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ON THE EXISTENCE OF TURYN SEQUENCES 
OF LENGTH LESS THAN 43 

GENET M. EDMONDSON, JENNIFER SEBERRY, AND MALCOLM R. ANDERSON 

ABSTRACT. Some theoretical results and computational algorithms are described 
which verify previous calculations, prove some theoretical nonexistence results, 
and totally enumerate all inequivalent Turyn sequences of length less than 43, 
that is, the longer sequence has length less than 43. 

1. INTRODUCTION 

Engineers concerned with finding the exact distance from their Earth base 
to the Moon, Venus, and the other planets, or even to a moving aircraft, use 
radar signals which consist of sequences of binary entries, effectively 1 and -1 . 
Unfortunately, they have found that the type of single sequences they prefer to 
use, known as Barker sequences, apparently do not exist for lengths greater than 
13. 

A desire for longer usable sequences has prompted research engineers to con- 
sider sets of two or more binary sequences for these problems and others con- 
cerned with range, depth, or information compression. 

The use of similar sequences in searching for the existence of Hadamard 
matrices and weighing matrices ultimately led to the development of Turyn 
sequences. However, before we explain these, we need some definitions of the 
terms we will use. 

Definition 1 (Nonperiodic autocorrelation function). Let X {{all, .aI al", 
a2l ,... * a2 ..., 5{aml, ... , amn}} be m sequences of elements 1 and -1 

or 0, 1, and -1 of length n . In many cases we will have a short sequence 
which we will extend to length n by adding zeros to the end. 

The nonperiodic autocorrelation function of the family of sequences X, 
denoted by Nx, is a function defined by 

n-j 

Nx(j) = Z(al, jal, j+j + a2, 1a2, i+j + * + am, jam j+), 

i=l 
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where j can range from 1 to n - 1 For a single sequence X {xl, *., xn} 
this can be written as 

n-j 

Nx(j) Z x,x +j. 
i=1 

We can also think of this in terms of matrices. If we form the following 
collection of m matrices of order n, 

al1 a12 alnf ami am2 amn 

0 all al,n-1 0 am, am,,n- 

K * O all O K 0 am, - 

then Nx(j) is simply the sum of the inner products of rows 1 and j + 1 of 
these matrices. 

Definition 2 (Periodic autocorrelation function). The periodic autocorrelation 
function of the family of sequences X, denoted by Px, is a function defined by 

n 

PX(j) = (al, al, i+j + a2, ia2, i+j + + am, iam, i+j), 
i=1 

where we assume the second subscript is actually chosen from the complete set 
of residues modulo n, that is, i + j is really (i + j) mod n . As before, j can 
range from 1 to n - 1. 

Again we can interpret the function Px in matrix terms. If we form the m 
circulant matrices which have the m sequences of X as their first rows, that 
iS, 

[all a12 aln 1 [am, am2 * amn 

aln a11 ... a1,n-i amm am, ... am,n1 

a12 a13 all L am2 am3 * am, 
then Px(j) is the sum of the inner products of rows 1 and j + 1 of these 
matrices. 

Definition 3 (Complementary sequences). If X is a family of sequences of 
length n as above with a zero nonperiodic autocorrelation function, that is, 
Nx(j) = 0 for j = 1, 2, ..., n - 1, then we will call X the class of m- 
complementary sequences of length n . 

The following results follow from these definitions. 

Proposition 4. Let X be a family of sequences as above. Then 

Px(j) = Nx(j) + Nx(n - j), j = 1, ..., n - 1. 

Note that Px(j) may equal 0 for all j = 1, ... , n - 1, even though the 
Nx(j) do not. 

Corollary 5. If Nx(j) = 0 for all j = 1, ..., n - 1, then Px(j) = 0 for all 
j =1,...,n - 1. 

2. GOLAY SEQUENCES 

Definition 6 (Golay sequences and Barker sequences). If X consists of two 
sequences X = {a1, 5..., an}, {b1, ..., bn}} where ai, bj E {1, -1} and 



ON THE EXISTENCE OF TURYN SEQUENCES 353 

Nx(j) = 0 for j = 1, ... , n - 1, then the sequences in X are called Golay 
complementary sequences of length n . If X consists of a single sequence X = 

{al, ..., an}, with ai E {0, 1} and Nx(j) = 1 for j=1,..., then we call 
X a Barker sequence. 

Barker sequences were studied first, but the longest length that could be found 
(and it is conjectured will be found) is 13. So the search turned to binary 
sequences, particularly Golay sequences. 

