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THE SIGMA-SOR ALGORITHM AND THE OPTIMAL STRATEGY 
FOR THE UTILIZATION OF THE SOR ITERATIVE METHOD 

ZBIGNIEW I. WOZNICKI 

ABSTRACT. The paper describes, discusses, and numerically illustrates the meth- 
od for obtaining a priori estimates of the optimum relaxation factor in the SOR 
iteration method. The computational strategy of this method uses the so-called 
Sigma-SOR algorithm based on the theoretical result proven in the paper. The 
method presented is especially efficient for problems with slowly convergent 
iteration process and in this case is strongly competitive with adaptive proce- 
dures used for determining dynamically the optimum relaxation factor during 
the course of the SOR solution. 

1. INTRODUCTION 

The SOR (Successive Over-Relaxation) method and its line variants are 
among the most popular and efficient iterative methods used for solving large 
and sparse linear systems of equations arising in many areas of science and en- 
gineering. The popularity of SOR algorithms is in a great measure due to their 
simplicity from the programming point of view. The rate of convergence of the 
SOR method depends strongly on the relaxation factor co; therefore, the main 
difficulty in the efficient use of this method lies in making a good estimate of 
the optimum relaxation factor co,pt which maximizes the rate of convergence. 

For a large class of matrix problems arising in the discretization of elliptic 
partial differential equations the coefficient matrices have certain eigenvalue 
properties allowing us to determine explicitly the optimum relaxation factor 
coopt . In the case when the coefficient matrix is 2-cyclic and consistently ordered 
[ 1 ] (this property will be assumed in the remainder), coopt can be determined by 
finding the value of the spectral radius p(Yi) for the associated Gauss-Seidel 
iteration matrix 1 . 

However, it is well known that the nature of the dependence of coopt on p(YI) 
indicates the sensitivity of the rate of convergence to the accuracy in determin- 
ing co)opt, as p(YI) approaches unity [1, 2]. When p(Yi) is very close to unity, 
small changes in the estimate of p(Yi) can seriously decrease the rate of con- 
vergence, and just in this case the availability of an accurate value of p(YI) is 
an essential point for the efficient use of the SOR method. 
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In practice two approaches are used to determine co,,pt. One approach pro- 
posed in the literature [2, 3, 4] is determining co,,pt dynamically, as the SOR 
iteration proceeds with using some cw1 < cowpt . Then by examining certain con- 
ditions for quantities derived from current numerical results, coi is updated to 
a new relaxation factor coi+l < coopt until the assumed tolerance criterion is 
satisfied. 

The second approach for determining coopt is based on obtaining an a priori 
estimation of p(Y1), usually by means of the power method or its modifica- 
tions. As is well known, the rate of convergence of the power method is governed 
by the ratio of the largest subdominant (in the absolute value) to the dominant 
eigenvalue. If this ratio is close to unity, the power method will converge very 
slowly and in such a case determining coopt may be more time-consuming than 
the SOR iteration itself. 

Basically, there is no general comparison procedure to determine which ap- 
proach is "best". However in the case of 2-cyclic consistently ordered matrices, 
an accurate estimate for p(YI) prior to the SOR iteration solution can be ef- 
fectively obtained by an appropriate use of power method iterations, and this 
topic is the main purpose of the paper. 

In the next section the SOR iterative method and the power method are 
briefly described, and well-known basic results are recalled. These basic results 
are essential in deriving the Sigma-SOR algorithm. The computational strategy 
for determining the optimum relaxation factor coopt is described in the third 
subsection of ?2. 

The secondary purpose of this paper, discussed in ?3, is to give numerical 
results for a variety of problems presented in the literature in order to illustrate 
the efficiency of the proposed method for the a priori determination of the 
optimum relaxation factor 0oopt. 

2. FORMULATION 

2.1. The SOR iteration method. In the iterative solution of the linear system 
(1) Ax = b 

the n x n matrix A is usually defined by the following decomposition: 
(2) A = D - L - U, 
where D, L, and U are diagonal, strictly lower triangular and strictly upper 
triangular matrices, respectively. 

