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ON THE STABILITY ANALYSIS OF BOUNDARY CONDITIONS 
FOR THE WAVE EQUATION BY ENERGY METHODS. 

PART I: THE HOMOGENEOUS CASE 

T. HA-DUONG AND P. JOLY 

ABSTRACT. We reconsider the stability theory of boundary conditions for the 
wave equation from the point of view of energy techniques. We study, for 
the case of the homogeneous half-space, a large class of boundary conditions 
including the so-called absorbing conditions. We show that the results of strong 
stability in the sense of Kreiss, studied from the point of view of the modal 
analysis by Trefethen and Halpern, always correspond to the decay in time of 
a particular energy. This result leads to the derivation of new estimates for the 
solution of the associated mixed problem. 

1. INTRODUCTION AND SUMMARY 

The theory of the stability of initial boundary value problems for hyperbolic 
systems underwent an important development at the beginning of the 1970s 
with the major work of Kreiss [10]. A very interesting review paper of this 
theory has been recently given by Higdon in [8]. 

It appears that the relative complexity of this theory comes from the difficulty 
of a good definition for the stability or well-posedness of these problems and 
from the technical character of the proofs. In fact, one can roughly distinguish 
two kinds of stability definitions, namely 

-weak well-posedness (or weak stability), 
-strong well-posedness (or strong stability). 
Weak well-posedness corresponds to classical well-posedness in the sense of 

Hadamard, meaning that there is existence and uniqueness of the solution, and 
that one can estimate some norm (let us say of Sobolev type) of the solution 
by some norm of the data. This implies, since the equations are linear, that the 
map data -+ solution is continuous for appropriate topologies. In the definition 
of strong stability, Kreiss prescribes a priori the norms for which he wants to 
obtain some estimates, which is of course a stronger result. 

For instance, if one considers the Cauchy problem where initial conditions 
are the only data, one requires that the L2-norm (in space and time, including 
the trace on the boundary) of the solution must be estimated (modulo a constant 
which may depend on the interval of time [0, T] one considers) by the L2- 
norm of the initial data: there is no loss of derivatives. On the other hand, the 
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problem is weakly well-posed as soon as one can bound the same L2-norm of 
the solution by some higher Sobolev norm of the data. We shall give a simple 
concrete illustration of the distinction between these two notions in this article 
(see ?2.2). 

In the case of a half-space in Rd, the two types of stability have been studied 
for first-order strictly hyperbolic systems with constant coefficients via so-called 
modal analysis, which means that one uses the Laplace transform in time and 
a Fourier transform with respect to the variables tangent to the boundary of 
the half-space. This study leads to the concepts of generalized eigenvalues and 
characteristic equation, which are extensively discussed in [8] with a geometrical 
interpretation using characteristic manifolds and group velocities. We shall 
not enter into the details here. Let us simply mention that the characteristic 
equation takes the form 

(1.1 ) F(s, 0) = 0, 

where s E C is the unknown and 0 belongs to the unit sphere of Rd- I. Once 
the characteristic equation (1.1), which is a polynomial equation with respect 
to s, has been determined, the difficulty is reduced to the location of the so- 
lutions of this equation in the complex plane. The case of weakly well-posed 
problems corresponds to the result of Hersch [5], while the case of strongly 
well-posed problems corresponds to the result of Kreiss [10]. These results can 
be summarized as follows 

Weak well-posedness X {solutions of (1.1) } c {Res > 0}, 
Strong well-posedness X {solutions of (1.1)} c {Res > 0}. 

Otherwise, the corresponding problem is said to be strongly ill-posed. In recent 
years, the emphasis has been put on strong stability and the works of Kreiss 
have been generalized to various situations by different authors (see [8, 12] for 
instance). One reason is probably the fact that this concept has led to an anal- 
ogous stability theory for finite difference approximations to mixed hyperbolic 
initial boundary value problems (see [4, 3, 13, 14]). The other major interest 
of the concept of strong well-posedness is the fact that Kreiss was unable to 
prove that the stability results could be extended to smooth variable coefficients 
and lower-order perturbations. His proof is very complicated and makes use of 
the theory of symmetrizers and pseudodifferential operators ([10]). The precise 
condition about the variations of the coefficients (which are allowed to vary in 
space and time) can be stated as follows: 

The coefficients are of class C?? with respect to the space and 
time variables and are asymptotically constant at infinity. 

Taking into account the finite velocity of propagation of solutions of hyperbolic 
systems, the constraint that the coefficients are constant at infinity is not really 
troublesome. The relative weakness of the result lies more in the fact that one 
cannot say anything in the case where the coefficients are not smooth. 

Of course, this is due to the technique of proof, which uses pseudodifferential 
operators. It is natural to think of other methods, such as energy methods. 
In most of the systems derived for physical phenomena, one can associate an 
energy with the solution that can be shown to be conserved in time in the 
case of pure initial value problem; these are conservative hyperbolic systems 
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([2, 16]). The acoustic wave equation, in which we are particularly interested 
in this paper, belongs to this category of systems. The study of the stability 
of the wave equation associated with various boundary conditions has a very 
important practical interest if one thinks, for instance, of absorbing boundary 
conditions. In their second paper on the subject, Engquist and Majda [1] applied 
the theory of Kreiss to show the strong stability of their boundary conditions. 
More recently, Trefethen and Halpern [ 15] considered a completely general class 
of boundary conditions for the wave equation and, applying the Kreiss theory, 
obtained explicit necessary and sufficient criteria (concerning the coefficients of 
the differential operator appearing in the boundary condition) for the strong 
well-posedness of the corresponding initial boundary value problem. We shall 
state their precise results in the next section. In connection with this work, 
a question naturally arises: is it possible to obtain the same results by energy 
estimates? 

This is the question we intend to address in this paper. In his review [8], 
Higdon raised briefly this question and concluded that, if energy techniques 
fail, this does not mean that the problem is not well-posed but simply that the 
energy method is not well suited for it. 

As far as we know, the only case where the energy method has been shown 
to work is the case of first-order absorbing boundary condition. In the present 
paper, we show that appropriate energy methods lead to the stability result for 
a class of boundary conditions which is almost the same as the one considered 
by Trefethen and Halpern in [1 5]. More precisely, we show, for the model 
problem of the wave equation in the homogeneous two-dimensional half-space, 
that the strong stability result is connected with the decay in time of some 
energy associated with the solution. This energy is not necessarily the physical 
one. By energy, we mean a quadratic form with respect to homogeneous linear 
differential operators of a given order applied to the solution, which is equal to 
O if and only if the solution u is identically equal to 0, provided it vanishes 
at infinity. More precisely, we show that, if one considers the problem 

&2U 02u 02u 

___ - OX2 - y2= 

(1.2) BNU=0, X=0, t>0, 

u(x, y, 0) = uo(x, y), 

au 
(x,5 y , 0) = Ul(x , Y) 

x = 
0, y < 

0, a t 
where BN = BN(a, a 19) is an appropriate homogeneous differential op- 
erator of order N, then strong well-posedness of (1.2) will correspond to the 
decay in time of an energy involving Nth-order derivatives of the solution. For 
instance, the physical energy 

(1.3) E(u; t) =2j(|J l+IVuI2) dxdy 

is an energy in our sense for N = 1 . The class of differential operators for 
which our analysis is valid is the subclass of the one considered by Trefethen 
and Halpern, for which the directions x and -x play the same role, in other 
words, for which BN = BN(9, a, 02). For larger-dimensional problems, this 
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hypothesis is to be replaced by the invariance of BN with respect to rotations 
in the tangential hyperplane; thus BN = BN( 9t , 19, AX). 

