needs to find a linear 
combination of the vectors {Biy} which vanishes, and in general this can re- 
quire about N + 1 vectors {B'y, 0 < i < N} . One needs to check that this 
linear combination is orthogonal to the subspace {xTBi}, and again we need 
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about N vectors {xTBJ 0 < i < N} to span all of GF(2)N, or rather the 
subspace spanned by {xTBJ, 0 < j < oo} . Finally, to evaluate the inner prod- 
ucts {xTBJ x B'y, 0 < j < N, 0 < i < N}, we need to know the data {xTBiy, 
0 < i < 2N}. 

The computation of the data a(l) involves 2N applications of the sparse 
matrix B, and 2N inner products of vectors; the Berlekamp-Massey algorithm 
takes time O(N2); and the computation of f- (B)z takes another N applica- 
tions of B. 

It is useful to view the Berlekamp-Massey algorithm as an extended Euclidean 
algorithm [3]. If deg(a) = 2N, deg(f) = deg(g) = N, then the equation 

f (A)a(1() = g(A) mod A2N?l 

can be interpreted as 

f (A)a (A) = g (A) + e (?)A2N+ 1 

with deg(e) = N - 1 . Replacing A by 1 /I and multiplying by A3N, we get 
JTev (A)arev (A) + grev (A)A,2N - erev (A) 

The extended Eculidean algorithm would take inputs arev and A2N* It would 
produce successive triples of polynomials (f(A), g(A), e((A)) satisfying 

f (A)aev () + g()2N e-(A) 

with deg(f), deg(g) starting at 0 and increasing, and deg(e) starting at 2N 
and decreasing. In fact, it would maintain two triples, (f1, g1, el) and 
(f2' ?2', e2), and update them by taking linear combinations over GF(2)[A]: 

[fl gl el 
new 

_0 1 l Xf fgel eold f I Kiel IxI 11 
J2 g2 e2J L1 q(A) L2 g2 e2J 

where at each stage q (A) is the unique polynomial which makes 

deg(e new) < deg(eold) 

Stopping when deg(f1) N, the midpoint of the extended Euclidean algo- 
rithm, and setting frev -f one would obtain the results of the Berlekamp- 
Massey algorithm. 

Remark. The relation between the Berlekamp-Massey algorithm and the ex- 
tended Euclidean algorithm is masked somewhat by the reversal of the poly- 
nomials. We will continue to work with polynomials in the order specified by 
Berlekamp-Massey rather than the reverse order specified by Euclid, for ease of 
computation. Specifically, the operation analogous to multiplication of 

[0 11 
[I q(A)] 

will be computationally difficult if q(A) has high degree; instead, we need to be 
able to multiply by only one power of A at a time. This seems to be facilitated 
by keeping the polynomials in the Berlekamp-Massey order. 

3. CONVERTING THE WIEDEMANN ALGORITHM TO BLOCK FORM 

We need to convert the Wiedemann algorithm to a block form. We will 
process 32 vectors at a time, thus reducing the number of matrix-vector prod- 
ucts from 3N to 3N/32. We will also need to modify the Berlekamp-Massey 
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algorithm. This modification resembles the matrix version of the extended 
Euclidean algorithm described in [1, 5]. It will also be similar in spirit to that 
described in [8]. 

Let z be a random vector block of width n, that is, an N x n matrix 
over GF(2), and x a random vector block of width m. We may imagine 
m = n = 32. It will be especially efficient to make n equal to the word size of 
the machine, and to store each N x n matrix as N words of n bits each. For 
later analysis we will require m > n, at no loss of efficiency. Compute y = Bz. 
Compute 

a(i) = (xTBiY)T O < i <N+N+ 0() 

a(i) = E a(')i. 

The limit N + N + 0(1) plays the role of 2N in the original algorithm. 
We will be taking linear combinations of the N = (N/n) x n vectors {Biyv, 
O < i < N/n, 1 < v < n} to find a combination which vanishes. We will be 
guided by orthogonality to the N = (N/rm) x m vectors {xTBJ, O j <jN/rm, 
1 < A < m}. So we will need the data {xTBiy, 0 < i < N/n + N/m}. The 
additive term "+0(1)" is a safety measure, to account for possible accidental 
cancellation, a complication brought on by this block version of the algorithm. 
(In fact N/n will be replaced by dn < N/n in later analysis, to more accurately 
reflect the number of linearly independent vectors {Biyv, 0 < i < N/n, 1 < 
v < n}. Similarly, N/m will be replaced by dm < N/m.) 

The data a(A) provides the input to the modified Berlekamp-Massey algo- 
rithm. It is a polynomial in A whose coefficients are n x m matrices over 
GF(2), while in the original Berlekamp-Massey algorithm, a(A) was a polyno- 
mial with coefflicients GF(2). Alternatively, a(A) may be viewed as an n x m 
matrix whose entries are polynomials over GF(2). The indexing is such that 

a(i) =T xB" Yv, 1 < A < m, 1 < v < n. 

Our goal is to find linear combinations of the vectors 

{B'yv, 0 < i < N/n, 1 < v < n} 

orthogonal to all the vectors 

{xTB, < i < N/m, 1 < u < n}. 