The SOR iterative method [1] is defined by 
(3) Dx(t+l) = Cw[Lx(t+l) + Ux(t) + b] - (co - 1)Dx(t), t = 0, 1, 2, ... 

or equivalently, if D is a nonsingular matrix 

(4) x(t+ 1) -- zx(t) + (D - cwL) -1b, 

where 
(5) c,, = (D - coL)1 [coU - (co - 1)D] 
is called the SOR iteration matrix and co is the relaxation factor. For co = 1 the 
SOR method reduces to the classical scheme known as the Gauss-Seidel iterative 
method and 

(6) =(D-L)-'U 
is called the Gauss-Seidel iteration matrix. 
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In the point algorithm, the iteration proceeds for one component of the ap- 
proximate solution vector at a time. For block or line algorithms, the iteration 
involves improving simultaneously groups of components, and therefore they 
are more efficient than the point algorithm. In this case the matrices D, L, 
and U have a block structure corresponding to the assumed partitioning of 
components. 

It is well known [1] that in the case of 2-cyclic consistent orderings, when the 
associated nonnegative Jacobi iteration matrix 

B=D-1(L+U) >0 

is convergent (i.e., p(B) < 1), then 2Zj has only nonnegative eigenvalues Ai 
such that 

(7) 1 > P(y) = Al > A2 > A3 > 

and the following fundamental relation due to Young (see, for example [1] and 
the references given therein) holds between Ai and the corresponding eigenval- 
ues vi of 2-: 

_vi+ co - I 2 
(8) 1Ai_ __ 

Moreover, p(2Y) = maxl<i<n Ivil < 1 for 0 < co < 2, and its minimum value 
is attained when 

2 
(9) CO = OCtWopt lC-O( 2 

in which case 

(10) I1 l-- pY 

In the convergence analysis of iterative methods the (asymptotic) rate of con- 
vergence 

( 1 ) R(9?) I n p (3) 

is certainly the simplest practical measure of the speed of convergence for a con- 
vergent matrix S. The rate of convergence is especially useful for comparing 
the efficiency of different iterative methods, because the number of iterations t 
required for reducing the error norm in a given method by a prescribed factor 
f is roughly inversely proportional to the rate of convergence, and is given by 

(12) - ln f 

where 9 is the iteration matrix of the method. 
Thus, the efficiency of different iterative methods (with a similar arithmetical 

effort per iteration) can be theoretically evaluated by a comparison of the rate 
of convergence. The data given in Table 1 (next page) illustrate the efficiency 
of the SOR method by comparing it with the Gauss-Seidel method, where 

(13) R(Y) 
R(Ya ) 

is the theoretical coefficient of efficiency and COi w'0pt. 
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TABLE 1 

P(YO ) P(Y-e) Et 
0.9 0.5195 6 
0.99 0.8182 20 
0.999 0.9387 63 
0.9999 0.9802 200 

As can be seen from Table 1, the efficiency of the SOR method drasti- 
cally increases as p(Yj) becomes close to unity. For the case when p(Yl) = 
0.9999, the SOR method is asymptotically 200 times faster than the Gauss- 
Seidel method. Since co,,pt is a function only of the spectral radius p(YI), 
then for any efficient use of the SOR method, computing an accurate value of 
p(YI) is needed, and the order of the accuracy in estimating p(Y1) is depen- 
dent on the closeness of p(YI) to unity. 

2.2. The power method. Usually, an estimate for p(Y1) is obtained by using 
the ordinary power method [5], which will be used in the analysis presented 
in this paper. The power method is conceptually and computationally the sim- 
plest iterative procedure for approximating the eigenvector corresponding to the 
dominant (largest in modulus) eigenvalue of a given matrix . It is defined by 
the iterative process 

(14) z(t) = -Z(t-) =- = . .. = ,tZ(O) t = 1 , 2, ... 

which converges for almost any randomly chosen nonzero starting vector z(?). 
We assume, throughout this paper, that the n x n real matrix 9 has n 

linearly independent eigenvectors ui, and its eigenvalues Ai will be ordered 
such that 

(15) Al > IA21 > LA31 >_ ? l'nl. 