We believe that this particular class is the most interesting one for practical 
applications. For such particular conditions, Higdon [9] observed that the sta- 
bility analysis essentially reduces to a 1D analysis. This remark will also be the 
starting point of our method. 

It seems to us that our new approach to the stability theory of boundary 
conditions associated with the wave equation has the following two advantages: 

(1) It gives new insight into the Kreiss theory applied to the wave equation. 
Moreover, it leads to results which are stronger than those simply deduced from 
the direct application of Kreiss's theorem in the sense that 

(i) it shows that "all" strongly stable boundary conditions are dissipative 
for an appropriate norm of the solution; 

(ii) it gives rise to L??-estimates with respect to time instead of L2-estimates; 
(iii) these estimates are uniform in time: the constants involved do not de- 

pend on time. 
(2) Such a method, applied to variable coefficients, leads to strong stability 

results even when these coefficients are not smooth. 
It is point (1) that we develop in the present paper. We shall consider point 

(2) in a companion paper (part II). 
The outline of this article is as follows. In ?2, we present the basic ideas 

of our method applied to rather simple examples of second-order (?2.2) and 
third-order (?2.3) boundary conditions. In each case, we first treat as a model 
problem the absorbing boundary condition of Engquist and Majda, and then 
extend the result to more general cases. We have chosen to develop this section 
for pedagogical reasons since the ideas for the proof in the general case are 
not so obvious. Section 3 is devoted to a generalization of the results of ?2 to 
general odd- (?3.1) and even-order conditions (? 3.2). 

2. ENERGY ESTIMATES FOR THE WAVE EQUATION 

IN A HALF-SPACE: LOW-ORDER BOUNDARY CONDITIONS 

As stated in ? 1, we consider the wave equation in a 2D homogeneous medium 
and assume for simplicity that the propagation velocity is equal to 1, 

(2.1) aA2 Au = 0, Au = a2U+ a2 

The domain of propagation is the half-space 

f=(x, y) ER2 5xER, y<0}, 

and we shall denote its boundary by F = a&2. The wave equation will be 
associated with initial conditions 

u(x, y, 0) = uo(x, y), 

(2.2) a u (x, y, 0) = u (x y) in Q2 

which will be the only data of the problem, and with the boundary condition 

(2.3) BU=B 
a a a 

u=O onEr, 
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where B denotes a homogeneous linear differential operator involving even- 
order derivatives only with respect to the tangential variable x . 

In this section, we consider the cases where B is of order 1, 2, or 3, to de- 
scribe the basic principle of our method. The case of first-order condition is 
simple and classical (?2.1). For second-order and third-order boundary condi- 
tions (??2.2 and 2.3) we begin by considering the classical absorbing boundary 
conditions of Engquist and Majda and show that their stability can be proved 
by energy methods. Then we consider the cases of more general second-order 
or third-order differential operators and show that the energy method leads to 
exactly the same conditions as the ones obtained by directly applying the results 
of Trefethen and Halpern. For the case of second-order boundary conditions 
we illustrate in a particular example the difference between strong and weak 
well-posedness. 

The calculations we make in this section are formal. Our goal is to obtain 
a priori estimates on the solution u, if one assumes that this solution exists, 
is unique, and is sufficiently regular to justify the technical manipulations we 
shall be led to do. All this approach can be justified a posteriori by means of 
techniques of functional analysis. In fact, almost all our computations are based 
on the following well-known identity: 

If v denotes a sufficiently smooth solution of the wave equation 
02v/0t2 - Av = 0 in the domain {x E R, y < 0, t > 0}, one 

(2.4) has 
d E(v; t) ] dx, 

dt a~~y at 

where we have set Q2 = {(x, y) Ix E R, y < 0} and F = aO2, and where 
E(v; t) is defined by (1.3). 

2.1. First-order boundary conditions. Here we consider the boundary condi- 
tion 

Bu = au + = 0. 
at Dy 

In this case, it is well known that applying (2.4) to the function u itself leads 
to the identity 

(2.5) 2 dx dy + IVuI2dx dy} + dx = 0, 

which shows that the "first-order energy", which coincides with the physical 
energy defined by (1.3), is a decreasing function of time. The well-posedness of 
the initial boundary value problem follows immediately. More precisely, one 
shows that if the energy El (0) is finite, which means that (uo, u1) E HI (Q2) x 
L2(Q2), then (1.2) has a unique weak solution (i.e., in the sense of distributions, 
see [11] for instance) which satisfies 

(2.6) ue WI ??(R+;L2(9))nLO (R+; 

with the estimates 

au < C(| Vuo 1IL2(Q) + 11 Ui I1L2(Q)), 
(2.7) L? (R; L2(Q)) 

IIVUIILOO(R+ ;L2(Q)) < C(IIVUoIIL2(Q) + II|U IIL2(Q)). 
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Note that such estimates correspond to a strong stability result in the sense 
of Kreiss, since first-order derivatives of the solutions can be estimated at a 
time t by the same derivatives evaluated at t = 0. In fact, the result we 
obtain here is even stronger than the one one gets by a simple and direct ap- 
plication of the Kreiss theory, since we get here uniform estimates with respect 
to time (if one uses L2 norms with respect to the space variables) instead of 
the L2(0, T; L2(Q()) estimate given by the Kreiss theory. Moreover, as in the 
Kreiss theory, we obtain an estimate of the trace of the solution on the boundary 
(F) since, thanks to (2.5), we have 

(2.8) 1+U0&u12dt2 + IIVUoI112( 2 (2. 8 ) 1; | ~a t dt <2() _2( L2 (o) +|| ll 2 (0) ) 

and also, using the boundary condition, 

(2.9) jt0 | L2(F) d ( 2 + IIVuo0II2(2)) 

2.2. Second-order boundary conditions. 

2.2.1. The classical condition. We consider now the boundary condition 

(2.10) Bu= &t2 + yat 2 X2= 
which is known [1] to lead to a strongly well-posed problem. A natural question 
is: what form does this well-posedness take if one uses energy techniques instead 
of normal mode analysis? In fact, it is not clear that with the condition (2.10), 
the "first-order energy" E1 (u; t) is a decreasing function of time. Nevertheless, 
we shall see that such a decay occurs for another energy, which will be a "second- 
order energy" in the sense of a positive quadratic form involving second-order 
derivatives of the solution. 