On the tth iteration of the modified Berlekamp-Massey algorithm, we will 
compute the quantity f(t)(X), an (m + n) x n matrix whose entires are poly- 
nomials over GF(2). Again, f(t)(A) can also be viewed as a polynomial in 
A whose coefficients are (m + n) x n matrices over GF(2). The first index, 
1 <1 < m + n, corresponds roughly to the choice between two trial polynomials 
fl_ 1 < 1 < 2, in the straight Berlekamp-Massey algorithm; a row of f(t) (A) 
corresponds to one of these polynomials. 

For each row index / and iteration number t, we maintain a nominal degree, 
degnom f(t) < t, as an upper bound to the maximum, over v , of the degrees of 
the (1, v) entries of f(t). This is only an upper bound, not the true degree; 
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in particular, if we add two rows with identical nominal degree, the sum has 
the same nominal degree, while the true degree may decrease due to accidental 
cancellation. So degnom(f + g)= max(degnom f , degnom g), and degnm(iAf) = 

1 + degn.m f . The bit f1(t"k) belongs to column v , 1 < v < n; row 1, 1<1< 

m + n; coefficient of Ak, 0 < k < degnom f(t); and iteration t. 

Define Coeff(j; f/t)a) as the coefficient of Ai in t(t) (1)a(1). It is an m-bit 
vector whose ,uth bit is 

Coeff(j; ft()a), 3= ft k)az k) 

O<k<j 
1<v<n 

The corresponding (m + n) x m matrix is denoted Coeff(j; f(t)a). 

We will maintain the conditions 

(C1) (V/, 1 < 1 < m + n) (Vj, degnom(f(t)) < j < t): Coeff(j; fl(ta) = oT 

(C2) Rank(Coeff(t; f(t)a)) - m. 

Condition (C 1) helps to find vectors orthogonal to the various xTBi'. Namely, 

for each 1 < I < n, 1 < ,u < m, setting d = degn.m 17(t) and letting j satisfy 
d ? < t, we have 

=) 1 f(tz, 
k 

j-k= (XTB 
-d 

(tt,k)d-ky 0 = Coeff(j; fj(t)a)u IIV a,k, - BiX,i} vL ~) Bd-YV) 
v,k v, k 

so that the vector (ZM kf(t,k)Bd-ky,) is orthogonal to the m x (t - d) = 

m x (t - degnO0 f/t)) vectors (XTBid), 1 < < m, d <j< t. 
Condition (C2) is needed for the inductive step. 
We also envision, but do not explicitly compute, an (m + n) x m matrix 

g(t) of polynomials over GF(2), with row I given by g(t)(A) - fitt)(A)a(A) 

truncated to degnom f (t) . Put another way, the coefficient of Xi in git) is given 
by 

Coeff(j; f(t)a) 0 < j degnom f(t) 
Then we maintain the property 

(P) 
_ 

g(t)(i) - 0(Xt) 

Concatenate the matrices f(t), g(t) horizontally to produce an (m + n) x 
(m + n) matrix h(t) = [f(t)jg(t)]; again, h(t) is not explicitly computed, but aids 
in the analysis. 

To begin the inductive process, choose to = Em/nl . All rows of f(to) will 
have nominal degree to. Select the first m rows of f(to) to have actual degree 
to- 1, such that these rows already satisfy condition (C2). (In the case m =n, 
to = 1, these rows have actual degree 0. This implies that a(') = xTBy is 
nonsingular and these first m rows of f(to) = f(l) are linearly independent.) 
(If we are unable to satisfy (C2), we may need to select a different x, or perhaps 
increase to. If this does not work, then in the span of z, Bz, B2z, ... , B(to)z, 
we already have an element of Kernel(B).) The remaining n rows of f(to) 
are chosen as t/oI, a multiple of the n x n identity matrix. With this choice 
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of f(to), we find that the matrix h(to)(A) is nonsingular; in its determinant, 
the coefficient of the high-order term A(m+n)to is seen to be nonzero. (This 
construction is due to an anonymous referee.) Condition (C1) is vacuous for 
t = to. 

In the inductive step, we obtain f(t+1) from f(t). We first compute some 
nonsingular (m + n) x (m + n) linear transformation z(t) over GF(2) such 
that the first n rows of T(t) Coeff(t; f(t)a) are zero (thus the last m rows 
are linearly independent), and such that the nominal degrees of the rows of 
T(t)f(t) are the same as those of f(t) (in some order). To do this, we first 
order the rows of Coeff(t; f(t)a) by nominal degree of the corresponding 
fi(t) and do row reduction on Coeff(t; f(t)a) in such a way that a row of 
Coeff(t; fi(t)a) corresponding to an fi(t) of higher nominal degree is never sub- 
tracted from one of lower nominal degree. 

Next we multiply the last m rows of (t)Of(t) by A. Equivalently, we multiply 
on the left by the diagonal matrix 

D =_ Diag(l I, IX , 1 IS S A, X A, A 
(n) (m) 

We set f(t+1) = DT(t)f(t) . Along with this, we have 

g(t+l) = D(t)g(t) h(t+l) = DT(t)h(t) 

but we do not compute these quantities. Notice that DT(t) is nonsingular, so 
that h(t+1) remains nonsingular. 