Golay sequences arose from Golay's early work [6, 7] on pairs of sequences 
with elements 1 and -1 and zero nonperiodic autocorrelation function. How- 
ever Welti [20], Tseng [16], and Tseng and Liu [17] approached the subject from 
the point of view of two orthonormal vectors, each corresponding to one of two 
orthogonal waveforms. Later work, including Turyn's [18, 19], used four or 
more sequences and led to the development of what we call Turyn sequences. 

Example. The following are Golay sequences where - means -1. 

n Golay sequences 

2 1 1 

1 - 

10 1 --I- ----1 

1 1 1 1 - 

26 1 1 1--il1-i1-- --1 -11--1---- 

- - - 1 1 - - - 1 - 1 1 - 1 - 1 - 1 1 - - 1 - - - - 

There has been an extensive search for Golay sequences, but except for Tu- 
ryn's result that these sequences exist for all lengths of the form 2a 1 Ob 26c, 
where a, b, and c are nonnegative integers, all other results have proved neg- 
ative. 

Geramita and Seberry [5, pp. 133-137], Andres [1], and James [9] have 
studied the smaller values of n in Turyn's lemma, showing that the only Golay 
sequences of order < 68 which exist have orders 2, 4, 8, 10, 16, 20, 26, 32, 
40, 52, and 64. Malcolm Griffin [8] has shown no Golay sequences can exist 
for lengths n = 2 . 9g. The value n = 18 was initially excluded by a complete 
search and is now theoretically excluded by Griffin's theorem and independently 
by Kruskal [14] and C. H. Yang [22, 23]. 

Recent theoretical work by Koukouvinos, Kounias, and Sotirakoglou [11] and 
Eliahou, Kervaire, and Saffari [4] shows that Golay sequences do not exist for 
n = 2p ,where p has any prime factor 3 (mod 4). This means the unresolved 
cases < 200 are N= 74, 82, 106, 116, 122, 130, 136, 146, 148, 164, 170, 
178, 194. 

For the study of the existence of Hadamard matrices and weighing matri- 
ces [5] the search for sequences has turned to searching for four (or more) 
sequences with elements { 1, -1 } or {0, 1, -1 }, or of commuting variables 
or orthonormal elements with zero autocorrelation. 
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One initial approach, suggested by Turyn in [18], has been studied carefully 
as it appears powerful and hopeful, giving rise to what are known as Turyn 
sequences. Alas, except for nine cases we give in detail in this paper, the largest 
being n = 14, present evidence points to a similar outcome for Turyn sequences 
to that for Barker and Golay sequences: that they do not exist for longer lengths. 

3. TURYN SEQUENCES 

Definition 7 (Turyn sequences). Turyn sequences of length t = n + 1 are four 
(1, -1) sequences X = (A, B, C, D) of lengths n + 1, n + 1, n, n which 
have Nx (j) = 0 for all j = 1, ... , n and in addition satisfy certain symmetry 
conditions, namely 

(i) if n is odd they have the following structure 
A = {1, 1, a2, ... , am, -am, ... , -a2, -1, -1}, 

B = {1, 1 , b2, ... , bmi -bm, ... , -b2, 1-, 1 } , 

C = {1, C1, C2, ... , Cm-1, Cm, Cm-1, ... , C2, Ci, 1}1 

D = {1 , d, d2, ... , dm-l , dm n dm-1, ... , d(2, di, 1}, 

where n = 2m + 1, or 
(ii) if n is even they have the following structure 

A = {1 , 1, a2, ... , am-, am 5 , . , a2, 1, 1}, 

B = {1 , 1 , b2, ... , bmi , bmin bm_1 , ... , b2, 1 ,-1}, 

C = {1 , Ci, * .. , Cm-1, -Cm-1, .. *, -C1, -1}, 

D = { 1,5 di . .. ., dm-l 5-dm_1, ,..5-di 5-115, 

where n = 2m. 

For more details see [12, 18] and [5]. In particular, we see in [5] that Nx(j) 
being zero and the elements of the sequences being limited to ? 1 implies that 
for odd n we can express 4n - 2 as the sum of two squares. Similarly, for 
even n it must be possible to express 4n + 2 as the sum of two squares. 

The existence of a decomposition for 4n ? 2 as the sum of two squares 
gives us a way to rule out the existence of Turyn sequences for some sizes. 
Specifically, if there is no decomposition for 4n - 2 when n is odd, there are 
no Turyn sequences of length t = n + 1 . The same thing happens for 4n + 2 
when n is even. We also have the following result. 

Lemma 8. If Turyn sequences fail the sum of squares condition for the odd length 
t = n + 1, they do not exist for the next even length t = n + 2. 