To obtain this result, we observe that, because of the fact that only the second- 
order derivative in x occurs in the expression of Bu, the boundary condition 
(2.10) can be rewritten, as soon as the solution we consider is sufficiently regular, 
only with derivatives with respect to y and t. This was previously observed 
by Higdon in [9]. By substituting 92u/&t2 - &2u/&y2 for a2u/&x2, we obtain 

(a +a 
2 

u a2U + 2 9u+ a2u =O 

which we can also write 

(2. 1 1) <0~~~5t_2 + yu -aya t . 

Now let us note that, as we are in the constant-coefficient case, if u is a smooth 
solution of the wave equation, so are au and u. Therefore, we can apply 
(2.4) successively to v = au and v = 9u to obtain the two following equalities: 

1 d 2 2U2 If2U 2 2U 2 
_ 2U 2U &22+ + dxIjdy& -dx, 

-2 d t a n 19t2 l xa t l 9y l t l a r6 t2 ayat 
(2.12) 

2 2 2 l d ___ _ _ 02U 2U &92U - 
~ OOy+ + u dxdyf '~ _____ 
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If we add these two equations term by term, it is natural to introduce the 
following "second-order energy": 

1 J( 02u 2 2 2 2 2U 2 2U 02 l2 
2 x 

E2(U; t) = 2+ + 2 + + 02 ,dx dy. 2 axat a ~tay OxOy a 

So we have 
dE2 f (02u 0UA 0U2U 

dt Jr \ at2 + ay2 J ayat 
that is to say, by (2.11), 

(2.13) dE2=_2j 0 |dx, 

which means that E2(u; t) is a decreasing function of time. In particular, it 
remains finite provided 

(2.14) (uo, ul) E H2(Q) x H'(Q). 
In this case, E2(u; t) can be uniformly estimated with the help of IU0IIH2(2) + 

IIU112Q. This gives a uniform estimate of all second-order derivatives of u 
except 02u/0x2, and this last estimate follows from the fact that, because of 
the wave equation, 02u/0x2 = 02u/0t2 - a2uIay2. 

These estimates enable us to prove the existence of a weak solution (in a 
sense that we shall make precise in the next section) of (1.2) satisfying 

(2.15) u E W2,o ?(O, T; L2 (Q)) n WI, ??(R+ ; H' (Q)) n L?? (R.+; H2 (Q)) 

if (2.14) holds. Moreover, the estimate 

(2.16) IID2 U11L?(R+;L2(Q)) ? C(I11UOIH2(Q) + || U IIHI (Q))) 
valid for any second-order derivative of u, shows that we have proven a strong 
stability result (no loss of derivatives). These interior estimates are again com- 
pleted by L2-type estimates on the boundary. Indeed, from (2.13) we easily 
deduce 

f+Co 0 2U 2 

(2.17) Io DyOt 2 dt < C(1Iuo0IH2(n) + HIui (n)), 

This is not the only boundary estimate one can obtain, since for instance (2.10) 
directly provides an estimate of the quantity 02u/0t2 - I(02u/0x2). Never- 
theless, both a priori estimates (2.16) and (2.17) are sufficient to give a meaning 
to u as a weak solution of problem (1.2). (See definition (2.25) in the next 
subsection.) 

Note that for second-order boundary conditions, we need more regularity in 
the initial data than for a first-order condition, but we also get more regularity 
in the solution. This is not surprising since the operator B involves higher 
derivatives. One could wonder how to give a sense to a solution of the same 
problem when we assume only, for instance, that (uo, uI) E HI (Q2) x L2(Q), 
which means that only the first-order energy E(u, t) is finite at t = 0. This 
should be possible thanks to a duality process, but we shall not examine this 
point in the present work. 
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2.2.2. More general second-order boundary conditions. In the theory of absorb- 
ing boundary conditions for the wave equation ([1, 15, 9]), the condition (2.10) 
corresponds to a second-order Taylor approximation of the function 1 - 
(which comes from the symbol of the Dirichlet-Neumann operator for the wave 
equation). More generally, one can consider approximations of the form 

(2.18) 1xy_y _ fix2, (fi,y)ER2l R f0, 

leading to the boundary condition 

(2.19) Y aut2 + y , t u - 3 0. 
2'0t +&ytiJox2 

This is the moment for us to recall the results obtained by Trefethen and Halpern 
in [15], which concern the well-posedness of the initial boundary value problem 
obtained by coupling the wave equation to the boundary condition Bu = 0 
derived from the approximation of the function 1 - x2 by a general rational 
function 

(2.20) 1 -X R(x) - P(x) 

where P(x), Q(x) are polynomials. They recall the following 

Theorem A [15]. The intial boundary value problem (1.2) corresponding to the 
boundary condition Bu = 0 associated with the approximation (2.20) is strongly 
well posed if and only if the two following conditions are satisfied: 

(i) All the poles and zeros of the rational function x are real and interlace 
along the real axis; 

(ii) R(x) > 0 for -1 < x <1. 

Remark. Condition (i) implies in particular that 

0 < degP -degQ < 2. 

Let us apply this criterion to the condition (2.19) where R(x) = y - fix2. It is 
immediate that (i) holds if and only if y,8 > 0, while criterion (ii) and (2.20) 
imply y > 0 and y - fi > 0. Therefore, problem (1.2) with boundary condition 
(2.19) is strongly well-posed if and only if 

(2.21) 0<,f<y. 
Let us see now how this condition appears when one uses energy techniques. 

Of course, we still can use the two equalities (2.12), which are independent of 
the boundary condition. Now, instead of summing these two equalities term by 
term, we multiply the first of them by y -,B and the second by fi and add the 
two results. We obtain 

(2.22) dE2 (Yt ( 3)2u 9 2u) du d 
dt -ay2 ft +ioaYJ ay&at 

where the function E2(u; t) is defined by 

E (u t) Y - 
a 

( 2U 12 + a2U 12 + 2U 12) 

(2.2) EAu;t) I2(l at u+ x aUt + ay 2) dxdy 

+ + + - ) dx dy. 
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Now replacing &2u/Ox2 by (02u/0t2 - 02u/0y2), we observe that (2.19) is 
equivalent to 

02U 02U 02U 

(Y -fl)05t-2 +fl05y-2 OOt 

so that (2.22) becomes 

(2.24) dE2 0a dx. 

