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ON A CELL ENTROPY INEQUALITY FOR DISCONTINUOUS 

GALERKIN METHODS 

GUANGSHAN JIANG AND CHI-WANG SHU 

ABSTRACT. We prove a cell entropy inequality for a class of high-order dis- 
continuous Galerkin finite element methods approximating conservation laws, 
which implies convergence for the one-dimensional scalar convex case. 

1. INTRODUCTION 

In [3] Cockburn and Shu defined a class of discontinuous Galerkin finite ele- 
ment methods for conservation laws (the multidimensional case was discussed 
in [4]): 

(1. 1) ut +div f(u) = . 

The entropy solution of (1.1) also satisfies 

(1.2) U(u)t + div F(u) < 0 

in the distribution sense, for any convex function U(u) and consistent entropy 
flux F(u) satisfying F'(u) = U'(u) f'(u) . The scheme is obtained in the follow- 
ing way: first a triangulation Sh is chosen. In one space dimension, ST is just 
a collection of subintervals Ii = (x>- 1, xj+ I ), which are not necessarily of the 
same length. We will use the notation Ax =x - x 1, h = max; Axj and 

X= (xj 1 + xj+i). In two and more space dimensions, gh is a collection 
of triangles, tetrahedrons or other simple geometric objects. The solution space 
Vh is defined as the collection of all piecewise polynomials of degree up to r 
for an (r + 1)st-order method. The functions in Vh are allowed to have dis- 
continuities across element interfaces. The conservation law (1. 1) is multiplied 
by a test function v E Vh, integrated over an element K E Sh, and formally 
integrated by parts to shift the spatial derivatives from f(u) to v . The result 
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is: 

AUt(x, t)v(x) dx+ E f (u(x, t)) * n v(x) ds 
( 1.3) KesEOKe 

I f(u(x, t)) * grad v(x) dx = 0, 

where AK is the boundary of the element K and n is the unit outward nor- 
mal vector. Up to now, this is just the standard discontinuous Galerkin method. 
Two things from the finite difference methodology are then used in [3], [4]: one 
is the monotone or E-flux (approximate Riemann solver for systems) to define 
the trace of the physical flux f(u) at the cell interface; the other is a local non- 
linear limiter which limits the values of u at the cell interface by the differences 
of the means of u over elements. With these two ingredients, it was proved in 
[3] and [4] that the schemes are formally high-order accurate, measured by lo- 
cal truncation errors in smooth regions including at extrema, are total-variation 
bounded for one space dimension, and are maximum-norm bounded for any 
space dimensions. The only thing missing is the entropy condition: in [3], 

2 

for one-dimensional convex f(u) with an h-independent modification to the 
scheme, following the idea of Osher [12]. We were also able to prove entropy 
consistency for all convex entropies with an h-dependent modification to the 
scheme. The h-dependent limiters make the proof of high-order schemes easy, 
but they are not very desirable for practical computations, because they usually 
limit the slope near the discontinuities stronger than necessary, and essentially 
flatten the solution to piecewise constants there for a fine mesh. They also 
destroy the self-similarity of the scheme. 

