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LONG-TIME NUMERICAL SOLUTION 
OF A PARABOLIC EQUATION WITH MEMORY 

VIDAR THOMEE AND LARS B. WAHLBIN 

ABSTRACT. Long-time stability and convergence properties of two time-discreti- 
zation methods for an integro-differential equation of parabolic type are studied. 
The methods are based on the standard backward Euler and second-order back- 
ward differencing methods. The memory term is approximated by a quadrature 
rule, with emphasis on such rules with reduced computational memory require- 
ments. Discretization of the spatial partial differential operators by the finite 
element method is also considered. 

1. INTRODUCTION 

In this paper we shall study the long-time approximation of the solution to 
the initial value problem 

rt 
(1.1) ut+Au= b(t-s)Bu(s)ds+f(t) forteR+=(O, o), 

u(O) = uO. 

Here, A is a selfadjoint strictly positive definite linear operator with compact 
inverse in a real Hilbert space H, b(t) is a scalar function on R+, B is an 
operator with D(B) D D(A) such that, with (, *) and the inner product 
and norm in H, and llvllj = -IAJ2V II, 

(1.2) I(Bv, w)I < coIIvIIIIwI, with co > 0, 

and f(t) is a function from R+ into H. 
A concrete problem that we have in mind is when A is an elliptic second- 

order differential operator with homogeneous Dirichlet boundary conditions 
and B a partial differential operator of at most second order. Such problems 
occur, e.g., in heat conduction with memory. With u(x, t) denoting tempera- 
ture, if one assumes the balance law 

ut = -cdivq + f 

and then, for the heat flux q, 
t 

q = -k(x)Vu + j b(x, t - s)Vu(s) ds, 
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an equation essentially of the desired form would follow. Here, b _ 0 cor- 
responds to the classical Fourier's Law. We refer to [2, ?3] in particular, for 
further details. Other examples are briefly described in [8], and some further 
examples referenced in [6]. 

It is not difficult to see that, under reasonable assumptions on u0 and f, 
problem (1.1) has a unique solution on R+. In the general case the relevant 
a priori estimate obtained from (1.1) by the energy method will depend on 
Gronwall's lemma, and the bound for u(t) will grow exponentially with t. 

Here we shall consider the case that b is exponentially decreasing and that 
the memory term is dominated by the elliptic term in the sense that, with some 
K, a > O, 

(1.3) (i) Ib(t)l < Ke-t and (ii) = Ib(s)l ds < 1/co. 

As we shall show in ?2, we then have the long-time stability property 
t 

(1.4) IIu(t)JI < e-YtIluoll + j e-(t-s)jIf(s)II ds for t E R+, with y > 0. 

For the time-discretization of (1.1) we shall consider two basic types of ap- 
proximations. The first is based on the backward Euler scheme, and the second 
on the second-order backward difference scheme. In both cases the integral on 
the right in (1.1) is replaced by a quadrature formula. Restricting our present 
discussion to the backward Euler case, we introduce a uniform time-step k and 
the backward different quotient OUn = (Un - Un-1)/k, where Un denotes the 
approximation to u at time tn = nk. We further introduce a quadrature for- 
mula with nonnegative coefficients w)nj = OJnj(k), 

n-I f(n 

(1.5) 6fn(g) = Z 1nj g(ti) ( ,]g(s) ds). 
1=0 

The backward Euler time discrete version of (1.1) that we shall consider is then, 
with bn(s) = b(tn - s) and fn =f(tn) 

OUn + AUn = orn(bnBU) + fn 

(1.6) n-i 

- Z wnjb(tn - tj)BUj +fn for n > 1, U? = u0. 
1=0 

Note that Un does not enter on the right of (1.6), which is convenient in 
implementation. 

Error bounds for problems of this nature on finite time intervals have been 
given in, e.g., [5, 8, and 9], see also [3 and 7] for spatially discrete versions 
of (1.1) when A and B are differential operators. As for (1.1), the required 
stability estimates are derived in these papers (without assumption (1.3)) by 
means of a discrete version of Gronwall's lemma, which results in bounds that 
grow exponentially with tn and thus render the corresponding error estimates 
useless for large tn 4 

Our purpose, therefore, is to now try to derive a long-time stability property 
analogous to (1.4) for the discrete problem and an associated error estimate. It 
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turns out that this is considerably easier for the case B = A than in the general 
case, owing to the possibility of then using separation of variables. The stability 
estimate in this case now reads 

n 

(1.7) U < e ltlfHuoH ?kZe-Ytfl1JfJH for n > 0, k < ko, with y > 0, 
j=1 

and the corresponding error estimate is 
(1.8) 

HU un-u(tn)II < Ck/ e-(tn-S) ( 11utt(s) 11 +I II u(s) II q) ds, for n > 0, with a > 0, 

where 
q di q d 

I =IZIlItiV = tAv 
=0dt' 2 j0 

dt 

The integer q depends on the quadrature scheme used. The proofs are given 
in ?3. 

In ?4 we analyze similarly discretizations of (1.1) in the special case B = A, 
which are based on a second-order backward difference approximation of the 
time derivative. In this case we need to replace the condition ,B < 1 by the 
slightly stronger flA < 1 , where A is a constant which is shown in an Appendix 
to be smaller than 1.1 . 

In ? 5 we return to the discussion of backward Euler-type schemes, now in 
the case of a general B. Here we show that if b is exponentially decreasing, 
then the stability result of [5] may be improved by a multiplicative exponen- 
tially decreasing factor. In particular, under the appropriate assumptions on 
the quadrature rule, this will show stability as in (1.7) when B and b are suf- 
ficiently small. The techniques of proof are similar to those in [5] and do not 
reproduce (1.7) for the case B = A. 

In ?6 we will be concerned with application to the case when A and B 
are finite element approximations of spatial second-order partial differential 
operators. 