This proves that the function E2(u; t) is decaying in time. To be able to deduce 
a priori estimates on the solution, we need that E2(u; t) be a "second-order 
energy", i.e., a positive quadratic form. This implies 0 < ,B < y. Now if we 
want to estimate all the second-order derivatives of u, which is necessary to 
get the strong stability property, we see that condition (2.21) must be satisfied. 
Conversely, if (2.21) holds, it is then easy, mimicking what we did in ?2.2.1, 
to obtain the estimates (2.16) and (2.17) and then to prove the existence of a 
unique weak solution of u, to be understood in the following sense: 

. u(x, y, t) satisfies (2.15), 

.Vv(x, y) E V = {v E Hl(Q)/vlr E H1(F)} 

(2.25) dt3 (J uv dx dy) + Y t2 Juv dx) 

+ d (jVu.Vvdxdy)+fl jOu 9dx =O in '(0 T), 

u(X, Y, 0) = u0(X, Y); 0u(x,y,O)=uj(x,y). 

We now state our result in the following theorem: 

Theorem 2.1. Under the condition (2.21), the initial boundary value problem 
(2.1), (2.19) is strongly well posed in the sense of Kreiss, and the unique solution 
satisfies the identity (2.24), which yields the decay in time of the second-order 
energy E2 defined by (2.23). Moreover, this solution satisfies the a priori estimate 

sup ||DauIILO(R+;L2(Q)) < C(IIuoIIH2(n) + IIUI IIHI(n))S 
IaI=2 

where the positive constant C depends only on y and ,B. 

Remark. If one does not look for a strong stability result in the sense of Kreiss 
but only for a well-posedness result in the sense of Hadamard, it is sufficient to 
apply the condition of Hersch [5]. In our particular case, this condition implies 
simply that 

y>O, />0. 

This means that for 0 < y /1 , < +oo, problem (1.2) is only weakly well- 
posed. This fact can also be obtained by using energy techniques to get a priori 
estimates. Indeed, let u be a regular solution of (1.2), and introduce 

(2.26) v = Y 02 + a2u 
V~t_2 + ay at JX2' 
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It is clear that v is solution of 

(2.27) at2VVO 
inQ, 

vlrO=0 onF, 

which is a well-posed problem. Now if we want to get estimates on u, we have 
only to check that the initial value problem 

a2U a 2u a2U 
(2.28) Oat2 + aa -0 V, (x,y)EQ, t>O, 

u(x, O) = uo(x S Y), ' 
au 

(x, 0) = uI(x, y) aut 

is well posed. But multiplying equation (2.27) by au and integrating over Q 
gives 

d {yJ au- dxdy+fj u dxdy}+ j dx= v -dxdy, 

which easily leads to the following estimates in the interval [0, T] (use Gron- 
wall's Lemma): 

O 
au 11 < C(T)IIvIIL2(o,T;L2), 

(2.29) La 1(, 
T; L2) 

O u 
<~~ C(T)IIvIIL2(o,TL) 

XL(O, T;L2) 

Moreover, multiplying equation (2.27) by I + I and integrating over Q, we 
get 

d y a + au d d y+ au dy + a dx 
dt 2 a tday2] a x d f] ax 

= v ( + d )dx dy, 

which leads to the estimate 

(2.30) ? u 
< C(T)IIVIIL2(O,T;L2) 

ayL (O, T; L2)T;L) 

We need now an estimate of the function v of (2.27). This problem can be 
solved explicitly, using the theory of images for the Dirichlet condition. Then, 
by a Fourier transformr in space, one easily checks that 

(2.31) IIv(t)11 2(2) < 2{ IIvo112(2 ) + 11 V1|H-1()} 

where v(x, y, 0)-vo(x, y) and 0a (x, y, 0) = vI(x, y) . But, by the defini- 
tion of v, we have 

Voya2u0 a2u0 au1 
= 2' ax2 + (y - ) ay2 + ay ' 

a2U1 a2u1 + a 
V1aX2+O 

J 2+ay 
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so that 

(2.32) IIVOII2(Q) + IIV1IIH-1(Q) < C{IIUOIIH2(Q) + 1IU1IIH1()}. 

Regrouping (2.29), (2.30), (2.31), and (2.32), we obtain 

(2.33) IIDuIIL (o, T;L2) < C(T){IIuoIIH2(n) + 1IU1IIH1(n)}. 

This proves the well-posedness of the initial boundary problem as soon as 
,B, y > 0. Nevertheless, this result corresponds only to a weak stability result 
since we lose one order of derivative in our estimates. 

2.3. Third-order boundary conditions. 

2.3.1. The classical condition. We consider now the classical third-order con- 
dition 

(2.34) 03U 03U 3 03U 1 03U 0 
(.)t3 + at2 ay 4at24 2 =O 

which is known [9], at least for smooth solutions, to be equivalent to 
(a + a )3U = 0, which we can also write 

(2.35) 0 + __ + 3u+ + U = -2 ( + + 03u . 
agt3 +g t2Qvg + t Oy2 +Y 02v 'y t2Oiy +t Oty2,) 

The idea is now to apply the identity (2.4) to the two functions 

02u 02u 02u 02u 

VI 1t2 + V2 =tO +y2 

which are particular solutions of the wave equation if u is also a solution. 
Moreover, they have the property that Ov1/0y = 0v2/0t. We thus have 

+ E(vl) =J(3 +03U)(0 3u +0 3u) dx, 
(2.36) dt r 

--3 
ta a3u 

i 
a3u a3u'\tO 

dtE(V2) =] (at+ay + a(y) dx. 
(3ddt(Ut (at2ay + atay2 (atay2 +y3 

Summing these two equalities leads to 

d t{E(vj) + E(v2)} 

_ 

3u 03U 
03_u au 3U 03U 03Ux 

Jrat2ay 2( at3 + at2ay + ata2 + ay3) dx, 

that is, by (2.35), 

(2.37) dt?{E(vj) +E(V2)} = -2 _ _aa2a u+aaY2 dx, 

which means that the quadratic form E(vj) + E(v2) is a decreasing function of 
time. Nevertheless, the estimates we can deduce from this fact do not permit 
us to obtain a strong stability result, since we do not bound all the third-order 
derivatives of u, but only some linear combinations of them. Therefore, we 
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have to go into the second step of our estimates, which consists in applying the 
identity (2.4) to the function v &2u/at ay. By this process, we obtain 

___ aU aU 
~+dx dy 

(2.38) d{lt2l a3U ty ataxay atay 
f a3u a3u dx = t dx 

iy t 

Noticing that 2(a+b)2 -ab = 2(a+b)2+ '(a2+b2), we see that, if we introduce 
the third-order energy 