Proof. If 4n + 2 :A sum of the two squares for sequences of length t = n + 1, 
where n is even, then the condition for there to be sequences of length t = n + 2 
is that 4(n + 1) - 2 = 4n + 2 must be the sum of two squares. This is clearly 
not satisfied. E 

We can use the following theorem from elementary number theory (see, for 
example, H. Davenport [2]) to help check whether such decompositions exist. 

Theorem 9. Let m = 2e2 3e3 5e5 ... peP' be the prime factorization of an integer m. 
Then m is a sum of two squares if and only if ep, is even for all pi _ 3 (mod 4). 

Example. 42 = 2. 3 * 7 is not the sum of two squares, but 18 = 2 x 32 - 

32+ 32 is. 
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This means we know immediately that there are no Turyn sequences for the 
following small lengths. 

no Turyn sequences 

n 10 16 28 34 38 

t 1 1 17 29 35 39 

4n + 2 42 66 114 138 154 

n 11 17 29 35 39 

t 12 18 30 36 40 

4n - 2 42 66 114 138 154 

There are a number of constructions that we can use to simplify the form 
of the Turyn sequences we seek. Turyn originally gave a proof that a, = 1 in 
[1 8], and we rely on his discussion of equivalence, which is used to shorten the 
computer search time and space and to ensure that we have found all sequences 
up to equivalence. 

3.1. General form of the equations. The equations arising from the zero non- 
periodic autocorrelation function can be written treating the elements of the 
four Turyn sequences as variables to be found. The full forms of these equa- 
tions are not included here as they are too long. The details are given in [3]. We 
end up with n - 2 equations in about 2n variables. Including the constraint 
that each element is ? 1 adds roughly a further 2n equations. 

The following example for the case n = 12 illustrates what these equations 
are like. 

Example. Equations for n = 12: 

(E10) a2 -cl -di + 1 = 0, 
(E9) a3 + a2 + b2 - C2 - d2 - 1 = 0, 

(E8) a4 + a3 + b3 - C3- d3 + 1 - cc2 - d1d2 0, 

(E7) a5 + a4 + b4 -C4 -d4 - 1 + a2a3 + b2b3 - c1c3 - d1d3 = 0, 

a6 + a5 + b5 - C5 - d5 + 1 
(E6) +a2a4+b2b4-c1C4-c2c3-did4-d2d3 0, 

a5 + a6 + b6 + c5 + d5 - 1 
(E5) +a2a5 + a3a4 + b2b5 + b3b4 - cIc5 - c2c4 - dds - d2d4 0, 

a4 + a5 + b5 + c4 + d4 + 1 

+a2a6 + a3a5 + b2b6 + b3b5 
(E4) +CIC5 - C2C5 - C3C4 + did5 - d2d5 - d3d4 =0, 

a3 + a4 + b4 + c3 + d3 - 1 

+a2a5 + a3a6 + a4a5 + b2b5 + b3b6 + b4b5 

(E3) +cic4 + c2c5 - C3C5 + did4 + d2d5 - d3d5 0, 
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a2 + a3 + b3 + C2 + d2 + 1 

+a2a4+ a3a5 + a4a6 + b2b4+ b3b5 + b4b6 
(E2) +c1c3 + c2c4 + C3C5 - C4C5 + d1d3 + d2d4 + d3d5 - d4d5 = 0, 

a, +a2+b2 + cl +di - 1 
+a2a3 + a3a4 + a4a5 + a5a6 + b2b3 + b3b4 + b4b5 + b5b6 

(E1) +clc2 + c2c3 + c3c4 + c4c5+ dld2+ d2d3+ d3d4+ d4d5 = 0. 

We can simplify these general equations using modulo 4 arithmetic and the 
following lemma. 

Lemma 10. If a, b =? 1, then a + b-ab + 1 mod 4. 

Again, the modulo 4 forms of the equations from the zero nonperiodic auto- 
correlation function are too long to give here. The details may be found in [3]. 
Using the modulo 4 form of the equations, we can prove the following result. 

Lemma 11. For Turyn sequences with the shorter sequences of length n = 1 + 3s, 
where s = 1, 2,..., there holds 

bs = bs+,, 

and where the length of the shorter sequence is n = 2 + 3s, where s = 1, 2,..., 
there holds 

as = as+,. 

Proof. These results come from adding or subtracting the modulo 4 equations 
j = s and j = s + 1 for the relevant n, and remembering that 2(x + y) = 
0 mod 4 if x, y = ?1. We label the equations so that equation j comes from 
NX(j) = 0. El 

Using a combination of the long form of the equations and the modulo 4 
equations, we can prove the following theorem. 