A particular aspect of the investigations in [5] and [9] is the systematic con- 
struction of quadrature formulas (1.5) in which a large number of the coefficients 

wnj vanish in such a way that only a small portion of the U' need to be saved 
as the time-stepping progresses. This aspect is taken into account throughout 
the present work, and a discussion of suitable quadrature schemes is included 
in ?7. 

Throughout this article, C will denote constants subject to change each time 
they occur. 

2. ON THE CONTINUOUS PROBLEM 

In this section we shall show the stability estimate (1.4). 

Proposition 2.1. Assume (1.2), (1.3), and let u satisfy (1.1). Then 

tt 
IU(t)II < e-ytlluoll + e-Y(t`s)IIf(s)lIIds for t ER+, with y >O. 
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Proof. We consider first the case of the homogoneous equation (f = 0). We 
then have, for u (t) = eYtu(t), 

rt 
(2.1) UY- yuy + Auy= j by(t - s)Buy(s) ds, where by(t) =eytb(t). 

Now choose y > 0 so small that 
P00 

(2.2) fly = j Iby(s)l ds < (1 - 2A-'y 1121CO 

where 2O > 0 is the smallest eigenvalue of the operator A. In light of (1.3)(i), 
this can be accomplished by the dominated convergence theorem. Forming the 
inner product of the equation (2.1) by 2uy(t) and using the Cauchy-Schwarz 
and arithmetic-geometric means inequalities, we have 

d Y12 - 2yll uy it2+ 211 uy112 = 2 by(t - s)(Buy(s), uy(t)) ds 

t 
< 2y(t)112 + ,B c2 lb I y(t _ S)l IIUY(S)12 ds. 

Since AOI u112 < IIuI12, we thus obtain, after integrating in t and interchanging 
the order in the resulting double integral, 

IIuI112 + (1 - 2)-1 y) IIu112 ds 
t et 

? IIuoII2 + fc02j j lby(s - a)ldslluy(a()I12 du 

? IIuoII2 + fl2CO2 j y IIu(a) I2 du. 

By (2.2) we obtain that lluy(t)ll < Iluoll, which concludes the proof for the 
homogenous equation. The general case now follows by the following version 
of Duhamel's principle, where E(t)uo denotes the solution of the homogeneous 
case (f=0) of(I.1). 

Lemma 2.1. The solution u(t) to (1.1) is given by 

t 

u(t) = E(t)uo + j E(t - s)f(s) ds. 

Proof. By linearity and uniqueness, it suffices to show that the second term 
above, which we now denote iu(t), satisfies (1.1) with uo = 0. To see this, we 
note 

t t fS 

b(t - s)Bu(s) ds = b(t - s)B j E(s - a)f(o) du ds 

t ft 
= j j b(t - s)BE(s - o)f(a) ds du 

= t j t-s 
bI - s - . 

BE _ (s) durs .1 
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Hence, 
t 

ft + Au - b(t - s)Au(s) ds 

It it-S 

= Jo [it(t - s) + AE(t - s) -] b(t - s - r)BE(a)dc)] f(s) ds + f(t) 

=f(t) , 

which shows the claim. U1 

We end this section b.r elucidating the conditions (1.3) in the case when 
B = A (and hence co = 1 in (1.2)), b(t) = Ke-t, and f = 0. Considering 
then a Fourier component uA(t) = (u(t), qp) with respect to an orthonormal 
eigensystem {I, fo } for A, and setting v(t) = eatuA(t), we have 

t 
Vt+ (A-a)V = KA. v(s)ds, 

or, after differentiation, Vtt + (A - a)Vt = KAv, with initial data v(O) = u (0) 
and vt(O) = (a - A)u)u,(0) . This equation has exponential solutions of the form 
er?t, and hence u, is a combination of e(r -a)t where 

-? 
- a = - +(K2-a 

In general, with the initial conditions above, both r+ and r_ will be present 
in the solution. The roots are always real, and in order for u, to decrease 
exponentially in time, we must have K < a, i.e., ,B = fo b(s) ds = K/a < 1; 
for K > a, blow-up would occur. 

3. BACKWARD EULER METHODS 

In this section we shall derive the stability estimate (1.7) and the error es- 
timate (1.8). Before doing so, we shall demonstrate why the straightforward 
generalization of the proof of Proposition 2.1 above presents difficulties in the 
case of a general B under our assumptions on the quadrature rules employed, 
even for y = O. 

Considering thus the case of a general B in (1.6), we would be aiming at 
showing the boundedness of IIUnlI in the case of the homogeneous equation 
(f = 0). After multiplication of (1.6) by 2Un, we have 

n-1 

a1IIUnII2 + 211 Un 112 Z < 2 E nibn-j(BUj , UUn) 
j=0 

From this it follows easily after multiplication by k, summation and use of 
Cauchy-Schwarz's inequality in the last term, and assuming 

n-l 

on(Ibn I) = Z tnWnbIb(tn-j)l < U , 
j=0 
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with ,B < ,< I/co, that 

N N nck 

(3.1) 11UN112 + kjE 11UjI2 < I1U0112 + ftC2ku JEHn)lbn-jI 1UjI12 

j=1 n= 0 j=O 

Changing the order of summation, we find that the last term equals 
N 

,8co2kE j](bjjUj112 
j=0 

where &i = En=j cnjlbn_jl. The analogue of the proof of Proposition 2.1 
would be to bound the coefficients in this sum by those in the sum on the 
left in (3.1). This is possible, e.g., for the rectangle rule, using wnj = k for 
j = 0,... n - 1, since we would then have &ij = kZ0 Ibn I < ,B, for 
small k. However, letting an be sparse, with WPnj = 0 for many j and 
correspondingly larger for other j, the coefficients for some j would be larger 
than the k allowed on the left and thus prohibit cancellation. For instance, in 
the modified trapezoidal rule (see ?7) 6j is of order k-1/2 for certain j, and 
thus the coefficient of 11Uj112 on the right is of order k1/2 > k. 

We now state and prove the stability result for the case B = A under an as- 
sumption which may be considered as a discrete analogue of flB = fo? Iby (s)I ds 
< 1 (= l/co), and which will be discussed in more detail in Lemma 3.1 below. 