Since by assumption, 9 has a complete set of eigenvectors ui, an arbitrary 
nonzero vector z(?) can be expressed in the form 

n 
(16) Z(-) aju, 

i=1 

where ai are scalars not all zero. 
Then the sequence (14) has the representation 

n n 
(17) Z(t) =- ajZuj=At +aju + aij(i/A,l)tui =At,[aiui+e(t)]. 

i=l [144111 1i=2 

Since IA IAII < 1 for all i > 2, it is clear that z(t) converges to uI as t - oc, 
provided only that al 54 0. 

Thus the vector z(t) is an approximation to an unnormalized eigenvector ul 
belonging to Al, which can be considered as accurate if Ile(t)ll is sufficiently 
small. Since 

z(t+l) =- t+l [aIuI + e(t+l)] 
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it follows that for any jth component zj of the vector z, 

(18) S(t+i) , [al(ul)J + (e(t+1))j] , as t 

Z(t) ~ a,(ui)j + (e(t))j 

The above result leads to computing the dominant eigenvalue by means of suc- 
cessive approximations of the corresponding eigenvector in the simple power 
method. 

In practice, in order to keep the components of z(t) within the range of 
practical calculation, its components are scaled at each iteration step, and (14) 
is replaced by the pair of equations 

(1 9) y(t) = -?Z(t-l) 

(20) z() = Y(t) / IIY(t) Ii 

and in this case, 

(21) Z(t) , ui /IIU1 IIP 
and 

(22) Ily(O)llp -- Al as t -- oo, 

where two norms, either the maximum norm 1 or the Euclidean norm 
11 112, are most commonly used. 

The rate of convergence will depend on the constants ai , but more essentially 
on the separation of the dominant eigenvalue from the largest subdominant 
eigenvalues of ', that is, on the ratios IA211/1, IA311/Ai, ... , and it is evident 
that the smaller these values, the faster the convergence. However, it may occur 
that if z(?) is chosen as almost orthogonal to ul, then a, in (17) will be quite 
small compared to the other coefficients, and whence for appropriate "small" 
values of t, Iait I <? Ia2A% I and the ratio z(t+I)z(t) will better approximate 

A2 than Al, assuming of course that Al > IA21. In the case when a, = 0, the 
power method converges theoretically to the second eigenvector. However, in 
practice rounding errors will introduce small components ul into the vector 
z(t) and those components will be magnified in subsequent iterations. Whence, 
convergence is still likely to be to the first eigenvector, although with a larger 
number of iterations than in the case when a more suitable starting vector z(?) 
would be chosen. 

In particular, if IA21A/I is close to unity, the accuracy of z(t) will be propor- 
tional to (I'21/Ai)t and the convergence may be intolerably slow, but still to the 
dominant eigenvalue Al . In such cases some practical techniques such as a shift 
of origin, or Aitken's 62-process [5], can be used to speed up the convergence 
of the simple power method. 

In general, when Al is the principal eigenvalue, the ratio 

(23) a = max ,ill 2 < i < n 

will be called the subdominance ratio, which with the assumed ordering of Ai 
according to (15) is equivalent to 

(23a) a = IA211/ i 
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However, it seems that from the terminology point of view some comments are 
necessary. In the literature for a the term "dominance ratio" is usually used 
by some authors. But it is also interesting to notice that other authors (espe- 
cially the authors of books dealing with the convergence analysis of eigenvalue 
problems) do not use the term "dominance ratio" at all. In the author's feeling 
the term "subdominance ratio" for a seems to be more appropriate because 
a increases with the absolute value of the largest subdominant eigenvalue, and 
the dominance of the principal eigenvalue decreases. 

Since the convergence to the dominant eigenvalue by the power method is 
geometric in the subdominance ratio a, then by an analogy to the analysis of 
iterative methods for solving linear systems of equations one can define the 
(asymptotic) rate of convergence as 

(24) R(g) = -Ina, 

which is a useful measure for the speed of convergence to the dominant eigen- 
value of a given matrix 9 in the power method. 