Ia2U N a2U a2U N a2U a92UN 
(2.39) E3(u) = E ) +E + + at ay at aa, \y-2 9 t ay/ 
the addition of (2.37) and (2.38) leads to 

dE3 3r a3U a3U 2 

d(U; t) + 1 aty+aty dx 
(2.40) dt3(;t+ 2 O 

| aaY2 +at2 ay |d (2.40) 
~~~If a3U 2 a3U 2\ 

2j ~ atay2 + at2ay) dx =0, 

which proves that the energy E3 (u; t) decays in time. In particular, if it is 
finite at t = 0, i.e., if one has 

(2.41) (uo, u1) E H3(Q) x H2(Q), 

it remains uniformly bounded in time. From (2.40), we easily see that we 
get a priori estimates of the L2-norms of all the third-order derivatives of u 
except the ones containing second- or third-order derivatives with respect to x . 
Analogous estimates for these quantities can be derived from the wave equation, 
which we differentiate in t, x, and y to obtain 

a3u _ 3u 03u 
at ax2 at ata y2 ' 

(2.42) a3U _ a3u a3U 

(2.42) ~~~ay ax2 a t2aiy ay3'~ 
a3U a3u a3u 

ax3 at2 ax ax ay2 

As these estimates are uniform in time, we can write for any linear third-order 
differential operator 

(2.43) 11D3U1IL00(R+;L2(n)) ? C(11UO11H3 + IIUI 11H2), 

which establishes the strong stability of the initial boundary value problem (1.2) 
with the boundary condition (2.34). 

As in the second-order case, we get L2-estimates on the boundary IF, since 
from (2.39) we directly obtain that 

(2.44) 00 a3U 2 a3u 2\ 

(2.44) .j (atay2 + at2a ) dxdt < C{jjIluOj3 + jju1jjH2}2 

which is the equivalent of the estimate (2.17) in the second-order case. 
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2.3.2. General third-order boundary conditions. Condition (2.34) follows from 
the Pade approximation of the function 1 - 

1I x2~ (2.45) 1-Xl2'[3 

Let us generalize this condition by considering the following class of rational 
approximations of 1 - 

_ f3x2 
(2.46) V/' Y- l 32 '. (a, fl' y) ER 

3 

leading to the general third-order condition 

(2.47) Y 03t + 0t2 ay - (a + a3)X2Da - ax2 

a 

y =0. 

We wish to analyze the stability of this condition using energy techniques. For 
the sake of simplicity, we shall restrict ourselves to the case y = 1 . The exten- 
sion to the general case can be done without any difficulty. We thus consider 
the boundary condition 

4) 3U + a3U _(+)a3Da2D ax2y = 0, (a, ) E R?o XRo. 

If we refer to Theorem A to analyze the strong stability of (2.48), it is easy to 
see that, for R(x) = 1 - fix2/(l - ax2), we have 

(i) X *a> O, ,B+ a >O, 

(ii)O0<fi/(l-a)< 1. 
Therefore, a necessary and sufficient condition for problem (1.2) to be strongly 
well-posed is 

(2.49) a>0, f8>0, 0<a+ i<1. 

Our purpose in this section is to show how these conditions naturally arise when 
one tries to obtain energy estimates, using a method analogous to the one we 
have used in ?2.2.1. 

Since the computations are rather lengthy, we present this approach in several 
steps. 

First step. Consider a real number a and the two functions 

D2u 02u 02u a2u 
V = at2+aty' V2= ata +aa 2' 

where u denotes a (sufficiently smooth) function satisfying the wave equation 
in Q and the boundary condition (2.47) on (IF). Note that v, and v2 are 
derivatives with respect to t and y of the same function lu + a I and are 
thus related by v = 9 . Applying identity (2.4), we obtain 

ay a 

d a3u D3U NI 3u D3UN 
fE(vj)j = II +a dx, 

(2.50) dtJ (} t3 +aat2ay, a t2Dy atay2/ 

(.0 d = 3u a3U t ) f aV3u) 
Wt{fE(V2)1 j= Y +a2D-ty2a dX. 
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Therefore, if b denotes a real number, we have 

d ft03u a3uN 
(.1 {bE(vl) + E(v2)} = IYat2 ay + a 2) 

03U 03U 03U 3ux 
x b + ab at + a%2 + a a) dx. 

Second step. We eliminate the x-derivatives in the boundary condition 
(2.47), which we rewrite as 

(2.52) [l-(a +1)]&t3 +(l-a)at2a + (a + 0) 
a3u + a, 3u = O. I 1 (a+ fl I + a2 

a) t0y2+ a03=0 
We now choose a = Aa and b = A(1 - a - ,8), so that, thanks to (2.52), 

a + b =- + (a + a9),3 at3 {1 a)t2& +y 
(a+ )20y 

Thus, identity (2.51) leads to 
(2.53) 

d {bE(vj) + E(v2)} 

f a 3u + a03u 
]vay at2 + aY2at 

x y[2La(l- a -B) - A(l -a)] a2 + [l-(a + B)] a2) dx. 

Now choose A so that Aa[A2a(1 - a - ,B) - A( 1 - a)] = 1 - A(a + ,8), which 
means that A is one of the roots of the algebraic equation 

(2.54) P(A) = A3a2(1 _ a 1=2a( a) + A( + I = 0. 

In that case, we have 

d 
fE(V2) + bE(vj)} - [A2a(1 - a - ) -_ (1- a)] 

(2.55) d3ut03u 2 

+ +/3a 2~ dx. 

To deduce appropriate a priori estimates on v1 and v2 from (2.55), we have 
to satisfy 

(2.56) b = A(1 - a -,B) > O, A2a(l _ a _8) _ A(1 _-a) < O. 

However, this is not sufficient to imply a strong stability result, since the fact 
that E(vi) and E(v2) are bounded does not lead to uniform estimates of all 
third-order derivatives of u in the domain Q. To overcome this difficulty, we 
also apply our basic identity (2.4) to the function V3 = 02u/Oy at, exactly as 
in ?2.3.1: 

d a2 u J a2 u a2 d 
(2.57) <El__ u 0u dx. dt OyOt aJ~yat2 ay2at 
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We multiply (2.57) by some 3 > 0 and add the result to (2.55), which gives 

dt{bE(vl) + E(V2) + JE ( At) 
a 3U 3 2 

(2.58) = [22a(1 - a - fi) - (1 - a)] _a 2 + )a dx 

+ 03u 03U + J 2 * 2dx. FaY2at OyOt2 
In order that the right-hand side of (2.58) be a negative quadratic form, we need 
that A2a(l - a - ,8) - A(1 - a) < 0, but this is not sufficient. Indeed, let us set 

3 
= {2al1 - a - fl) - 21 - a)}3', 

(2.59) E3(u) = 3E a + E(v2) + bE(vl). 

We then have 

d-E3(u) = {A2a(l -a-fl)-241 -a)} 
d-t 

(2.60) 23U aU _2 aU aU dx 
?2Aa U +3 03u dxU 

(F y OyOt2 Oy2Oat Oy2O(t&iyOat2 

To be able to complete our task, we must find 3' < 0 such that the quadratic 
form (x + Acay)2 + 3'xy is positive. As the discriminant of this quadratic form 