Theorem 12. There are no Turyn sequences of length n = 8, that is, where the 
longest sequences has length t = n + 1 = 9. 

Proof. We start with the six mod 4 equations and write them as a matrix: 

a2- 
a3 
a4 

-1 0 0 0 0 0 -1 0 0 -1 0 0- b2 -1 
1 1 0 1 0 0 0 -1 0 0 -1 0 1 
0 1 1 0 1 0 -1 -1 -1 -1 -1 -1 b4_ 1 
1 0 1 1 1 1 -1 0 0 -1 0 ? C0 
0 1 1 1 1 1 1 0 0 1 0 0 C2 -1 

L0 0 1 0 0 1 0 0 1 0 0 1. C3 L OJ 
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Row reduction eventually gives 

a2 
a3 
a4 

(E6') 1 0 0 0 0 0 -1 0 0 -1 0 0 b2 -1 
(ES) 0 1 1 1 1 1 1 0 0 1 0 0 b3 -1 
(E4/) 0 0 1 1 1 1 0 0 0 00 0 b4 _ 0 
(E3') 0 0 0 1 1 0 0 0 -1 0 0 -1 C1 0 
(E2/) 0 0 0 0 1 0 0 1 -1 0 11 c2 1 
(El') 0 0 0 0 0 1 2 2 1 2 2 1 C3 -1 

d2 

_d3 

From equations (El'), (E3'), and (E4') we find that a4 = 1. We also 
know from the previous lemma that a2 = a3 as n = 8 = 2 + 3s, where s = 2. 
The remainder of these calculations work with integers rather than modulo 4 
arithmetic. 

We substitute these results into the general equations for n = 8 to give us 
six new equations: 

(E6"1) a2 - (cl + di) + 1= 0, 
(E5"1) 2a2 + b2 - (c2 + d2) - 1 = 0, 
(E4") a2 + b3 - (c3 +d3) - c1c2 - d1d2 + 2 = 0, 
(E3") a2 + b4 + (c3 + d3) + b2b3 - c1c3 - d1d3 + 1 = 0, 
(E2//) 3a2 + b3 + b2b4 + (c2 + d2) + c3(cl - c2) + d3(d1 - d2) + 1 = 0, 
(El") 2a2+b2+b2b3+b3b4+(cl +di)+c2(cl +c3)+d2(d? +d3)+1=0. 

These can be combined to give 

2b2+2b3+b4+2b2b3+b2b4+b3b4 = -IOa2-5. 

Given that all the bi must be ? 1, the left-hand side cannot evaluate to -15, 
so we must have a2 = -1 . Using the fact that the right-hand side must be 5 
and adding 2 - 2b2b3 to both sides shows that we must have b2 = -b3. The 
equation then reduces to b4 = 7, which is neither 1 nor -1 and hence gives us 
a contradiction. o 

3.2. Searching for Turyn sequences with a computer. The most basic way to 
search for Turyn sequences with a computer is to use a brute force approach, 
treating each sequence as a binary number, and to simply try all possible se- 
quences until a satisfactory group is found. However, the amount of time in- 
creases exponentially with each increase in the length of the sequences being 
searched for. Around n = 18 this starts to take about a CPU day on a DEC10. 

To cut down on this increase, we tried writing the equations from the non- 
periodic autocorrelation function explicitly. We then wrote a program to find 
solutions to these equations. 
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Initially, we programmed the equations for each n individually, but it be- 
came obvious that this was both too tedious and prone to error. Instead, a 
program was written to generate the code for evaluating these equations. This 
code was then included in a second program to solve the equations. Again the 
details of these programs are given in [3]. 

3.2.1. An outline of the algorithm. With the equations from the nonperiodic 
autocorrelation function we notice that, provided n > 6, each equation, apart 
from the first, introduces four new variables. We use this to do what is effectively 
a tree search. 

Essentially, the program works recursively by trying one set of solutions for 
the first four variables, then moves on to trying a set of solutions for the second 
group of four variables and so on, until values are assigned to all the variables. 
This uses about n of the equations. We then use the remaining equations to 
confirm that these variables do form Turyn sequences. 

We notice that the first two equations have respectively three and five vari- 
ables. We treat them similarly by explicitly programming in trying the various 
sets of solutions for the three or five variables as is appropriate. 

Basically, if there are four new variables that are ?1, there are 24 = 16 
possible solutions. We could try each of these, but to minimize the searching 
time, we want to prune the search tree as early as possible. The best way we 
have found to do this is to evaluate the rest of the equation. If there is to be 
a solution for the four new variables, there are only five values that the rest of 
the equation can have. If the remainder of the equation does not equal one of 
these, we know we are on a wrong branch of the search tree. However, if we do 
get one of these values, we can cut the possible solutions down to, on average, 
about four sets of values and only try these solutions for the new variables. 
This is effectively cutting down the branching factor from sixteen to about four. 
Essentially, this allows us to search roughly twice as deep as with the brute-force 
approach. 