Referring back to the SOR method, we find it convenient to first consider 
the behavior of the eigenvalues vi of Y,, as a function of co for the case of 
2-cyclic consistently ordered nonsingular matrices A = D - L - U of (1), where 
D, L, and U are nonsingular diagonal, strictly lower triangular and strictly 
upper triangular nonnegative matrices, respectively. As is well known [1], the 
eigenvalues vi of Y,, are related by (8) to the eigenvalues Ai of the Gauss- 
Seidel iteration matrix Yi, the special case of Y,, with co = 1. The matrix 
Y, has at least half the eigenvalues equal to zero, and the remaining ones are 
positive and real, and such that 

(25) 1 >P(yl)= AI>A2>A3> - 

In the analysis of convergence properties of the SOR method, it is very useful 
to investigate the behavior of the roots of (8), 

~1 [A, ? (26) Vi 'Li = 2 [w)2i c w2)o[w2)i - 4(c - 1)]J - (c - 1). 

Thus, when c = 1, it is clear that vit = Ai and vi- = 0. As co increases from 
unity, vi[ and vi- are decreasing and increasing functions of co, respectively, 
until co2Ai - 4(co - 1) = 0, which occurs when 

(27) 2 

and both roots coincide with the same value, that is, V+ = V- = cOi - 1. For 
co > ci , the roots vi and vi- become complex conjugate pairs and increase, 
the absolute value being co - 1 . It is obvious that, for 

1< co < = 1+ 2 

vj+ is a real and strictly decreasing function of co while for cl) < 
co < 2 one has p(2Y,) = Ilw- lI. 

However, we should add a note about negative eigenvalues vi which may 
exist. The matrix Y, has s (usually half of n) eigenvalues positive and n - s 
zero. These positive eigenvalues Ai give rise to the roots vi while the zero 
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FIGURE 1. The behavior of v and ac,, vs. co 

eigenvalues Ai+, give rise to the roots v- with co = 1. If 2s < n, then there 
are zero eigenvalues Aj, where 2s < j < n, which satisfy also the relation (8); 
hence the corresponding eigenvalues Vj = -(o - 1) are negative for all co > I . 

The typical behavior of the eigenvalues vi of 2a, versus co is shown in 
Figure 1 for the example in which the three largest eigenvalues of .2 are A = 

0.98, A2 = 0.94, and A3 = 0.9, and the subdominance ratio a1 = A2/)1 = 

0.9592. As can be seen from Figure 1, there exist only two positive eigenvalues 
Vj+ and v2+ for (03< CC? (02, only one v t for (02 < (0) <- WI, and for 
(0 > co, all eigenvalues vi are complex (and negative if they exist) with the 
absolute value equal to o - 1 . 

It is obvious that the subdominance ratio a, for the SOR matrix Y,2 is 
a function of C and ac, = aT1 = A2/.1 when ao = 1. For 1 < co <- c2, 

c7= ,v2/vl is a strictly decreasing function as co increases from unity (because 
VI _v decreases much less rapidly than v2 v+) and at 

I - ~~~~~~~2 

(27a) co = (02 = 1 2 

achieves its minimum act, = F2/ = (062 - 1)/l . For (02 < 0? (01, I(9 = 

I (0- 1 l/v1 is a strictly increasing function of (0 and for all i01 < co < 2, a,, = 1 
because all eigenvalues vi have the same absolute value equal to Ico - 11 . 

In the example shown in Figure 1, the dashed curve illustrates the behavior 
of a,, versus c(, where the minimum J, = 0.6639 occurs at Ct02 = 1.6065. 
In terms of the rate of convergence the theoretical coefficient of efficiency 

(28) = R( ) 
R(ai) 

is equal to 9.84. Thus for this example the computation of p(Y2%) by means 

of the power method with ( = (02 is asymptotically about 10 times faster than 

with o0 1. 
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2.3. The Sigma-SOR algorithm and computational strategy. The observations 
in the previous subsection show the existence of the minimum value act, < 1 
and moreover they allow us to precisely identify its locality which occurs at 
(0 = (02 minimizing the value of the subdominant eigenvalue v2. The question 
now arises whether there exists a mathematical basis for determining the value 
of x,, in dependence on ol = 22/1-i. The following theorem gives an answer 
to this question. 