is A = 312 - Aa, we simply have to ensure that A < 0. This implies 

(2.61) Aa > 0, 

in which case it suffices to take 3' = 1Aa and the coefficient s will be 
strictly positive as soon as 

(2.62) A2a(l - a - )- 1 - a) < 0. 

Regrouping all our conditions, we see that if one can find a real number A such 
that 

(2.63) P(A) = 232a2(l - a - /) - 2&2a(1 - a) + A(a + /) - 1 = 0, 

(2a(l-a-fl)-A(1-a)<0, A(1-a-f8)>0, Aa>0, 

then the third-order energy 

(2.64) E3(u) = bE(v1) +E(V2)+ JE 

where (b, 3) are strictly positive numbers, is a decreasing function of time and 
is thus uniformly bounded in time provided 

(2.65) (uo, uj) E H3(Q) x H2(Q). 

This leads to uniform estimates in time of the L2-norms in space of all the third- 
order derivatives of u except a3u/&t9x2, 03u/Ox2ay, &3u/0x3. These 
quantities are easily estimated using the wave equation as in ?2.3.1. Finally, if 
we can find a solution A of (2.63), we get the following interior estimate: 

(2.66) IID3UIILOC(R+;L2(Q)) < C{IIUoIIH3(Q) + II11U1IH2(Q)}, 
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which we can complete with boundary estimates, as we have seen in ?2.3.1: 

ayu 
? 

2 C{jj1UoIjH3pn + IIUIl!H2(n)}, 
(2.67) QyOt L2(R+ ;L2(r)) 

03u 
2 (gt <? C{HUo 3(Q + IIU1IIH2(n)}. 

y2 a L2(R+;L2(r)) - 

It remains to see what conditions on a and b are sufficient in order that one 
can find some A satisfying (2.63). For this, introduce 

(2.68) x Aa, 

so that the system (2.63) becomes 

F(x) = [1 - (a + f)]x3 -(1 - a)X2 + (a + #)x - a = O, 
(2.69) x>0, ax(l-(a?+f))>0, ax2(1 - (a + f)) - ax(1 - a) < 0. 

The first two inequalities imply 

(2.70) ax2(1 - (af + ,)) > 0. 

If a < 0, then 1 - a > 1 and ax2(l - (a + f,)) - ax(l - a) > 0, which is 
impossible because of the third inequality of (2.69). Thus, a is strictly positive, 
and the first two inequalities of (2.69) are equivalent to 

(2.71) x>0, af+,8< 1. 

Moreover, the equation F(x) = 0 can be rewritten as 

(2.72) [- - (a+)=x2[1 - _ax = (a + f), x 
which shows that the last inequality of (2.69) is equivalent to < a + fB . Since 
x > 0, necessarily a + ,f > 0, and therefore, we have to find x such that 

a 
(2.73) x >?+ 0 +<a+ft< 1, F(x)=O. 

It remains to find under what condition F(x) admits a solution in the interval 

(#, +oo). 
From a + ,f < 1, we deduce that limx +Oc F(x) = +?o. On the other hand, 

since F( I ) = -f8a2/(a + ,8)3, we can conclude: 
(i) If ft > 0, then F(x) admits at least one root in the interval (#+ +00) 

(x = 1 is acceptable since a < 1 if f8 > 0). 
(ii) If f8 < 0, then a > 1 . We remark that 

F(x) = (x- l){[I -(a +f)]x2- fx+a}, 

which clearly shows that F(x) > 0 in the interval ( +, +00). 

Finally, our method permits us to obtain a strong stability result if and only 
if 

(2.74) a >0, ft>0, 0<a+ <,< 1 

which are exactly the conditions we obtain by applying the Kreiss criterion. We 
have proved the following result: 
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Theorem 2.2. Under the condition (2.49), the initial boundary value problem 
(2.1), (2.48) is strongly well posed in the sense of Kreiss, and the unique solution 
satisfies the identity (2.60), which yields the decay in time of the third-order energy 
E3 defined by (2.64). Moreover, this solution satisfies the a priori estimate 

sup IID`uIILO(R+;L2(Q)) 
? 

C(U0H3(Q) + IIUlIIH2(0)), 
I.a=3 

where the positive constant C depends only on y and fB. 

It is interesting to note that the equation F(x) = 0, which appears naturally 
in this approach, is nothing but the "characteristic equation" that one obtains 
when applying the normal mode analysis. Indeed, looking for generalized eigen- 
values in the form 

(2.75) u(x, y, t) = exp(-st)exp ,yexpikx, kER, Re?>O 

leads to the two equations 

(2.76) k2 = -2 _ 52 (interior wave equation), 
- s3 + S2 - (a + 8)k2s + ak24 = 0 (boundary condition). 

Eliminating k2 between these two equations is equivalent to eliminating the 
x-derivatives in the boundary condition (2.47). We obtain the characteristic 
equation 

(2.77) [1 - (a + fl)]s3 -(1 _- a)s2 + (a + f)sg2 - a&3 = 0, 

which is exactly F(x) = 0 if we set s = x4. 

3. ENERGY ESTIMATES FOR THE WAVE EQUATION 

IN A HALF-SPACE: THE GENERAL CASE 

We now consider general absorbing boundary conditions for (2.1) obtained 
from the approximation of 1 -s~2 by the rational function 

(3.1) N A S2 
k=I 

where ak, /k, and y are real numbers. The resulting boundary condition can 
be written in the Fourier domain ((x, t) -* (k, co)) in the form 

(3.2) U .yu + i / E kk u = 0. + iw~u iw _,,2 - akk2u ay ~~~k=1 
c 

Returning to (x, t)-variables, we can reinterpret condition (3.2) as a system 

au au0 u j-. aqPk a2 'k __ 02pk a2u 

(3.3) ~-+ Y~--Lflk 0, akOx (3 3) ,,y + t- kat =?a at2 -kX2=aX2 

or, equivalently, as 

(3.4) B2N+1 a a ad oU 0, 

where the linear operator B2N+1 , a differential operator of order 2N + I, is 
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given by 

(0t a aY ) N0 at kH 02 x2) 

(3.5) 0 0 ( 2~ 

ayNfk a2 [! at2 aJOx2 

We can of course apply Theorem A to obtain necessary and sufficient conditions 
on the coefficients (y, aj, 8k) in order that the initial boundary value problem 

(3.6) a2 -Au =0, u(0) =uo 
a 

(0) = uu, B2N+IU 0 

be well posed. These conditions are 

N k 
(3.7) ? < alI < ca2 < ..< AN < 1, fk > 0 (I < k < N), sE - Ck < y. 

k= 1 

Our goal in this section is to check that the same result can be obtained (and even 
improved in some sense) using energy techniques, as we did for the second-order 
and third-order boundary conditions in ??2.2 and 2.3. For technical reasons we 
shall divide our analysis into two parts considered separately: 