The nominal degrees of the last m rows of f(t+1) have each increased by 1. 
We can check that conditions (C1), (C2) still hold, with (t + 1) replacing (t) . 
Regarding (C1), note that the lower bounds on j have increased by 1 for each 
of the last m rows. The condition at the upper bound of (C1), 

Coeff(t; f (t+l)a) = oT 

is arranged by z(t) for the first n rows and by the multiplication by A for the 
last m rows; this condition is not required on the first few iterations, when 
degnom(fi(t+1)) = t + 1. Condition (C2) is maintained because the last m rows 
of z(t) Coeff(t; f(t)a) were linearly independent, and they become the last m 
rows of Coeff(t + 1; f(t+ )a) 

With this construction, the average nominal degree 

I Edegnom f1(t) 

increases by exactly m/(m + n) as t increases by 1; together with the initial 
conditions, we find that this average degree is tm/(m + n) + ton/(m + n) = 
tm/(m + n) + 0(1). 

We now give an overview of the termination of the procedure and the manner 
in which solutions are obtained. Probabilistic justification is deferred until ?6. 

By the time t = (N/m) + (N/n) + 0(1), we find that the difference between 
t and the average nominal degree exceeds N/rm. So there are values of / such 
that t - degnom f1(t) > N/nm. For such 1, the vector (Zk fi(2,k)Bd kyv) is 
orthogonal to the m x (t - degnom f1(t)) > N vectors (xTBi-d), 1 < p < m, 
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d < j < t. In ?6 we will argue that with high probability the space spanned by 
these vectors already contains x TB for all i and also that with high probability 
a linear combination of Biy, orthogonal to that space is already 0. 

In fact, with high probability, for some t = (N/m) + (N/n) + 0(1), instead 
of (CI) a stronger condition holds on (most of) the first n rows, namely: 

(C1') (VI, 1 < I < n)(Vj, degn.m(J;(t)) I i < oc): Coeff(j; f(t)a) = oT. 

(This may fail for a few values of 1.) Here, a(i) is the infinite power series 
00 

a(i) = (xTBty)TXTA 
i=O 

of which we have actually only computed the first N/m + N/n + 0(1) terms. 
(See "Termination" in ?6.) 

Our first indication of this success is that in the linear transformation Du(t) 
creating f(t+l) from f(t) it happens that 

f(t+0 = f(t) 5 
<n 

implying that 
Coeff(t; fl(t)a) _ oT < I < n; 

that is, condition (C1) held for the value j = t when it was only required for 
values of j up to t - 1. When we detect this condition on one or two successive 
rounds, we terminate this phase of the algorithm. 

Suppose (C 1') holds for a given value of 1. Note first that fi(t) is not iden- 
tically 0, because otherwise row I of h(t) would also be 0, which is impossible 
since h(t) is nonsingular. Set d = degnorno'(t)) and suppose d' < d is the 

true degree of f(t), namely d' = sup{kv, f(t) : O} . (Recall that the nomi- 
nal degree d can be larger than d' due to initial conditions or cancellation of 
leading terms.) We will define 

f1 (A) = i-dd+d' f(t) rev(i) - Zf(t k),d'-k 
k 

and let fj(?) denote its constant term, the coefficient of AO . By construc- 

tion, for each I there is a v such that f,(? - 0. (The polynomial reversal 

gi(t)rev(,) is with respect to the nominal degree d, not the actual degree d'. 
The factor )jd+d' accounts for the difference.) As above, we have, for all 
j > d = degnom(t) I 1? < m, 

o0 Coeff(j; f(ta))= E f(t,k)a (jk) = XTB-d' E f(t,k)Bd'-k 

k,v v,k 

= XTj+- 
dZ 

E f(t,k)Bd-kZ = (xTB1+ -d') ( v (B)zi) 
>v,k - 

Then setting *1 >2 fl (B)z,, we find that 

(XTBi)(B1+d-d'WI) 0 0 < < oc. 
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Because B1+d-d'*l is orthogonal to the space spanned by xT times all powers 
of B, there is a high probability that 

B l+d-d' = o. 

(See "Probabilistic Justification.") 
If Bl+d-dw'* = 0 and w1 :A 0, let i be the largest exponent satisfying 

BI *1 0. We have 0 < i < d - d'. Setting w, - BI*1, we find that w, 5 0, 
Bwl = 0, so that w, is the desired solution. 

If everything works as planned, then we have found n elements of Kernel(B), 
one for each value of / 1 < I < n. In practice, most of these elements have 
been linearly independent; we may find (n - 1) or (n - 2) linearly independent 
elements of Kernel(B). 