Theorem. Let vi be the eigenvalues of the n x n SOR iteration matrix 
- = (D- oL)-1[oU- (o - 1)D] 

and let Ai be the eigenvalues of the Gauss-Seidel iteration matrix 

1 = (D-L)-'U. 

If the eigenvalues of both matrices are related by 

(29) Ai= 1 co-i]2 

and .j has only nonnegative real eigenvalues such that 
(30) 1 > Al > A2 > A3 > *- ' 

then the subdominance ratio a(, = v2/vl of 2Y,, achieves its minimum oy0 = 
T2/vl with 

(31) (=C)2= 2022 

and is defined by the following formula: 

(32) as,= 2 _ 1 

where 01 = A2/21A 

Proof. By using (29), one obtains that 

(33) 22 VI 112+0_1 I 2 -+ VQ ] 

or equivalently 

(33a) cVI = [a1+ @ 2 

The proof follows immediately from a close inspection of (33). As was al- 
ready stated, cto is minimized when (0= (02 and its valueis aw = c= oT2/vI, 
where V2 = CC2 - 1. Hence, for (o = C02, (33) reduces to 

(34) a,l = aZ0[I +a -d 

and has the solution 
- 2 1~vT~ 1 

Ticme t oo o the -t r =I 

This completes the proof of the theorem. o- 
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It is necessary, however, to make some comments on the above result, because 
(34) has two roots a+ < 1 (corresponding to the above result) and a<>, > 1. 
Since with GO = 02 the matrix .0 has only four real eigenvalues (see Figure 
1) such that vt > 2 = =lV2 =w2 -1 > vj > 0, then for a, < 1 

= _ 2 an 12 _ 2 
+ Il1+ < I and (7 

-= > 1. 

But both [X2 and vj are subdominant eigenvalues and therefore the fact that 
aj > 1 has no practical significance. 

The most interesting conclusion from this theorem is the fact that the mini- 
mum values of both spectral radius and subdominance ratio for the SOR iter- 
ation matrix are governed by the same formula (see (10) and (32)). In other 
words, for the same values of both p(2') and a1 the quantities p(Y,,) and ac, 
achieve the same minimum value but with different values of t). It is evident 
that replacing p(2I), p(YFi,), and Et in Table 1 by a, , v6,, and Et (defined 
by (28)), respectively, the data of this table illustrate also the efficiency of the 
power method in the asymptotic range as in the case of the SOR method. 

Thus, the result of this theorem is of fundamental importance in the compu- 
tational strategy for a "rapid" estimate of an "accurate" value of the optimum 
relaxation factor c)opt in the SOR method. 

The algorithm for determining 0)opt, called the Sigma-SOR algorithm, is 
based on the following computational strategy. Assume that A* and a*, ap- 
propriate estimates for Al _ p($) and a1 , respectively, are known. Using 

(35a) (0* = 2 1 + 1o -a* 
we can obtain * =_ p(2Y,*) by the power method iteration until a required 
convergence criterion is satisfied. Then from the relation (29) one obtains 

(35b) 1 [ - 1 

which allows us to determine 

(35c) 2=1 2 

an a priori "accurate" estimate for 0)opt. Thus, the accuracy of 0)opt is condi- 
tional to the computation of an accurate value of v * . 

As is demonstrated in numerical experiments given in the next section, the 
above algorithm, even with crude approximations A* and v*, is very efficient 
and strongly competitive with the SOR adaptive procedure [1] when p(2l) is 
very close to unity (0.999 < p(2I) < 1). 