Proposition 3.1. Assume that there are positive ,B, y and k such that with 
b_ (t) = eYtb(t), by,n(s) = by(tn-s) - 

(3.2) ,-n(lbynl) < < I fory<y, n > 1 k<k. 

Then there are positive constants ko and y such that, for the solution of (1.6) 
(with B = A), 

n 
IUn 1 < e-yt,U11U11 +?kEe tn llfi 11 forn > 0, k < ko 

j=1 

Proof. By linearity we may write the solution to (1.6) as Un = Un + U1n +* + 

Unn, where 

(3.3) OUin +AUin = o n(bnA U1) +jn,fn for n > 0, i > 1, with Ui? = i1oU0. 

The solution of (3.3) is obviously zero for n < i, and we may think of (3.3) as a 
homogeneous equation for n > i with initial data Ui' = (I+kA)-1kfi for n = 
i when i > 1. We shall show that 

(3.4) 11 Uin 11 < e-Ytn-' 11 U/1 for n > i. 
In view of the choice of Uii for i > 0, this completes the proof. 

With {A, (OA} a discrete orthonormal eigensystem of A, we have for cn = 
(eYtnUFn, (9A) 

(1 + kA)cn = eykcn-l + kA n (by,nc) for n > i. 

We thus find that 

lcnl < (1 + k)- l(eyk + Akfl) max Icil < max Icil, 
j?n- I Ijn-1I 
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provided y and k are so small that eyk -1 < Aok(l - ,B), where AO is the 
smallest eigenvalue of A. Since cJ = 0 for j < i, we have ICnl < IciI from 
which (3.4) follows by Parseval's identity and our definition of Cn . O 

To prove the error estimate we assume that the quadrature rule is such that, 
for some integer q, 

ttn 

Iqn(g)I =- an(g) - J g(s) ds 

(3.5) tn 

< Ckjlq Ig(s)LI ds for n > 1, j = 1, q, 

where Ig(s)Ij = EZ 0 (di/dti)g(s)j. We further assume that, cf. (1.3)(i), 

(3.6) Ib(t) Iq < Ce -at 

We first show that assumption (3.2) is then satisfied. 

Lemma 3.1. Assume (1.3), (3.5), and (3.6). Then for any f, with fi < ,B < 1 
there are positive y and k such that (3.2) holds. 

Proof. Note that d lgl = (dg)sgng. We have, using (3.5) with j = 1, and 
setting c = 1 /q, 

- .r~~~~~~~~tn 
13y,n < Iqn(Iby,n DI + J b(s) leys ds 

{00 {00 

< CkJ Ib(s)eYs I ds + J b(s) IeYs ds =_ I + I2. 

Here, I, is bounded if y < a, by (3.6), and tends to zero with k. Further, 

I2 approaches fi f Ib(s) Ids < 1 as y tends to zero, by dominated conver- 

gence. 0 

We shall now prove the error estimate (1.8). 

Theorem 3.1. Assume (1.3) (with co = 1), (3.5), and (3.6). Then there are 
positive C, (5, and ko such that, for the solutions of (1.1) and (1.6) (with B = 

A) , 
(3.7) 

ftn 

IUn - U(tN)A < Ck] e3-(tn-S)(Ilutt(s)II + IIIu(s)IIIq)ds for n > 0, k < ko. 

Proof. Setting en = Un - U(tn), we have 

(3.8) jen + Aen = (bnAe)- T n + qn(bnAu) for n > 1, with e = O, 

where Trn = Ou(tn) - Ut(tn) . It is easily seen that 

n ~~~~n ft] 
kE,e Ytn-JITJII <k E]ee-Ytn- 'luttllds<keyk e-'Yi(tnn-s)utt(s)1ds 

j=I j=1 

Further, by (3.5) and (3.6), 
f 

ftj~~~~~~~~~~~(t s 
lqJ(bjAu)ll < Ck] IlIb(tj - s)u(s)Illq ds < Ck] e-( IIU(S)III ds, 
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and thus, with a < Jo = min(a, y), 
n n rti 

k ee-Yt,-,IIq(bjAu) II < Ck2 E Ie-oIt,-s)I U(S) ds 
j=1 j=1 

e rtn tn 

< Ck j(tn- s + k)e-0(tn -S) IIIU(S) IIqds < Ckej / (tn -S) 
IIIU(S) Ilqds. 

The desired result is now a consequence of Proposition 3.1 applied to (3.8). E 

We remark that the right-hand side of (3.7) may be estimated in terms of 
data using the techniques of Theorem 2.1 by noting that time derivatives of u 
satisfy integro-differential equations of the same type as u. 

4. SECOND-ORDER BACKWARD DIFFERENCING METHODS 

In this section we shall treat second-order backward differencing time-discreti- 
zations of the type 

(4.1) ( + ij2 )Un + AUn = on(bnAU) + fn for n > 2, 

with start-up values UO and U1 given by 

(4.2) U0 = uo, 0U1 +AU1 = o1(biAU) +fl. 

We shall first give a stability result similar to Proposition 3.1. For this we 
introduce a quantity A, which enters naturally in the proof below, by 

(4.3) AA= supA(4u), A(8) 3 22 r+{- r_ 
(4.3) kTh'>o 

+ 9 r+ - r 

where r? = r?(u) = (2 + /1 - 2j)/(3 + 2,u) are the zeros of the polynomial 

_ 2 4 1 
(4.4) tV(r) = r2 - 2r + - (r - r+)(r - r_) . 

3 +2js 3 +2js 
As will follow from our Appendix, A < 1.1 . 

Proposition 4.1. Assume that (1.3) (with co = 1) and (3.2) hold, and also that 
Afl < 1. Then there exist positive C, y, and ko such that, for the solution of 
(4.1), 

n 
II U'II ? Ce-Ytn(II U0II + 11 U ll) + Ck E e-Ytn-JIIfJII for n > 0, k < ko. 

j=2 

Proof. We shall proceed along the lines of ?3, and write Un = Un + Ujn + + 
Unn, where 

j + 2 )Un+AUjn=Un(bnAUj)+Jnjfn forn>2, Uin=(ni Un, n=0, 1. 