Technicalities. The following technicalities can be skipped on a first reading. 
If wi = O, then no nontrivial solution is produced corresponding to the index 

1. This is why we work with y = Bz during the first part of the computation, 
and with z when we try to construct the solution. Fix a value of the index 1. 
The algorithm finds f(t) based only on x and y, ignoring z. Two random 
choices of z differing by elements of the kernel of B would give rise to the 
same y, and hence the same f(t), and even the same Bwl, since this can be 
computed from f(t) and y = Bz, not using z itself. But the computed values 
of w1 would differ by a random element of the kernel of B, since for some 
value of v the constant coefficient in f , , is no zero. Loosely speaking, w1 is 
determined only up to a random element of Kernel(B). So the probability that 
w1 = 0, given that we get that far, is at most 1 /I Kernel(B) , which is quite 
small in our applications, and at any rate bounded by 1/2. 

However, w, is not a random element of the kernel, because it is obtained 
from *1 by multiplication by Bi, and if i > O, the random kernel element is 
annihilated by this multiplication. Even the various wl need not be independent 
as random variables. 

There are two ways to try to counteract this dependence of random variables 
and thereby work towards n linearly independent solutions w1 . These methods 
amount to removal of factors of B from linear combinations of *1 and of w1, 
respectively. 

As an example of the first method, suppose wi = z1 +Bz2 and *2 = zi +BZ3. 
Then the linear combination *1 - *2 = Bz2 - Bz3 has an unnecessary factor of 
B. In this case we can replace *2 by w'2 = B-I(*I - *2) = Z2 - Z3. 

More generally, we should ensure that the n x n matrix with entries given 
by the constant coefficients fi(?) is nonsingular. If it is singular, find a linear 
combination which vanishes: a1 E GF(2), 1 < I < n, not all zero (say a1 0), 
such that 

aE cl(?) =O 1 <Iv < n. v ~ 1vn 

Then replace 1 >(i) by 

Repeat until the matrix is nonsingular. We have taken a linear combination of 
*1 and removed an unnecessary factor of B. 
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Then we can argue as before: Bw1 can be computed from f(t) and y - Bz, 
not using z itself; changing z, by a random element of Kernel(B) would not 
affect Bw1, but would affect *1 by fi(?) times that random element of the 
kernel; and therefore the i1 are determined only up to independent random 
elements of the kernel. 

But the w1 are still not necessarily independent, either as random variables 
or as vectors. The second method attempts to rectify that. As an example, 
suppose that we have 

B2WI = O, B*1 7 0, w1 = B*', 

B2w2 = O, B*2 5$O, W2 = BW2, 

but also 
WI + W2 = 0, 

in which case one of our desired solutions has vanished. In this case we can 
replace w1 by w'1 = *1 + *2, so that the new value w' satisfies Bw'1 = 0, and 
hope that w' is a nonzero solution. We have taken a linear combination of w, 
and removed an unnecessary factor of B. 

These are technicalities which did not come up doing the development and 
testing of the algorithm, but which might be useful in real-world applications. 

4. MINIMAL POLYNOMIAL 

In the proposed algorithm we do not need to develop f, the minimal poly- 
nomial of B. If we happen to want it for another purpose, it may be available. 
Let F be the n x n submatrix formed from the first n rows of f(t) on the final 
iteration (t), and evaluate det(F)rev, the reversal of the determinant of F. If 
det(F)rev is nonzero, then for some i, i det(F)rev will probably be divisible 
by f, since Bi det(F)rev(B) annihilates the n random vectors z, . The degree 
of det(F)rev will be bounded by about N (in fact, by ndn; see later analy- 
sis). However, det(F)rev can still be too large; it will probably contain multiple 
copies of any factor of f such that f (B) has a large kernel. If det(F) = 0 , 
this technique fails, but we consider this unlikely. 

To see that Bi det(F)rev(B) annihilates zv , consider the case n = 2: 

B detF) (Bz = ifrlev(B)f2r2ev(B)zI - B'fj2ev(B)frev(B)z B' det(F)rev(B)zi = B I 1()f 2B)1 
= B'fjev(B)[Jjev(B)zl + fl2ev(B)z2] 

-B1J2ev(B)[fljev(B)zI + f2f2ev(B)Z2] 
=0+0 

for i sufficiently large, remembering that polynomials in B commute. Similar 
computations can be done for larger values of n . 

With high probability, the only polynomials in B which annihilate the n 
randomly chosen vectors z, are multiplies of the minimal polynomial. 

5. COMPUTATIONAL COST 

In the first phase we compute the vectors Biy at a cost of N + N + o(l) 
iterations, each involving application of the sparse matrix B to an N x n matrix 
of bits, stored as an N-vector of words. If x is a random N x m matrix, then 
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computing a$,Q from Biy costs N + N + 0(l) inner products (x, B ,y) 
a (i = (xTBiy). But in practice we let xi,j = 6ij, so that the computation of 
a(i) is trivial. 

In the second phase we develop the vector polynomials f1(t)(I). For each 
of at most I + I + 0(l) iterations to < t < N + N + 0(l), this involves 
multiplying a subarray of f(t) of dimension n x n x (mt/(m + n)), by a sub- 
array of a of dimension n x (mt/(m + n)) x mn, to produce the (n x m)-bit 

matrix Coeff(t; f1(t)a), 1 < I < n; alternatively, this can be viewed as the 
multiplication of matrices over GF(2) of dimensions n x (nmt/(m + n)) and 
(nmt/(m + n)) x m. (We know that the average (over 1) nominal degree of 

f<(t) is (mt/(m + n)) + 0(1), but in practice this is also the maximum nominal 
degree.) It also involves application of the linear transformation T(t), which 
can be viewed as multiplication of bit matrices of dimensions n x (m + n) and 
(m + n) x (mnt/(m + n)), along with copying the other m vectors without 
change. 