Using this method, we can search for sequences up to about length 40 in 
around a CPU day on a Pyramid. Unfortunately, the increase in time is still 
exponential. Space requirements increase a small amount with each increase 
in n. Obviously, we need storage for about four more variables and the pro- 
gram will be slightly longer because of extra included code for evaluating the 
equations. 

3.2.2. Results. We found Turyn sequences with lengths t = 2, 3, .. , 8, 13, 
and 15. We found no Turyn sequences with lengths other than those just men- 
tioned up to size t = n + 1 = 42. This confirms the results of Koukouvinos, 
Kounias, and Sotirakoglou [12] who established the same results by a different 
algorithm, for t = n + 1 up to 30. Table 1 summarizes the number of Turyn 
sequences that we found. Table 2 (see p. 360) lists some of the Turyn sequences 
that were found. It gives one Turyn sequence of each length except for t = 13, 
where there are two sequences given. From these sequences, all possible Turyn 
sequences of these lengths may be generated by reversing the sign of the bi 
elements and by swapping the c- and d-sequences. 
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TABLE 1. Number of Turyn sequences found 

n length total number of decomposition 
t Turyn sequences (4n + 2) 

1 2 1 6 = 12 + 12 + 22 + 02 

2 3 2 10=31+12+02+O2 

3 4 4 14= 12+32+22+02 

4 5 4 18 = 32 + 32 + 02 + 02 

5 6 2 22=32+32+22+02 

6 7 6 26= 12+52+02+02 

7 8 2 30= 12+52+22+02 

12 13 8 50 = 72 + 12 + o2 + o2 

14 15 4 58 = 72 + 32 + o2 + 02 

These transformations produce the Turyn sequences listed by Turyn in [18] 
and by Robinson and Seberry in [5, p. 142]. 

The first few cases up to n = 6 were done by hand because the programs 
only deal with n > 6. Other than the sequences listed, no Turyn sequences 
have been found up to t = n + 1 = 42. 
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TABLE 2. Turyn sequences 

length decomposition 
sequences of 4n + 2 

2 1 -1 6 = 02 

1 1 ~~~~~~~~~~~~~~~~~~~+ 22 
1 + 12 

+ 12 

3 1 1 1 10 = 32 
1 1 -1 + 12 

1 -1 + 02 

1 -1 + 02 

4 1 1 -1 -1 14 = 02 

1 1-1 1 ~~~~~~~~~~~~~~~~~+ 22 

N1 1 1 1 +32 

. 1 -1 1 + 12 

5 1 1 -1 1 1 18= 32 

1 1 1 1 -1 + 32 

1 1 -1 -1 + 02 

1 -1 1 -1 + 02 

6 1 1 1 -1 -1 -1 22 = 02 

1 1 -1 1 -1 1 + 22 

1 1-1 1 1 + 32 

1 1-1 1 1 + 32 

7 1 1 1-1 1 1 1 26- 52 

1 1 -1 -1 -1 1 -1 + (-1)2 

1 1 -1 1 -1 -1 + 02 

1 1 -1 1 -1 -1 + 02 

8 1 1 -1 1 -1 1 -1 -1 30 = 02 

. 1 1 1 1 -1 -1 -1 1 + 22 

1 1 1 -1 1 1 1 + 52 
1 -1 -1 1 -1 -1 1 + (-1)2 

13 1 1 1 1-1 1 -1 1 -1 1 1 1 1 50= 72 

1 1 1 -1 -1 1 -1 1 -1 -1 1 1-1 +12 

1 1 1 -1 1 1 -1 -1 1 -1 -1 -1 + 02 

1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 + 02 

13 1 1 1 -1 1 1 -1 1 1 -1 1 1 1 50 =72 

1 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 + 12 

1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 + 02 

1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 + 02 

15 1 1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1 58 = 72 

1 1 1 -1 1 1 -1 -1 --1 1 1 -1 1 1 -1 + 32 

1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 + 02 

1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 + 02 
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For more details about groups of four sequences with zero autocorrelation 
functions, we refer the interested reader to a survey by Seberry and Yamada [ 15] 
and many papers by Koukouvinos, Kounias, Seberry, Sotirakoglou [10, 1 1, 12, 
13], Yang [24, 25, 26, 27], and others, which study other interesting sequences. 
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