The entropy condition seems difficult to prove for high-order finite differ- 
ence schemes. Osher and Tadmor proved [13] that finite difference schemes 
(those which evolve only the means) which satisfy cell entropy inequalities for 
all convex entropies can be at most first-order accurate. Even for one entropy 
inequality (say for the square entropy), for one space dimension and for convex 
f(u), the proof is extremely elusive if one does not modify the scheme. Osher 
[ 1 1] and Nessyahu and Tadmor [10] were able to get such cell entropy inequal- 
ities, for the square entropy and for the second-order MUSCL scheme, with 
some h-independent modifications; Yang [14] was able to prove convergence of 
the unmodulated second-order MUSCL scheme, using a global analysis rather 
than relying solely on cell entropy inequalities; Lions and Souganidis [8] proved 
convergence of the second-order MUSCL scheme for steady-state Hamilton- 
Jacobi equations and conservation laws. There are also many results which 
prove entropy consistency and/or convergence using h-dependent limiters or 
modifications for high-order schemes: for example, Coquel and LeFloch [7] for 
finite difference; Johnson, Szepessy, and Hansbo [9] for streamline diffusion fi- 
nite element; Cockburn, Coquel, and LeFloch [5] and Cockburn and Gremaud 
[6] for high-order finite volume, streamline diffusion or discontinuous Galerkin 
schemes with h-dependent "shock capturing" terms. These results are usu- 
ally more general (many space dimensions, nonconvex fluxes, etc.). However, 
as we have indicated before, h-dependent limiters or modifications should be 
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avoided for practical computations if at all possible. More recently, Bouchut, 
Bourdarias, and Perthame [2] obtained a second-order one-dimensional scheme 
which is consistent with all entropy conditions and does not use h-dependent 
limiter. A key ingredient of [2] is to evolve both the mean and the slope and to 
use the whole function (not just the mean) to obtain cell entropy inequalities. 
Discontinuous Galerkin methods also fall into this category (evolving the whole 
polynomial in a cell, rather than just the mean), and we use this fact strongly 
in this paper. 

In ?2 we prove a cell entropy inequality using the square entropy U(u) = U2 

for the unmodulated semidiscrete discontinuous Galerkin method of [3], [4]. 
The proof is remarkably simple and does not even use any nonlinear limiters. 
It thus works for any spatial order of accuracy. As far as we know, all the 
previous cell entropy inequalities without h-dependent limiters must restrict 
the slope of a function by I4 minmod(A+uj, A-uj) (this means that the dif- 
ference at the interface, ut+ - u7-, must be of the same sign as that of 

uj+- uj, i.e., no "sawtooth" is allowed in the reconstruction), hence cannot be 
higher than second-order accurate. The result in this paper illustrates the poten- 
tial of discontinuous Galerkin methods, or equivalent Hermite-type finite 
difference/finite volume-type methods, which evolve the whole polynomial in 
the cell rather than just the mean. Time discretization is discussed in ?3. 

2. CELL ENTROPY INEQUALITY FOR THE SQUARE ENTROPY 

The discontinuous Galerkin scheme in one space dimension, defined in [3], in 
its semidiscrete form without slope limiting, is the following: Find u(., t) E Vh 
such that, for all v E Vh and all subintervals Ij, 

| t u(x, t)v (x)dx + hj+ i (t)v (XJ+ 1 ) - hj_ i (t)v (xJ+ 

(2.1) 
-] f(u(x, t))vx(x)dx = 0. 

Here, hj+ I (t) = h(u(xj7 l, t), u(xJ+ , t)) is a Lipschitz continuous monotone 

flux (i.e., h is nondecreasing in the first argument and nonincreasing in the 
second argument), or more generally, an E-flux as defined by Osher [11]: 

(2.2) (h(u-, u+) - f(u)) (u+ - u-) < 0 

for all u between u- and u+. Some examples of the commonly used monotone 
fluxes can be found in, e.g., [3]. 

If we take v(x) = u(x, t) in (2.1), we get 

( 2( 2' ) dx + hj+2 (t)u(xy.+ , t) - hj_ (t)u(xj t) 

(2.3)~~~~~~~~~r>, \ 
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We define 

(2.4) g(u) = Jf(u)du 

and rewrite (2.3) as 

(2.5) J ( t))dx+Fj+,(t)-Fj F (t)+Aj(t)=O, 

where 

(2.6) Pi+ i (t) = hj+ 1 (t)u (xf.1 t) - g(u(x7+1 t)) 

is consistent with the entropy flux for the square entropy, 
ru ru 

(2.7) F(u) = J f'(u)udu = f(u)u - f f(u)du = f(u)u- g(u), 

and 

Aj(t) =-h_ (M)UWX+1 t) - U(X-._, t)) 

(2.8) + g(U(X7 l, t))-g(u(xf. , t)) 

=- (hy1 (t) - P(U(+ 1, t) - U(X. 1, t)) > 0, 

where we have used the mean value theorem and the definition (2.4) of g(u) 
in the second equality; 4 is between u(x7.1, t) and u(x71, t), and the last 
inequality is due to the property of E-flux (2.2). 