The third phase computes *w. This costs about N/n applications of the 
sparse matrix B to an N-vector of words, plus N/n applications of n x n linear 
transformations f(t*) to N x n matrices Biy. All n vectors wl, 1 < l < n, 
can be computed simultaneously. 

The total cost is about (2N/n) + (N/m) matrix-vector products plus a small 
O(N2) term for the linear transformations. If n = m = 32, the dominant cost 
is 3N/32 matrix-vector products; if n = 32, m = 64, the dominant cost is 
(2.5)N/32 matrix-vector products, but the overhead increases slightly. 

A FORTRAN implementation of this algorithm solved a sample matrix from 
integer factorization, of size 65518 with 20 nonzero entries per row on average, 
in 65 minutes on the IBM 390, using the parameters m = n = 32. 

We foresee that a matrix of size 400,000, with an average of 70 nonzeros per 
row, could be handled in less than a week on a large workstation, such as an 
IBM RISC System/6000 with 160 megabytes of memory. Such a matrix might 
arise when factoring the 129-digit RSA challenge integer [7]. 

Storage. The largest storage requirement is for the matrix B. In addition, 
to store the arrays f, a, etc., we need about N x max(2m + 2n, m + 4n) 
bits or N x max(2m + 2n, m + 4n)/32 words, as follows. During Stage 1 
we need to maintain Biy and Bi+1y, developing the latter from the former; 
these require Nn bits each. We also develop the array a, which requires 
mn(N/In + N/n) = N(m + n) bits. Stage 2 needs the array a and the array f(t) 
for one value of t at a time. We can overwrite f(t) when computing f(t+1) . 

The array f(t) also requires N(m + n) bits, recalling that degnm(f1(t)) is about 
tm/(m + n) < N/n. During Stage 3 we need B, f(t), Biz, Bi+lz, and W, 
requiring N(m + 4n) bits besides the storage for B. 

Implementation details. The speed of the block vector operations depends 
strongly on the implementation. We show here how two of these operations 
can be performed efficiently. In this subsection, suppose that u and v are both 
N x 32 bit matrices, stored as N words of 32 bits each; for 1 < i < N, the ith 
word of u will be denoted ui. Suppose also that w) is a 32 x 32 bit matrix, 
stored as 32 words; and C is a temporary array of 4 x 256 words. We show 
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how to calculate both of the following: 

-u) UTV, v- U(. 

The first calculation, ) - uTv, arises when we multiply a subarray of f(t) 
by a subarray of a. We initialize the array C to 0. For each i, 1 < i < N, 
we express the word ui as the concatenation of four 8-bit indices: 

Ui(= ilj2 1j3 4)- 

For each k, 1 < k < 4, we set 

C(k, jk) 4- C(k, jk) vi. 

Repeat for all i, 1 < i < N. At the end of this stage, the word C(k, j) is the 
sum (mod 2) of those words in v corresponding to words in u whose kth byte 
(index) had value j. Now for each k, 1 < k < 4, and each 1 I < <8, add 
(exclusive or) together those words C(k, j) whose index j has a 1 in the I bit, 
to form word (8(k - 1) + 1) of the desired product w-) = u Tv. (This calculation, 
in turn, can borrow ideas from the Fast Fourier Transform.) 

Similar tricks are used to compute v -- uw, which arises in the application 
of the linear transformation T(t) . We preprocess w to initialize the array C, 
so that for each j, O < j < 255, the word C(1, j) is the product of the 32-bit 
vector (j 1 0 1 0) with w-) (each 0 represents 8 bits): 

C(1, i) = (1I01010) x wi, C(2, j) = (010 jI10) x , 
C(3, j) = (01 jOIj ) x o, C(4, j) =(00101j) x o. 

(Again this preprocessing can be done in the style of a Fast Fourier Transform.) 
Now the word vi in the product is gotten by expressing ui as the concatenation 
of four 8-bit indices and adding together the corresponding elements of C: 

Ui-il 1j211314), 

Vi = C(1, jl) e C(2, j2) E C(3, j3) EDC(4, 14). 

6. PROBABILISTIC JUSTIFICATION 

We have given an outline of a block version of the Wiedemann algorithm. 
Its success depends on several probabilistic events. Here we argue that these 
events have a high probability of occurring, and that the algorithm will succeed 
with high probability, unless the matrix B is pathological in a certain way. 
This section may be viewed as an appendix and can be safely skipped on a first 
reading. 

We define several parameters d dn, cm, c,, and e, depending on B, 
to help describe the behavior of the algorithm. 