We wish to show that 

(4.5) IIUjnII < Ce-Ytn-i11 U/ II for n > i. 

Since Uii = (3I + kA)-Ikfi when i > 2, this will complete the proof. 
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We shall first establish (4.5) with y = 0. As in the proof of Proposition 
3.1, it suffices to consider a Fourier coefficient Cn = c7 = (Uin, q ) which now 
satisfies, with ,u = k{, 

(4.6) ( 3?+ )cn-2cn-1 + !cn2 = wr(b c) for n > max(i + 1, 2), 

where ci = ci, c Ci (with ci = Ofor i > 1 and cO = ?) are 
given. Since (4.6) has y, as its characteristic polynomial, its solution may be 
represented as 

rfn-i+l - rn-i+l i + 2u n 
r++lJr - rn+l+j 

r+ - r- 
c 

3+2Y ~ r+ - r '(j)J 2 

for n > i, with the first term on the right replaced by 

-r+r_ (r+'-- rn-l)/(r+ - r_)c? 

and the summation extended from j = 2 when i = 0, and with the obvious 
modification when r+ = r_, i.e., when ,u = 1/2. As is easily seen, jr+j < 1 
and Ir?< 1/2,andhence 

r{-r{. _r- J2_+..+r-l<2 
r+ - r - - 

Consequently, IJi < 2fci . For J2 we have 

IJ21 ? 
A(u) max I&i(bjc)I < Afl max IcJIl, 

and hence 

lcnl < 21c'l + Aft max Icil for n > max(i + 1, 2). 
j<n-1 

If Aft < 1 , we conclude I cn < C Ici, from which (4.5) with y = 0 follows by 
Parseval's identity. 

Note that for ,u < 1/2 the roots of (4.4) are real. In particular, r+ > r_ and 
hence 

(4.8) 3 + 2- E r- r 3+24r+-ri1- r+ - r-) 

2,u 1 

3 + 2,u y/(l) 
We remark that it follows that if we restrict k so that Ak < 1/2 for all A in the 
spectrum of A (which is possible, e.g., when A is a spatially discrete analogue 
of an elliptic operator), then it suffices to have ,B < 1 in Proposition 4.1. 

We proceed to show (4.5) for some positive y. With Cn now equaling a 
Fourier coefficient of eytn Uin, cn = (eyl- Uin, (PA), we have 

cn- 4 
eyk cn-I+ 1 e2ykcn-2 - 2# an(by nc) forn > max(i+l, 2), 

where by,n(s) = eY(tn-s)b(tn - s). The analogue of (4.7) follows with r? 
replaced by p? = eykr?. Since the minimal eigenvalue AO of A is posi- 
tive, and since jr+(ii)l < jr+(kAo) < e-ckAo for k sufficiently small, we have 
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Ip+I < le-k(cio-y)I < 1 for y < c)o. Similarly, 1/(1 - IP-I) < C, and hence 
IJAl ? CIcil. 

It remains to investigate the quantities Ay(#) obtained by replacing r? by 
p? in (4.3). In the case ,u < 1/2, a calculation as in (4.8), and using (4.4), 
establishes for small yk 

= 2,u 12ju e-2yk 
AYu) 3 + 2a (1 - p+)(l - p-) 3 + 24u (e-yk) 

2____<_ _I___C 
yk 

2u + 3 - 4eyk+ e2yk 
- 

y 

Since , = Ak, we see that for A > AO and y and ko small enough, Ay (Cu) < 
1 + Cy = A(u) + Cy, uniformly in k < k and u < 1/2. For u > 1/2, since 
r = (3 + 2jt)-1/2 < 1/2, we have 

Ay(~u) - A(,u) = 3 + 2,i (J1 - r+ - r 

00 

< yk Z2(eyk/2)jP1 < Cyk, 
j=1 

for k small enough. Thus altogether, for k and y small, 

I J21 ? Afl max IclI 
jin- I 

and therefore, as before, Icnl < C? Gci . By our present definition of Cn we now 
obtain (4.5) with a positive y. This completes the proof of the proposition. Ol 

In order to derive an error estimate, we further assume that the quadrature 
scheme used is second-order accurate, now with an error bound as 
(4.9) 

lqn(g)l = on(g) - j g(s) ds < Ck2 9g(s)I ds + Ck J Ig(s)Iq ds, 

and we also assume (3.5) and (3.6). The rather special form of this error bound 
is motivated by our examples in ?7, where the piece ftn g(s) ds of the integral 
will always be approximated by the left rectangle rule as kg(tn1). 

Theorem 4.1. Assume that (1.3) (with co = 1), (3.5), (3.6), and (4.9) hold, and 
further that Afl < 1 . Then there exist positive C, 3, and ko such that for the 
solutions of (1.1) (with B = A), and (4.1), (4.2), we have, for n > O, k < ko, 

| Un- U(tN) II < Ck2 (e-tn IlUtt(0)II + .n e-3(tn-S)(IIUttt(s)II + IIU(S)IIq) ds) 

Proof. Letting en = Un u U(tn), we have 

+ k 2) en + Aen = an(bnAe) - TPn + qn(bnAu) for n > 2, 
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where T =(a+k20 )u(tn)-ut(tn). Here, e? = 0 and, with U1 given in (4.2), 
the proof of Theorem 3.1 immediately gives 

Ie'll < Ck2( max Ilutt(s)II + XIIJUJIlq ds) 

< Ck2 (Ilutt(O)II + j (Ilutttll + IIIUIlIq) ds) 

Also, essentially as in Theorem 3.1 but now using (4.9), with J < min(a, y), 
n 

k E e-Ytn_-Iq(bjAu)II 
j=2 

rtn n ti 
? Ck2 J e-tn-S)IIN(S)lllqds + Ck2 E e-Ytn-J IIIU(S)IIIq ds 

j=2 

? Ck2 je-6tn-5) II U(S) IIqds. 