(i) Boundary conditions of even order. These correspond to al = 0 < a2. 
We treat these conditions in ? 3.2. As we shall see, the second-order bound- 
ary condition (2.19) treated in ?2.2.2 can be considered as a model for these 
conditions. 

(ii) Boundary conditions of odd order. These correspond to al > 0 and are 
treated in ?3.1. The third-order boundary condition (2.47) is the model for 
these conditions. 

The distinction between these two cases comes from the fact that in the case 
a I = 0, the operator B2N+1, which is of order 2N+ 1, is a multiple of I , that 

is, B2N+1 = 5-t(B2N). Therefore, if we integrate (3.4) once in time (assuming 
that the initial data vanish on the boundary), our boundary condition can be 
rewritten B2NU = 0, where now B2N is an operator of order 2N. 

For technical reasons, it seemed more natural to us to first treat the odd 
conditions. However, in [7], we have adopted another approach to obtain the 
same conclusions as here. In particular, a link between the even and the odd 
conditions is presented in that paper. 

3.1. Odd-order boundary conditions. The first step of the analysis is to write a 
new boundary condition which is equivalent to (3.4) for any smooth solution of 
the wave equation. For this, it suffices to replace 02/0x2 formally by 02/0t2- 
02/0y2 in (3.4). In this manner, one proves that any C?? function u satisfying 
(3.4) on the boundary F = aQ, together with the wave equation (2.1) in the 
domain Q also satisfies 

(3.8) B2N+1U = B2N+1 (at ) ayU 
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where the linear differential operator B*N+ is given by 
(3.9) 

a a OQ a a__a a 

B2N+IU = B2N+I (apt ' ) ay +katQ at kE (t-2 Y Qk, 

where 

Q=Q(=Q , =Y) =f Pk, Qk =Qk (- a ) = n pj 

0 0) 02 0 2 
at,a ay) ya 2 +(1-ai)&t2' 

In order to single out the principal part of B*N+ with respect to time, we note 
that 

02 02 21 - 02} 
0t2 ay2 1-ak Pk 2 

so that we can also write 

B*N+1g Q+IY- i -k _g 1ik Og3Qk 2N+ - 

kg 
Y E I Sk] 

- At k+ 1: 3k 2 agt L k= kJk=i JI -lak 0Y20 

Note that this expression is linked to the following expression for the rational 
function r(s): 

( k=1 -k ) k=i ak a kS2 

Therefore, the boundary condition (3.8) can be rewritten as 

(3.10) +-(Qu) FY= 1 3 k uA + 1 a YkO QkUO 

Now, we turn to the derivation of our main energy estimate. We first introduce 
V = Qu. Applying (2.4) to v leads to 

(3.11) d{E(v)} Qu OQu dx. 

Now, for 1 < k < N, we introduce the functions Vk = QkO2u/0y2 and Wk = 

QkO2U/0y at and apply (2.4) to Vk and Wk . We obtain 

(3.12) d+ E(Vk)}= iQk 
3 

0 Qka3ua(X 

(3.13) +{E(Wk)}=r Qk 
-=2* 

Qk a2 dx.t wt ay at Qka2O 
dx 

We multiply (3.12) by ak and (3.13) by (1 - ak) and add the two resulting 
equalities. Using the fact that akO2/0y2+(1 -ak)02/0t2 = Pk and that PkQk = 

Q, we obtain 
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(3.14) dt{akE(Vk) + ( - ak)E(k )} = jQk 3y2at ayQd 

Now we multiply (3.14) by 16k/(l - ak), sum over k, and add the result to 
(3.12) multiplied by (y - EN Ik / (I - ak)) . This leads to 
(3.15) 

_d{f(,,_ E lffk )kE(V) + E flkak E(Vk)+ flkE(Wk) 
k=1 1ak k=1 s-ak k=k 

jQu(( fik) OQu 
N 

Ik 3Qu x 

Jray ( E I-ak) at sE 1 
_ ak ?Y3 23at ) k=1 ~~k=1 aOd 

Using now (3.10), we finally get 

(3.16) +{E2N+I(u)}=1 -(Qu) dx<O, 

where E2N+1 (u) denotes the (2N + 1)st-order energy 

E2N+I(U) = -E I -ak ) E(Qu) + Z l 
-akE (Qk%a2 

k=1 k ~~~k=1 k 
(3.17) N2 

k=i1ayat 

If the conditions (3.7) are satisfied, all the coefficients appearing in E2N+1 (U) 
are strictly positive, and the fact that E2N+1 (U) is a decreasing function of 
time leads to uniform bounds (by C(IIuoIIH2N+I(Q) + IIUi IIH2N(Q))) in time of the 
L2-norms in space of the quantities 

a a a 
at (Qu)~ , ,)(QU)' , 0(QU) , 

(3.18) Qk (Qk ) ' (Q ) ( ) (1 < k < N), 

a __a2u a___a 92 (I< k<N). 
a t (Qk TY 9t) ' X (Qk yipt) i y (Qka at) (<k<N. 

Now, let 69 denote the set of polynomials of two variables, P(s, 4), which are 
homogeneous and of degree 2N. The set S9 is a vector space of dimension 
2N + 1, and it is easy to check that it is generated by the 2N + 1 polynomials 

(3.19) Q(S, 4) S 2Qk(S, 4) (1 < k < N), s4Qk(x, ) (1 < k < N). 

Indeed, assume that there exists (A, k, ,Uk) such that 

N 

(3.20) AQ(S, 4) + {1kS Qk(S, 4) + AkSWQk(S, c)} = 0. 
k=i 

Choosing s = ?(ak/(l - ak)) 1/2 and using the fact that all the ak are distinct, 
so that Qk(,, ?(ak/(l - ak)) 124) $ 0, we obtain for each value of k the 
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equalities 

( ak 1/2 Pk 
i-ak) 

A -0 

which imply that 2k = Pk= 0. Returning to (3.20), we deduce that A = 0. This 
proves that the 2N + 1 polynomials given by (3.19) are linearly independent 
and thus constitute a basis of YD. From (3.18) we deduce that the quantities 
(3.21) 

a0t( at,S0 )u) ax (( 
ay a00 

) , 0((t,9Y) 

are bounded in LOO(R+; L2(Q2)) by C(IIuOIIH2N+1(Q)+IIU1 IIH2N(Q)) for any P(.,.) 
in Y. This implies that 

(3.22) VVa E N3/lal = 2N+ 1, 

(2D1uIILO(R+;L2(n)) < C(IIUOIIH2N+1(Q) + IIUlIIH2N(n)). 

Indeed, any Dau containing at most a first-order derivative with respect to x 
can be written in the form (3.21). If derivatives of higher order appear, one 
can reduce to the preceding case by (repeated) use of the wave equation. 

Estimates (3.22) are nothing but a strong stability result in the sense of Kreiss. 
Note that we can also derive boundary estimates from (3.17). For instance, 
(3.17) directly implies that I 2(Qu) can be estimated in L2(R+; L2(Jr)). 

Once again, we see that for the (2N + 1)st-order boundary condition (3.8), 
the energy one bounds is a (2N + 1)st-order energy, in the sense defined in ? 1, 