For any univariate polynomial r({) over GF(2), define 

dm(r) = deg(r) + - x Rank(r(B)) 

and set dm minr 4m (r) . Clearly, any polynomial r achieving this minimum 
is a divisor of I, the minimal polynomial of B. (Otherwise, set r - gcd(r, I), 
notice that Rank(r(B)) = Rank(r(B)), and thus dm(r) < dm(r).) 



344 DON COPPERSMITH 

Setting r(2) = 1, we see 

dm < N/rm = (number of columns)/rm, 

and setting r(A) = A, we have 

dm < 1 + Rank(B)/m < 1 + (number of nonzero rows)/m. 

For the sort of B arising from integer factorization, this latter bound is usually 
tight. 

Intuitively, dm measures the linear independence of successive vector blocks 
xTBi, in the sense that the number of linearly independent vectors among 
{xTBi, 0 < i < d} is bounded above by min(md, mdm), and with high 
probability this bound is nearly tight; see Lemmas 6.1 and 6.2. 

Define 

cnm = 1 + >3 2`m(dm(r)-dm). 

rlf 

We have cm > 2, and cm will be very close to 2 unless several polynomials 
r compete for the minimum in the definition of dm that is, unless there are 
several polynomials with dim(Kernel(r(B))) - m. A large value of cm will be 
indicative of the "pathological" matrix B, for which our methods might fail. 

The definitions of dn, cn are entirely analogous, with n replacing m. 
Similarly, define 

e = 1 + E3 2-n deg(s) + E 2-(m-n) deg(r)-n(dn (rs)-ddn) 

sif rsif 

Assume m > n . In the first sum consider the term s = 1, and in the second 
sum, r = 1 and s corresponding to the maximum defining dn; then we find 
e > 3. Unless B is pathological (has several nonzero eigenvalues with high 
multiplicity), we will have e < 8. In fact, we take this as a definition: 

Definition. B is pathological if max(cn, Cmn, e) > 8. 

This concept is somewhat unintuitive, and infeasible to verify, but it cap- 
tures the class of matrices B for which our algorithm is likely to fail. It has 
been our experience that the matrices arising from integer factorization are not 
pathological. 

From the parameter dn we can compute a tight estimate of the number of 
rounds needed for Phase 2, namely, dn(m + n)/m. The parameters cm, c1n' 

e, help determine the probability of success; if all are small, the algorithm will 
succeed with high probability. 

Definition. For 1 < d < oo define the vector blocks 

XT(d) ={X,XTBil J< L < m, O < i < d}, 
Z(d) = {B'z,,1 < v < n, O< j <d}. 

These blocks depend on the random choices x, z. For d1, d2 > 1, define the 
matrix 

W(d1, d2) = XT(di) x Z(d2). 

This is a d, x d2 block matrix with blocks of size m x n, whose (i, j) block, 
O < i < di, O < j < d2, is given by xTBi+jz. 
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Lemma 6.1. We have Rank(X(d)) < min(md, mdm), and Rank(Z(d)) < 
min(nd, ndn). 

Proof. It is immediate that Rank(X(d)) < md. To show that Rank(X(d)) < 
mdm, fix a polynomial r. For each i > deg(r), xTBi differs from a linear 
combination of xTBi, j < i, by a row in the image of r(B) . So the (m deg(r)) 
vectors x#B', 1 < j < m, 0 < i < deg(r), together with Rank(r(B)) vectors 
representing a row basis of r(B), span a space which includes X(d). Then 
the rank of X(d) is bounded above by mdm(r), hence by mdm. The second 
statement follows analogously. El 

Lemma 6.2. Let 1 < d < oc. Let "Exp" denote the expected value; here the 
expected value is over the random choice of x. Then 

Exp(2 -Rank(X(d))) < c 2-min(md,mdm) 

Proof. Let r (A), 1 < fu < m, be polynomials of degree at most d - 1 over 
GF(2) such that 

ExTr,,(B) =-oT 

Let F(d) denote the number of choices of such collections of m polynomials. 
We have F(d) = 2md-Rank(X(d)) so that 

Exp(2 -Rank(X(d))) = 2-md Exp(F(d)). 

The trivial choice of polynomials ru is ru(A) = 0, 1 < ,u < m. For any 
nontrivial choice, consider the polynomial 

r(A) = gcd(f(A), {rf(A)I1 < ,u < m}), 

where f(A) is the minimal polynomial of B. Given r a divisor of 1, the 
number of possible ru such that r divides ru is 2(d-deg(r)), so the number of 
choices of all ru, 1 < , < m, for a given r is at most 2m(d-de(r)) (One of 
these choices is the trivial choice ru = 0, and some others may correspond to 
large gcd and hence a different r(A), so this is only an upper bound.) Given 
rA, the probability that a random collection of vectors x,, will satisfy 

ZxTru(B) 0T 

is the same as the probability that a random vector x0 will satisfy xTr(B) = oT, 
and this probability is 2- Rank(r(B)). Putting these facts together, interchanging 
quantifiers, and letting "Exp" denote expected value and "Prob" probability, we 
get 

Expx# {r,=A0 |xru (B) = OT= Probx XTru(B) = OTl 
E r#0 Zr { 

< E(2m(d-deg(r))) (2-Rank(r(B))) _E 2-m(dr m(r)-d). 