Finally, by expanding Tn in a Taylor series around tn , employing the integral 
form of the remainder term, we have 

n lbtn 

k Z e-Ytn-J II TnIl <k2eyk e-Y(tn-S) I uttt(s) I ds 
j=2 0 

By Lemma 3.1 we may apply Proposition 4.1, and the theorem follows. E 

5. THE CASE OF A MORE GENERAL MEMORY FORM 

In this section we shall treat backward Euler schemes (1.4) in the case that the 
operator occurring in the memory term in (1.1) is different from the positive 
definite operator A on the left side of the equation. Our purpose now is to 
derive a discrete stability estimate for (1.4) of the form of Proposition 3.1 in 
the present more general situation. 

In [5] such an estimate was obtained, but only on a finite interval in time. 
This result may be formulated as follows: Assume that Ib(t) < K, that (instead 
of (1.2)) 

(5.1) IIA-IBIJ < cl , 

and further that the quadrature weights are dominated in the sense that 

(5.2) wj1S < co? forj > s + 1. 

Then 
/ ~~n \n-I 

IlUnll < eKc(Ono HU?ll + k E lifill for n > 0, where (Dni = (OS 
< j=l / s=i 

We shall now sharpen the techniques of [5] to improve this result under the 
further assumption that b is exponentially decreasing. Letting AO denote the 
minimal eigenvalue of A, we then have the following: 
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Proposition 5.1. Assume that (1.3)(i), (5.1), and (5.2) hold, and let y - 

2min(a, AO). There exists ko > 0 such that, for the solution of (1.4), 

n 

(5.3) IIUn l < eKc1 Cno -Ytn 
IIUOI I+ kZEeKcl, njrYtn-JIIfjII for n > O, k < ko. 

j=1 

We remark that, for some quadrature schemes considered in ?7, (5.2) will 
hold with &nj < C2 tn, + C3 . If so, (5.3) shows long-time stability provided Kc1 
is sufficiently small compared to a and AO (and provided we have appropriate 
bounds on I IfII). 

Proof of Proposition 5.1. With the notation and argument of the proof of Propo- 
sition 3.1 it suffices to show that now 

(5.4) IlIUnIl < eKc1lzl-Ytn-IIU/ijj for n > i. 

With Ek = (I + kA)-1 we have 

n 

(5.5) Uin = Ekn-Ui'+k E Ekn-j+lu&(bjBUi) for n > i. 
j=i+1 

Here, 

n n j-1 
k ,: Ekn-j+ cu(bjBUi) = k Ekn j+1ZW cojsbj_sBUs 

j=i+l j=i+l s=O 

n-1 n 

= k , 5, Os bj_sE n -j+ A A - 1B Ujs. 
s=i j=s+lI 

We shall show below that 

(5.6) k 1: cojsbj-sEk7-j+1A < Kcwse-Ytn-s for n > s. 

Assuming this for the moment, we have from (5.5) and (5.1), for k small 
enough, 

n-i 

11 Ui/ 11 ? e20tn1/2 1 Uiil + Kc1 E wse YtnslIuiI1 
s=i 

Multiplying by eYtn-l, we find with q$n = eYtn 11 Un 11, for y < )o/2, 

n-I 

on < qi + Kc E zwsqs for n > i, 
s=i 

from which (5.4) follows by a discrete version of Gronwall's lemma (cf. [9, 
Lemma 3.3]). 

It remains to prove (5.6). By spectral representation this reduces to showing 

n 

k Z cosbj_sr(kA))nJ-lA < K&se-7tn-s where r(u) = (1 + ,) 
j=s+1 
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or, using (5.2) and (1.3)(i), 
n 

kA E r(kU) )n-j+ 1e-atijs < e-Ytn-s 
j=s+lI 

i.e., after changes of variables, 
n 

(5.7) Q = Q(A, k, n) = kA E r(k)je-atn-j+l < e-Ytn. 
j=1 

We consider first A > a and want to show that (5.7) holds with y = .4a. 
Replacing ak by k and A by A/a, y by y/a, we may assume that a = 1. 
We begin then by showing that for any ) < .6e (~ 1.63) there is a ko such 
that (5.7) holds with y = .4 for 1 < A < ) , k < ko. In fact, since r(k)) is 
decreasing, we have for these A, with any 3 < 1 and k small, r(k)) < r(k) < 
e-kb , and hence, using xe-Px < (pe)-' for x > 0, 

Q < Atne n< )(( - .4)e)le4tn e eytn, 

if A < (d - .4)e, which holds for 3 suitably close to 1. 
We next show that (5.7) holds also for A > A. For this we write via summa- 

tion of the finite power series, 

Q =k -(I + Ak) (rn n) Q 

or 

eYtnQ - 1 + -ek k - ee r, = 1r+nk - k (e- 6tn - e- (C4)tn), 

where we have set r = e -k with ' = C kA ) = -kln r(Ak)/k. Note that 
C(A, k) is monotone increasing in A and, since 1 + a < ea, we have A > 

C (A, k). Further, (R, k) = , + 0(k). An elementary investigation shows that 
the function le-at - e-btl with 0 < t < oo, a, b > 0, has a maximum which 
equals 

lb-alab-aba-b = 

With a = - .4 and b = .6 we hence have 

eQ? [Q ? 
i+k-ek ;-.4] 

X 
l.4 I 2. 

For k small enough, since C < A, 

A_ _ A_ )-1I .4 0(k)_ _ 

< 
()i_. < I 

+; (.4 + 0(k)), 

and thus 
InI, < .4 ? 0(k) = 6 2 + 6(k) 

Further, since (A, k) > C(, Ik) = 0 0(k), 

ln I2<( .6 < -n + 0(k) 
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and hence 

In W',, Q) < <:*61 [ + 0(k) - In - -3 _- + 0(k)). 