We have thus proved the cell entropy inequality 

(2.9) J ( (2 )) dx+Fj+ t-Fj_,.t <0 

for the square entropy U(u) = U2. Notice that we do not need any nonlinear 
limiting at this stage. However, nonlinear limiting as introduced in [3] and [4] 
will not destroy this cell entropy inequality (see next section). The cell entropy 
inequality (2.9) trivially implies L2 stability of the scheme (again without even 
using the nonlinear limiting): 

(2.10) dtj t)) dx< 0 

but it is much stronger. For example, if f (u) is convex and we use the nonlinear 
limiting [3] to obtain a total-variation boundedness for the solution, we will have 
convergence towards the unique entropy solution. 

The same entropy inequality can be obtained for many space dimensions 
with arbitrary triangulations: 

(2.11) J( (X5t) dx + Z JFe,K(X t) ds < 0 
2 t ~eEaKe 

where Fe,K is consistent with F * nK for the entropy flux F in (1.2) and the 
outward normal nK, and Fe,K = Fe, K' for the two neighboring elements 
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K n K' = {e} (conservation). We omit the details of the derivation since they 
parallel those for the one-dimensional case. 

We have the following two remarks: 
1. If we try to do the same estimate for a general convex entropy U(u), 

we can obtain exactly the same cell entropy inequality modulo an interpolation 
error term: 

(2.12) - (u(x, t)t+f(u(x, t))x)(U'(u(x, t))-FU'(u(x, t)))dx, 

where flv is a projection into the space Vh which interpolates at the two end 
points of Ij. This motivates the following h-dependent modification of the 
scheme, which is similar to the "shock-capturing term" added to the streamline 
diffusion method in Johnson, Szepessy, and Hansbo [9] and in Cockbum and 
Gremaud [6]: 

X t u(x , t)v (x) dx + hj+ I (t)v (x+,)-. h_ (t)v (x+ 

(2.13) - f (u (x , t)) vxd(x) dx 

+ Ch llut(x , t) + f (u(x,5 t))Xl ix (x ' t)- vx(x) dx = 0 5 

where C is a suitable positive constant. This, together with an Loo bound 
which can be obtained by using nonlinear limiters [3], will give us a cell en- 
tropy inequality for arbitrary convex entropy at least for the r = 1 (second- 
order) case, hence convergence for any nonconvex flux f(u) in this case. For 
general r, more h-dependent modification is needed. Notice that by adding 
this modification, the formal order of accuracy of the scheme is not changed: 
Iut(x, t) + f (u(x, t))xI is just the local truncation error. A similar argument as 
in [9] shows that the modification does not destroy convergence towards weak 
solutions (conservation). 

2. The so-called discontinuous Galerkin method can also be recast as a finite 
difference scheme (Hermite type: where one evolves both the mean and the 
slope, maybe more). For example, the second-order case is just the follow- 
ing scheme for the mean uj(t) and the slope sj(t) where u(x, t) = uj(t) + 
sj(t)(x - xj) in cell Ij (see [3]): 

daj(t) -Z [fJ+i(t) - 

d 6 - . 
(2.14) dts1(t) = A__x2 [tfi+ (t) + f1-9 (t)] 

dt A12 2f 

+12 f (uj(t) + sj(t)(x - xj)) dx, 
Ax] J 

where 

(2.15) fJ+ (t)= h (uj(t)+ sj(t), uj+I(t)- Axj+lsj+(t)). 
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We have thus in effect proved cell entropy inequalities for such high-order 
Hermite-type finite difference schemes without using the help of any nonlin- 
ear limiting. Of course, to get convergence, one must use the nonlinear limiting 
to obtain Loo and/or total-variation bounds. 