rlf rlf 

Including the trivial solution, we get 

Exp(F(d)) = ExpT # {r , Zx r, (B)=OT} <1 +2m(m (r) d) 



346 DON COPPERSMITH 

Finally, 

Exp(2-Rank(X(d))) < 2-md +Z 2 -md(r) < CM2- min(md, _m)d*O 

rlf 

Corollary 6.3. The probability that Rank(X(d)) < min(md, mdm)-A is bound- 
ed by cm2A 

Lemma 6.4. Let 1 < d < oo. Let sQ() be a factor of f(,). Then 

Exp(2- Rank(XT(d)s(B))) < 2-md + E 2-m deg(r)-Rank(rs(B)) 

rl(f/s) 

Proof. Analogous to the previous lemma. El 

Lemma 6.5. Select integers d1, d2, m, n, with m > n. (In our application 
we will have md1 > nd2.) Then 

Exp(2 -Rank(W(d1 d d2))) < e2- min(mdi, nd2, ndn) 

Proof. Again, we proceed by bounding the expected size of the right kernel of 
W(d1, d2). Let r(A), s(A) be two univariate polynomials over GF(2) whose 
product divides f(A). A nonzero element of the right kernel of W(d1, d2) 
corresponds to a collection of polynomials s, (A) of degree at most d2 - 1, not 
all zero, such that z- s (B)z, satisfies XT(d1)2 = 0. For such an element, 
set 

s(A) = gcd(f(A), {sL (A) I1 < v < n}). 

If we first fix s, and then randomly select z, the image z = i s, (B)z, has 
the same distribution as the image s(B)zo with zo chosen at random. So for 
fixed s, and random x, z, the probability that z is orthogonal to XT(di) is 
the same as the probability that a random zo is orthogonal to XT(di)s(B). By 
Lemma 6.4, this probability is bounded by 

2- md, + E 2-m deg(r)--Rank(rs(B)) 

rI(f/s) 

Corresponding to a given choice of s, the number of choices of s, is at most 
2n(d2-deg(s)) . So the expected number of choices of sI, corresponding to a given 
s for randomly chosen x, z is bounded by 

2nd2-n deg(s)-mdi + E3 2nd2-n deg(s)-m deg(r)-Rank(rs(B)) 

rI(f/s) 

and the expected total number of choices, including the trivial choice s, = 0, 
1 vy < n, is bounded by 

+ 2nd2-md1 -2n deg(s) ? E2nd2-m deg(r)-n deg(s)-Rank(rs(B)) 

SIf rslf 

the latter sum being taken over pairs of polynomials (r, s) whose product di- 
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vides f. Then 

Exp(2 -Rank(W(d1, d2)) 

< 2-nd2 + 2-md, E 2-n deg(s) + E 2-m deg(r)-n deg(s)-Rank(rs(B)) 

slf rslf 

< 2- min(md1, nd2, ndn) (1 + , 2-n deg(s) + E 2-(m-n) deg(r)-n(dn(rs)-dn) ) 

slf rslf 

< 2-min(mdl,nd2,ndn)e. el 

Corollary 6.6. If A > 0 is an integer, then 

Prob{Rank(W(d1, d2)) < min(mdl, nd2, ndn) - A/} < e2-e 

Now restrict to the case where md1 ? min(nd2, ndn). Then with probability 
at least 1 - e2-A we have 

Rank(W(d1, d2)) > min(nd2, ndnc) - A 

But we also have with certainty Rank(Z(d2)) < min(nd2, ndn). So with high 
probability (at least 15/16 = 1 - 2-4), 

dim(X(d1)' n Span(Z(d2))) < 4 + log2 e; 

that is, those vectors in the span of the columns of Z(d2) which annihilate all 
of XT(d1) form a low-dimensional space with high probability. 

The vectors 
{Bl+d-d'W1Il ?< < n} 

lie in this small subspace, so (taking suitable linear combinations) most of them 
are zero. 

Termination. With high probability, the algorithm terminates by the time the it- 
eration number t reaches dn (m + n)/m + 0(1), and at that time it has produced 
n solutions f1(t), meaning that the corresponding *1 satisfies Bl+d-d'*w = 0. 
This is based on four statements, which are related to the previous lemmas by 
specifying some I < n and substituting 

A (degnomjt)))f(t) (1/i) = r,,(A), 1 < v < n. 

1. From Lemma 6.2 and Corollary 6.3, with high probability, if f1(t) is a 
solution, then degnon f/(t) > dn - 0(1). 

2. From Lemma 6.5 and Corollary 6.6, with high probability, if fl(t) is 
not a solution, then degnonfj(t) > t - dnn/m - 0(1) . (From Condition (C1), if 

degnom fi(t) is smaller than that, then the corresponding B +d-d' W, is orthogonal 
to at least dnn/m successive blocks xTBi, and from Corollary 6.6, this implies 
that it is actually a solution with high probability.) 

3. The average degree is tm/(m + n) + ton/(mn + n) = tm/(m + n) + 0(1). 
4. Condition (C2) prevents the computation of more than n solutions. 