Since 5)/3 is arbitrarily close to e and 2 - ln(e - 2)- -.05 < 0, we may 
first choose A and then ko so that the right-hand side is negative for k < ko, 
which shows (5.7). 

It remains to consider the case A0 < A < a. Presenting the argument "modulo 
0(k)-terms", now 4(A, k) behaves uniformly like A, and we consider instead 

Q(Q, k, n) = Ak e e-Atje- + -[ak E e tieti+1] 
j=1 = 

Comparing the expression inside the square brackets with the previous 
Q(Q, k, n), we see that the roles of A and a are reversed, and since A/a < 1, 
our analysis above clearly applies with the appropriate modifications, taking 
now y = .4A0. 

This completes the proof of the proposition. 0 

In the same way as earlier, the stability implies an error estimate. We shall 
not insist on the details. 

6. APPLICATION TO FINITE ELEMENT DISCRETIZATIONS IN SPACE 

In this section we shall briefly discuss the application of the results above 
to spatial discretization by finite elements of an integro-differential equation of 
the form (1.1). Thus, let A denote a second-order selfadjoint elliptic operator 
with vanishing Dirichlet boundary conditions in a bounded domain Q c Rd 
with smooth boundary, corresponding to a coercive bilinear form 

A(u, u) = ( aij ? Ax + ao u) dx > cIIuI12 for u E Ho', with c > O. 

Here we denote as usual by HI = Hr(Q) the Sobolev space of functions with 
derivatives of order at most r in L2(n), with the standard norm, and by Ho' 
the functions in HI which vanish on On. Our basic Hilbert space is now 
L2(Q)- 

Letting Sh, 0 < h < ho, be a family of finite-dimensional subspaces of Ho, 
and introducing Ah: Sh -* Sh by (Ah V, X) = A(q, X) for V, X E Sh, and 
the orthogonal projection Ph: L2 -4 Sh by (Phu, X) = (u, X) for X E Sh, we 
consider the semidiscrete analogue of (1.1) with B = A in Sh to be 

t 

Uh,t + AhUh = jb(t-s)Ahu(s) ds + Phf(t) for t > 0, Uh(O) = UO,h. 

The backward Euler method applied to this determines Un E Sh from 

(6.1) Un +?AhUn = an(bnAhU) Pfn, for n > 1, U- = UO,h 

We shall use the stability result of Proposition 3.1 to derive an error esti- 
mate. Checking the proof of that proposition, one sees that the properties of 
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the operator A enter only in the condition eyk - 1 < Aok(l - ,6) for its low- 
est eigenvalue. Since the lowest eigenvalue )0,h of Ah is bounded below by 
the smallest eigenvalue A0 of A, we may apply Proposition 3.1 to (6.1) with 
quantities that are independent of h. 

We next introduce the Ritz projection Rh: Ho' - Sh by A(Rhv, X) = 
A(v, X), for X E Sh. We assume that the Sh are such that the error estimate 

(6.2) IiRhv - vII < ChriiviiHr for v E Hol n Hr 

holds, where r is a positive integer. Writing 

Un - U(tN) = (Un - Rhu(tn)) + (Rhu(tn) - U(tN)) = on + pn, 

we may use (6.2) in the obvious way to bound pnf. For on e Sh we find by our 
definitions, using that AhRhv = PhAv for v E H2 n Ho' 

jotn + Ahon = an(bnAhO) h(jpn + Tn + qn(bnAu)) for n > 1, 

and, assuming for simplicity that uO, h = Rh UO, we have 00 = 0. Here, 1tn = 

a u(tn) - ut(tn) . As remarked above, we may apply Proposition 3.1 (with H Sh 
equipped with the L2 inner product) so that, since IIPhv ? liv I, 

n 
(6.3) llinll < kZ,e Ytn,-i(I&0pi'i + izl'il + iql(bjAu)II). 

j=1 

By (6.2) and the definition of Ti, 

II(9PjII < C k II |Ut||Hr ds, ||TV||I < II lutt II ds. 

Using this in (6.3) and treating the term in the quadrature error as in the proof 
of Theorem 3.1, we find the following. 

Theorem 6.1. Assume that (1.3) (with co = 1), (3.5), (3.6), and (6.2) hold, and 
let UO, h = Rh UO Then there exist positive C, 3, and ko such that for the 
solutions of (1.1) (with B = A) and (6.1), 

ii| n-U(tN) II < Ch (iu(tni)iHr +j e-6(tns)iutiiH' ds) 
{tn 

+ Ckj e-3(tn-S)(iiuttii + iiiUIliq) ds for n > 0, k < ko. 

A similar result holds also for the second-order backward difference methods, 
with k replaced by k2 . (Again, it is easy to check that the quantities in Propo- 
sition 4.1 depend on A only through a lower bound on its lowest eigenvalue.) 

As for the case of B :$ A treated in ? 5, where now B is any spatial par- 
tial differential operator with smooth coefficients of at most second order, an 
application of Proposition 5.1 would require a bound for iIA7-1Bh I, where 
(Bhv, X) = B(v, X), for X E Sh, with B(., *) the natural bilinear form on 
Ho' x Ho' associated with B. This may be obtained by a standard error estimate 
for the associated elliptic problem, together with an inverse assumption (cf. [9, 
?3]). In some cases, such as when B = g(x)A +B with B a first-order operator, 
the inverse assumption is not necessary for this (cf. also [4, ?4]). 
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Finally, to obtain an error bound in the case B $ A, rather than comparing 
Un to RhU(tn), one may conveniently compare it to a so-called Ritz-Volterra 
projection of u. We shall not pursue this and refer to [1, 3, and 4] for details. 

7. ON QUADRATURE RULES 

Following the philosophy of [5] and [9], we shall now briefly discuss some 
quadrature rules that are suitable for application in the situations described 
above. 