3. TIME DISCRETIZATION 

We discretize (2.1) in time by the following class of methods: 

a;un+ I (x) -Un (X) n()d + OV 0(X l - hn+0, V(Xt+I f ~~ - uflv(x))dx + hj+(I +~) Ih~vx 
(3.1) A + + - 

- j f(un+0 (x))vx(x) dx = 0, 

where 

un+ (X)- (1 O-)un(X) + 6un+1 (x), 

(3.2) hn+- h(un+,0(x7 + u0 (xt 1) ) 

For 0 = 0, this is the Euler forward discretization; for 0 = 1, it is Euler 
backward, and for 0 = 2, Crank-Nicolson. 

If we take v(x) = un+O(X), we obtain just as before 

(3.3) J un+I(x) - un(X)un+(x) dx + Fpn+,0-Fn+O < 0O 
At ~~~~~j+1 j- - 

where 

(3.4) Fn+I0 h + I . 1 )- g(un+0(x 1 )) 
1+2f i+2 1+2- 1+2 

with g(u) defined by (2.4). We can rewrite (3.3) as 
J 

(Un+1(X))2 _ (un(X))2 dx + Fn+O - Fn+O 

(3.5) 2At x+ '2 2 

+(3. ) (un+ (X) - Un(X)) 2 

+K-2) At 

Thus, a sufficient condition to get the cell entropy inequality 

(3.6) / (un+l(x))2 - n(x))2 dx +f ftn+o - n+O < 0 
2At + - 

is just 0 >, i.e., implicit schemes from Crank-Nicolson to Backward Euler. 
Up to now, we have not considered the nonlinear minmod-type limiters in 

[3] and [4]. These limiters will render the scheme total-variation stable (in one 
space dimension) or Loo stable (in many space dimensions). We have to make 
sure that these limiters do not destroy the cell entropy inequality (3.6). This 
turns out to be a simple issue: suppose in+l (x) is the solution obtained from 
the scheme (3.1) without limiter, then projected to get the solution at time level 
n + 1 by some minmod-type limiter un+I (x) = piin+l (x) (this is the procedure 



ON A CELL ENTROPY INEQUALITY FOR DISCONTINUOUS GALERKIN METHODS 537 

adopted in [3] and [4]). The above derivation for the unlimited scheme will 
give (3.6) for an+l: 

(3.7)J (jn+1(x))2 
- 

(Un(X))2 dx + -n+0 _ Pn+0 < 0; 

hence, a sufficient condition to get the cell entropy inequality (3.6) for the lim- 
ited (projected) solution Un+1 is to require the projection P to satisfy 

(3.8) J(Pw(x))2dx < J(W(X))42dx 

for all polynomials w (x) of degree up to r (recall that r + 1 is the order of the 
scheme), i.e., P does not increase the L2 norm of any rth-degree polynomial 
in cell Ij. Notice that this is the idea used in [2]. An easy way to ensure 
condition (3.8) is to write w (x) and Pw (x) as expansions of (scaled) Legendre 
polynomials p1(x) as in [3]: w(x) = Z=0alp,(x) and Pw(x) = Z=0blpl(x) . 
A simple sufficient condition to ensure (3.8) is now just lbll < lall for all 1, 
which is easily checked to be correct for the PI case ( r = 1) in [3] and also for 
the general pr case with similar minmod limiters on a, (see also [1] for such 
limiters). 

It is also possible to get cell entropy inequalities for certain explicit time 
discretizations. For example, with leap-frog time discretization, 

(3.9) 
u+(x) - Un- (x) dx+h (t)nV(X- h (t)n V ) 

4 ~~2At2 +f j2 Jf 

- f(Un (x))vx(x) dx = 0, 

we can obtain, by taking v (x) = un (x), 

(3.10) Jun+I(x)un(x)- un(x)un (X)d+ +.Fnl< 
(3.10) f - dx + F1 F- 1 <0. 

iii ~~2At j+-f J-- 
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