Suppose t > dn(m + n)/m but only n - 8 solutions have been obtained, with 
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J > 0. From statements 1 and 2, with high probability the average nominal 
degree is at least 

+ [(n - )(dn - 0(1)) + (m + 3)(t - dnn/m - 0(1))] 

- + [nd - 3d t mt?+ t - d n - dn/m] - 0(l) n +rmn __-n - 

t m + J t-d m+n 0(l) 
m+n mr+n (t-n m2<() 

which will violate statement 3, if t exceeds dn (m + n) /rm by a sufficient amount 
to account for the 0(1) terms. 

Summary. We have attempted to argue that the algorithm will produce n 
solutions within dn(m+n)/m+0( 1) iterations. The arguments are probabilistic 
in nature, and perhaps not totally satisfying; rather than constituting a full proof, 
they should serve as a guide to understanding why the algorithm works. The 
encouraging signs are that the algorithm does work in practice and that the 
arguments point towards a robustness that should handle even the difficult case 
of a few eigenvalues with large multiplicity. 

7. CHOICE OF PARAMETERS 

Evidently, the optimal choice of n is some multiple of the word size of the 
machine, because the cost of applying B is proportional to [n/(word size)] 
times the number of nonzeros of B. 

Increasing m can decrease the cost of the applications of B, but also in- 
creases the overhead (the terms proportional to N2). 

It is tempting to set m < n, for example, m = 1, n = 32, and hope that 
2N/n iterations would still suffices. But then the information gathered in the 
first stage, 

{a(') = (xTBiy)T, 0 < i < 2N/n}, 
would be insufficient to find a solution to Bw = 0. Indeed, the information 
{a(i), 0 < i < 2N/n} is less than the information {XTBi, 0 < i < 2N/n}, 
which does not give sufficient information about B to calculate a member of its 
kernel. In the beginning of ?3 we gave reason to believe that about N/n + N/m 
iterations are necessary (if B is of nearly full rank), not the 2N/n one might 
hope for, and this makes it disadvantageous to select m-1 . 

Let L denote the number of rows in f(t) . If L > m + n, then the matrix 
h(to) has rank only m + n over GF(2)[A], and eventually we will get useless 
rows of all zeros for some 1i(t). On the other hand, if L < m + n, then the 
average degree increases by m/L, and it will take longer to find solutions. This 
iswhywefix L=m+n. 

Fallout. Our considerations of the choice of parameters can extend back to the 
original Wiedemann algorithm, which works in any finite field. For large finite 
fields, because we cannot pack several field elements into a single word, we no 
longer need n to be a multiple of the word size; n can be any integer, and it 
may be 1 as in the original Wiedemann algorithm. But m can be higher, say 
3 or 4, and thereby we will cut the number of applications of B from 3N to 
[2 + (n/m)]N + 0(1), with a corresponding increase in the O(N2) overhead. 
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This represents a fractional decrease in the overall cost. (We have 2N/n + 
N/m + 0(1) applications of B to blocks of n vectors each, and for large fields 
each such application of B is as expensive as n applications of B to a single 
vector, expect for the possibility of parallelization.) 

8. FURTHER RESEARCH 

Gustavson and Yun [4] show how to speed up the Berlekamp-Massey algo- 
rithm from time O(N2) to time O(N log2 N). A similar savings can probably 
be effected on the block version of the Berlekamp-Massey algorithm which we 
use here. Unfortunately, the dominate factor in the computational cost is the 
3N/32 applications of the sparse matrix B to a vector block, and this would 
not be affected. 

Parallel versions. If one allows n and m to grow to, say, IN, one can 
take better advantage of massively parallel machines. This is true for arbitrary 
finite fields, not just GF(2). Two apparent drawbacks to parallelization are 
the space requirement, proportional to N(m + n), and the requirement to solve 
dense m x (m + n) systems of linear equations on each of N/n iterations during 
Phase 2. 

Inhomogeneous equations. We developed this algorithm for homogeneous equa- 
tions, because that is the case of interest for integer factorization. For the in- 
homogeneous system of equations Bw = b, where b is a block of at most n 
vectors, variants that can be tried include the following: 

1. Set the first few columns of y equal to b, and calculate the rest of y as 
Bz. Then hope that in the equation 

xTB -d' f(t,k)Bd'-ky = 0 
v ,k 

the coefficients of Boy, form an invertible matrix, allowing one to solve for y 
in terms of vectors in the image of B. 

2. Augment B to have columns equal to b. 
3. Apply a random perturbation to B as described in [6]. 

9. SUMMARY 

We have proposed an adaptation of the Wiedemann algorithm to the solu- 
tion of sparse systems of linear equations over GF(2). Our approach has been 
influenced by the application to integer factorization, where we have a large 
sparse asymmetric matrix B with more columns than rows and we wish to find 
nontrivial linear combinations of the columns that vanish. For large problems 
this approach apparently has smaller space requirements than structured Gaus- 
sian elimination, and smaller time requirements than the original Wiedemann 
algorithm as proposed in [9]. We are hopeful that it will enable one to solve a 
larger problem than was previous possible. 
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