In the case of the backward Euler scheme treated in ?3 when B = A, the 
only requirement on an (g) for the stability and error estimates to hold is that 
the accuracy condition (3.5) be satisfied for some q. The simplest choice is 
then the left-side evaluation composite rectangle rule, 

n-I 
(7.1) an (g) = k E g(tj) 

j=0 

for which (3.5) is valid with q = 1 . A disadvantage of this rule is that all the 
preceding values Ui need to be stored as the computation progresses in time. 

We shall now give a first-order rule based on the use of the composite trape- 
zoidal formula on intervals of length O(k 12), and then somewhat modified at 
the right end of the interval of integration. Let ,u = [k- 1/2], where [x] denotes 
the integral part of x. Set k, = ,uk and ij = jkl, and let jn be the largest 
integer such that ljn < tn . In approximating the integral on [0, tn], we shall 
now apply the composite trapezoidal rule with stepsize k, on [0, tj, then the 
one-interval trapezoidal rule on [ti, tn-1] (which may be void) and, finally, the 
left-side rectangle rule on the remaining interval [tn_I, tn]. Thus, 

(7.2) an (g) = k17 ((tj)+9(tj l))+2(tn-1-tin )(g(tn_l)+g(tjn ))+kg(tn_l) 
j=1 

Since the rule is second-order in k, on (0, fjn) and on (Vjn, tn,1), and first- 
order in k on (tn_-, tn), we have 

j tn- I {tn {tn 

Jqn(g)l < Ckj gljds + CkJ Iglids < Ckh2j lgljds for j = 1, 2, 
? t~~ ~ ~~n-I? 

so that (3.5) holds with q = 2. We note that the storage requirement is now 
O(k- 12) time levels on a unit length time interval, as opposed to the O(k-1) 
bound for the composite left rectangle rule. 

Going further with this storage-saving idea, one may set ,u = [k- 1/4] and 
k2 = 4u3k = O(k014). The new quadrature rule then uses Simpson's formula 
on as many intervals of length 2k2 that can be fitted, starting from the left, 
into [0, tn-1]. On the remaining interval, which is of length at most 0(k1/4), 
it uses the composite trapezoidal rule on as many intervals of length k1 = 
4u2k = 0(k1/2) that fit in, thus reaching inI then the one-interval variable- 
length trapezoidal rule on the interval [Fin, tn-1] and finally the left rectangle 
rule for [tn_I, tn]. It is clear that the number of time-levels that need to be 
stored per unit time is O(k2') + O(k2kV1) + 1 = O(k- 14). Similarly to above, 
the method satisfies (3.5) with q = 4. 
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We now turn to some quadrature rules which satisfy the second-order esti- 
mate (4.9) and thus are appropriate for use with second-order backward differ- 
encing. The simplest would be to use the trapezoidal rule on each time interval 
of length k in [0, t,-1] with the left-side rectangle rule on [t,-1, t,], i.e., 

= ~kg(0 + kn-2 
n(g) - 2Zkg(O) + k E g(tj) + -kg(tn_l)- 

j=1 

This rule satisfies (3.5) with q = 1 and, since its error is bounded by 
{tn - I rtn 

Ck2 j g(s)02 ds + CkJ Ig(s)l ds, 

also (4.9) with q = 2. 
In order to save storage in the second-order context, we introduce a method 

based on Simpson's rule on longer time intervals. For this, let u= - [k- 1/2], 

ki = luk = O(k1/2), and tj = jkl, and let jn be the largest even integer with 
tin< tn1 . We then apply Simpson's rule on as many intervals of length 2k1 as 
possible in [0, tn-l, starting from the left, then the trapezoidal rule on most 
of the remaining small intervals of length k, and the left rectangle rule on 
[tn-1, tn]. Thus, 

jn/2 

Un(g) = E Z [g(t2j) + 4g(12j-1) + g(12j-2)] 
j=1 

kn-l 
+ k2 E (g(tj) + g(tjy1)) + kg(tn-l) 

=jn#1+l 

This rule satisfies (3.5) with q = 2 and (4.9) with q = 4, and its storage 
requirement is O(k-1/2) time-levels per unit time. 

For further storage reduction in the second-order case, an obvious idea would 
be to use, e.g., the eighth-order formula of Newton-Cotes type, often referred 
to as the six-strip approximation, 

jbg(s) ds = 8 (41go + 216g, + 27g2 + 272g3 + 27g4 + 216g5 + 41g6) 

(where g1 has the obvious meaning). It could be used in a composite fashion on 
as many intervals of length 6[k-314]k that fit into [0, tn-1] starting from the 
left, followed by Simpson's rule on intervals of length first 2[k-112]k and then 
2[k- 14]k, then by the trapezoidal rule on intervals of length k, and finally by 
the left side rectangle rule on (tn-i, tn) . Now (3.5) holds with q = 4 and (4.9) 
with q = 8. The storage requirement is then O(k-1/4) per unit time. 

We next consider quadrature rules suitable for application of the analysis in 
?5 of the backward Euler methods when B :$ A. Here, in addition to the ac- 
curacy requirements, we assume that the quadrature coefficients are dominated 
as in (5.2), and it is desirable for the stability estimate that Ns = w < 

C2tn_; + C3. For the rectangle rule (7.1) one may choose ws = k and thus 
)nj = tn-j1 so that this condition is satisfied. 

Turning now to the composite trapezoidal rule (7.2), we see that Wn,n-l= 
(tn-i/2 - lin) + k for every n. Since tn-i - Yin > kj/2 about half of the 
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time, it is clear that Cor,j > ki (n - j)/2 tn__jk-12/2, which renders the result 
of Proposition 5.1 rather useless. The following slight modification may now 
be made. Instead of approximating the integral on the next-to-last interval 
[tj1, tn-1] which is of variable length, by the one-step trapezoidal rule, we 
employ the composite rectangle (or trapezoidal) rule with all subintervals of 
length k involved. It is then clear that C)nj < 2tn-j + ck, (cf. [5]). This 
modification has a slightly higher storage requirement, but this requirement is 
still within the previous 0(k-1/2) bound per unit time interval. 