which means that it involves (2N + 1)st-order derivatives of the solution. This 
is consistent with the estimates one would obtain directly by an application of 
the Kreiss theory. Indeed, if one wants to put the initial boundary problem for 
the wave equation, coupled with condition (3.8), in the form of the first-order 
systems studied by Kreiss, one has to introduce an unknown vector function 
U of dimension 2N + 1 whose coordinates are (2N + 1)st-order derivatives 
of the function u. Therefore, the L2-norm in the space of U corresponds to 
some energy of order 2N + 1 . Let us summarize the results of this section in 
the following theorem: 

Theorem 3.1. Under the condition (3.7), the initial boundary value problem (2.1), 
(3.4) is strongly well posed in the sense of Kreiss, and the unique solution satisfies 
the identity (3.16), which yields the decay in time of the (2N + 1)st-order energy 
E2N+1 defined by (3.17). Moreover, this solution satisfies the a priori estimate 

sup IIDaUIIL-(R+ ;L2(Q)) ? C(IIU0IIH2N+1(n) + IIU1 IH2N(D)), 
IaI=2N+1 

where the positive constant C depends only on y, ak, and /3k, 1 < k < N. 

3.2. Even-order boundary conditions. As we said before, the even-order bound- 
ary conditions correspond to the particular case a1 = 0, so that the a priori 
estimates we obtained in ? 3.1, in particular the decay in time of the (2N + 1)st- 
order E2N+1 (U) given by (3.17) is still valid when we take al = 0. Nevertheless, 
we prefer to treat the even-order conditions separately because, since condition 
(3.4) for al = 0 corresponds to a (2N)th-order condition, one can expect the 
decay in time of a (2N)th-order energy instead of a (2N + 1)st-order one as 



560 T. HA-DUONG AND P. JOLY 

is E2N+1 (U). Moreover, this is more consistent with the definition of strong 
well-posedness by Kreiss. 

Therefore, the treatment of the conditions of even order will be slightly differ- 
ent from the one of the conditions of odd order. First we note that, by similar 
arguments as in ?3.1, condition (3.4) is equivalent to 

(3.23) B2NU BN= 

(we have integrated (3.4) once in time, which is possible since al = 0, and 
replaced 02/0x2 by 02/0t2 - D2/Dy2), where the differential operator B*N is 
given by 

(3.24) BN[D t Qi flk [0t2-0y2Qk, 

with the differential operators Qk defined in the previous section (simply note 
that in our case, P1 = D2/Dt2). Using the identities 

PkQk =PI Ql= a2 at2 Dy2 -ak ay2 

we deduce that 

N___ 02Q, a2Qi N0i g2Qk 
(3.25) B2N y Y E I-Z k at2 + t + Z aDY2 

Therefore, condition (3.23) can be rewritten as 

(3.26) ( 1-k) tk Qa A 
QIU + 1k 02Qk 02Q 

k=l k k=2 

Now consider first the functions v1 = D(Qlu)/lt and w1 = D(Qlu)/Dy . They 
satisfy 

(3.27) d 
- f} 

Jr 
i 02Q1t 

d (92Q, U D2Qi U 
(3.28) d{E(wi)} fr Dy2 dx. 

Introducing the operators qk = 
1j:X k Pk for 2 < k < N, we define the 

functions Vk = 93(qku)/0y20t and Wk = 03(qku)/0t2 ay and note that 

__ Vk DWk a4 092 
(3.29) 2 qk uD Qku at ayaty2at Uy2 

and that 
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OVk _ 04 02 [02 

(3.30) Y Y atk ay at _y2 

at ay at3 qkU= ay-at [t-2 qku 
U 

Applying identity (2.4) to Vk and Wk, using (3.29) and (3.30), we get 

d f 2 02 02] (3.31) jjE(Vk) = ]2QkU0 [ayj.qkUJ dx, 

(3.32) tE(Wk)- = QkU - at [0t2 qk U dx. 

Now we note that by construction, Pkqk = Qi, so that, if we multiply (3.31) 
by ak and (3.32) by 1 - ak, we obtain 

d j192 02 
(3.33) dt fakE(Vk) + (I - ak)E(Wk)l Jy2 QkU -{yEat Q,-uEdx. 

Multiply (3.27) by Y-_k-N fk/(l-ak), (3.28) by fl1 , and (3.33) by flk/(l-ak) 
and sum all these equalities to get 

+ { (Y _ l fkk) Ev1+flEw 
+ 

[ If _ 3E(Vk) + AkE(Wk)]} 

a 2 

- Jr o~o(Qi u) 
x [( flk a2iQlu +fll2Ql+ fk 92Qu x 

L( I- a ak Jt2 l Yl 8y2 
Q 2 U + a 3k 0y2 Qu d 

By (3.26), we finally obtain 

(3.34) d 02 
2 

(3.34) -j{E2N ()}=-f o 9t(Qlu) dx, 

where E2N(u) denotes the (2N)th-order energy 

E2N(U) = (Y ( Q_u) + fljE (-Qi) 

+ 1: {pka3k E (2a a tqkU) + flkE (ay at2 qkU) 

It is then easy to check that, as in ?3.1, (3.34) is equivalent to a strong stability 
result if the stability conditions (3.7) are satisfied. In fact, it suffices to verify 
that the 2N operators 89Qi, 8, Qi and {(a3/0y2 at)qk, (a3/0yat2)qk, 2 < 

k < N} generate all the homogeneous differential operators of order 2N - 1 
with respect to y and t. The details are left to the reader. One finally obtains 
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Theorem 3.2. Under the condition (3.7), the initial boundary value problem (2.1), 
(3.23) is strongly well posed in the sense of Kreiss, and the unique solution satisfies 
the identity (3.34), which yields the decay in time of the (2N)th-order energy E2N 

defined by (3.35). Moreover, this solution satisfies the a priori estimate 

sup IID UIIL-(R+;L2(n)) < C(IIU011H2N(Q) + IIUI IIH2N-1()), 
IaI=2N 

where the positive constant C depends only on y, ak, and 1k, 1 < k < N. 

4. CONCLUSION 

In this paper, we have revisited the theory of strong well-posedness of initial 
boundary value problems for the wave equation via the approach of energy 
estimates, which is, to our knowledge, new. This method allowed us to find 
again the conditions obtained by Trefethen and Halpern in the framework of 
the modal analysis and to improve the a priori estimates directly deduced from 
the theory of Kreiss. 

Moreover, a second interest of our approach lies in the fact that we are able 
to extend some strong stability results to the case of variable coefficients, even if 
these coefficients are not smooth. This will be the topic of a forthcoming paper. 
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