Since by (1.3)(i) our memory is fading at an exponential rate, the contribution 
at large t from the solution on [0, T] is of order 0(e-Y(t-T)). Since this is 
eventually bounded by the discretization error 0(km), m = 1 or 2, when this 
is uniform for t positive, one may then set Jn j = 0 for n - j > Mk- I ln(k- I ), 
with a suitable M. When the storage requirement per unit time is 0(k-11P), 
the total storage requirement now becomes 0(k-l/P) ln(k-1). 

We conclude by remarking that even in the case that u(t) approaches a 
limit uOO "exponentially fast" as t - oo, Theorem 3.1 (and its analogue for 
the backward difference formula) merely asserts that Un is uniformly within 
0(k) (and 0(k2), respectively) of u(tn). In fact, no assertion can be made in 
general that Un has a limit as n -* oo for a fixed k. For instance, in the cases 
of the modified Simpson's rules, from computer experiments it appears that 
Un approaches a periodic limit cycle with period determined by the periodic 
changes in the quadrature formulas. It seems, though, that the periodic changes 
are very small compared to the main part of the error. 

APPENDIX. ESTIMATION OF THE CONSTANT A IN PROPOSITION 4.1 

Our objective is to show that the quantity A defined in (4.3) satisfies A < 
1.1. In view of (4.8), it suffices to show that for ,u > 1/2, A(,U) < 1.1. Writ- 
ing r? = (2 ? i /-1)/(3 + 2,) re?iO, with r = (3 + 2,u)-1/2,6 = 

arctan ((2,U - 1) 1/2/2), we have 

2Iu r____r 2,u 1I sinj6I 
A2)=2 

=1Z r' - r' 3+ 2/ 
=1 sinr 

We begin our proof by noting that since (cf. (4.8)) 

2 rsin JO 2,U r - r_ 
3 + 2,u'= sin 0 3 + 2,U j= r++ - r_ 32uj=1 3+,i'=r- 

we have 

(A. 1 ) A(y) - sin jsin 

The range of 0 involved is 0 < 0 < 7r/2; our proof will now proceed by 
considering different subranges of 0. 

We start by treating the case of 0 E I8 = (0, 7r/8). Then sinj6 > 0 for 
j < 8, and since I sinj6l < jl sin0l, we have by (A.1), 

(A.2) A(,U) - 1 < - jrj-l = 9 r + r9 ) 
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The right-hand side is increasing in ,u and r, and since r < 1/2 and ,u - 

2 + 2 tan2 0 < I + 2tan2 (7/8) < .85, (A.2) shows A(u) < 1.06 in I8. 
We next treat the cases 0 E Iq = (7r/(q + 1), 7/q) for 2 < q < 7. We note 

that sinj6 < 0 for j= q + 1,.. ,2q, and hence 

A(81) -1 = F "3+2yE rjq sinj 1 

[ Z E sin j6 1 jq(0) q (0- 

sin s6<0 

The interval I2 = (7r/3, 7r/2) will be further divided into I2 = (7r/3, 27r/5) 
and I2' = (27r/5, 7/2). The following table shows upper bounds for J1q(Q) 
and J2q(6) in the respective interval, which will be shown below. 

I7 I6 I5 I4 I3 I2 I2 

Jl (0) < .010 .017 .032 .056 .049 .045 .050 

J2q(0) < .001 .002 .006 .015 .038 .052 .008 

A(8) < 1.011 1.019 1.036 1.071 1.087 1.097 1.058 

Writing ri- sinj6/sin6 = (r+ - r' )/(r+ - r), and using that 

(1 -r+)(1 -r_) = 2y/(3+211), 

cf. (4.4), we easily find by summing finite geometric series that 

Jq (Q) = i 0_[sin(q + 1)0 - rsinq6 - r (sin(2q + 1)6 - rsin2q6)]. sin 6 

Next, using that sin(m + 1)6 = sinm6cos6 + cosm6sin6 with m = q and 
2q, and also the fact that cot 6 = 2/ 211u- , this leads to (after rearranging 
terms), 

(A.3) Jq(0) = 2rq [cosq + rq cos2q6 - 21 + rqsnqfl 

We now note that, for 7r/(q+ 1) < 0 < 7/q, we have sinq6 > 0 and sin2q6 < 
0, and thus 

(A.4) Jlq(Q) < 2rq(1 + rq). 

For J2q(6), we have as in (A.2) 

3+11 1 -r +q r2qr)I (A. 5) Jq(o) < 3+ (2q +1 +(1 2) 

Bounding r = cos 0/2 and 1u = 2+2 tan2 0 in (A.4) and (A.5) by their values 
at the left and right endpoints of the respective intervals yields the bounds of 
the table except those for J?3(0) and the J?2(0)'s. 
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Consider thus j3(0) on I3. We have from (A.3), now throwing away only 
the last term on the right, and using standard trigonometric formulas, 

J3(0) < 2r3 [-cos 30 - sin30 +6 = 
- 
2 +2r6. 

Here, 2.5 < ,u < 6.5, and an elementary calculation shows that the term in- 
volving ,u has its maximum at ,u = 204/56 (- 3.64) and is bounded by .045. 
Since 2r6 < 2(cos (7r/4)/2)6 < .004, this shows the bound of the table. 

Similarly we have on I2 = (7r/3, 7r/2) 

J~(6)?2r2 o2~ sin 20 24 2ui- 9 4 6 J12(0) < 2r [ cos 20 - / ] + 2r4 cos 4O = 2 ( 2)2+ 2r4 cos 40. 

The maximum value of the term involving ,u now occurs at ,u = 10.5 and is 
bounded by .042. Since 47r/3 < 40 < 87r/5 on I2, the last term is bounded 
by 2(1/4)4cos87r/5 < .003 on I2 and, trivially, by 2(1/4)4 < .008 on I2'. 

Together, these estimates show the remaining bounds of the table and thus 
complete the proof of our claim. 

We conclude by remarking that computer experimentation suggests that 1.04 
< A < 1.05. 
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