Estimates for c* approximating a, can be obtained by observing the decay 
rate of some quantities, for instance 

(t ) jt+ 1) - A 
(36) (l+l) = - 

)_(t- 1)I 

or ratios of differences between the components of successive eigenvectors in the 
iteration process of the power method (19), (20), using a suitable norm (see, for 
example, [4], where the term dominance ratio is used for a). As follows from 
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(18), for each jth nonzero component zj of z approximating the eigenvector 
corresponding to the dominant eigenvalue in the power method, we have that 

(37) -l(t+1) 
- [AaiU)I+ (e)I 

l as t -0, 
Z(!)a, (l)j+ ))e t A1 

where 

(38) (e(t))j E (Al) ai(ui). 
i=2 

Substituting (37) into (36), one obtains 

qT(t+1) - a,(ul)j + (e(t+l))j [(e(t+l))j - 2(e(t))j + (e(t-l))j] 

aj(uj)j + (e(t))j [(e(t))j - 2(e(t-1))j + (e(t-2))1J. 

and for t sufficiently large, a, (ul)j > (e(t))j, so that 

(39) q(t+l) ~~~(e(t+l))j - 2(e(t))j + (e(t-1))j 
a(39) e-~(e(t))j - 2(e(t1))}j + (e(t-2))j 

Assume now that for any t' > 1 

(40) (2) a2(u2) > Ai 
ai(ui)j for all 3 < i < n. 

Equation (38) can be written in the form 

(41) (e(t))j Al a2(U2)j + 

where 

(42) (())- ai(ui). 

Substituting (41) into (39) yields 

(+1) ~Al A 2 (I ) + -Al )] a2 (u2)j + (e(t+l) ) - 2(e(t) ) + (e(t 1))j a~~ ~~~ t _I t-2- 
- 2 () + A a2(u2)j + (e(t))1-2(e(t-')) + (e(t-2)) 

But when t > t', the relation (40) implies that (e(t)j) becomes sufficiently 
small, and it can be concluded that 

(43) 2(t+ j2q al 

In the calculation of p(2I) (or p(2,)) by means of the algorithm of the 
power method defined by (19)-(22), the notation AM -= p(2I) (or vM =- p(Y.)) 
corresponds to using the maximum norm 1 , and AE p(2I) (or VE 
p(2Y,,)) corresponds to using the Euclidean norm 

' 
112 in the scaling procedure. 
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With these notations, 

|I(t+ 1 ) i(t) I 
(44a) (TM ) = ( ' 

(t+1) - - 0I 
(44b) a(+ E) = E E 

Usually, the convergence behavior of both AM and aM have a monotone de- 
creasing character, whereas for AE and cE it was observed that they first in- 
crease and then (mainly for IE) slowly decrease as the number of iterations 
increases. 

In the case of using the Euclidean norm for scaling purposes, the following 
two additional measures for a can be used: 

_t 
_ 

1) I I(t+l)_io 
- 

11Y(t)1100 
(44c) aEM 

E 
Hy()100 E 

and 

(44d) ~~~~(t+ ) IIY(+ 1- - y(t) 112 - I IY(t - Y(t-l1) 1121 (44d) '7il)_I IE - YE 
Il2 |E)_y(t-1)11 

IEE YtE -YE ) 2- _lt-l) y(t-2) 2l 

where the successive eigenvectors y(t+ 1) Y(t) y(t- 1), and y(t-2) are generated YE YE YE E 2 r eeae 
by (19)-(22) with using the Euclidean norm for scaling. 

As demonstrated in numerical experiments, the most rapid convergence is 
observed for aEE with a monotone increasing character, which provides certain 
values estimating the true al from below. 

As can be seen from Figure 1 the behavior of au,, near Zi2 is similar in 
nature to the behavior of p(2Y,,) near -01 . From an inspection of the slope of 
the curve for u,a, near Ct)2, it follows that errors with underestimating Ct2 give 
larger values of u,a, than errors (comparable in size) with overestimating Ci2 . 
In the range 1 < co < ?i2, the value of au,, can be determined from (33) in 
dependence on al and (co - 1)/v2 (or (co - 1)/vl in the case of (33a)), and in 
the range (02 < CO <cT, it is defined by I co- I /vi. 

Thus, from the viewpoint of obtaining the maximum rate of convergence in 
the power method, overestimating Ci2 is less dangerous than underestimating 
(02 by the same amount, but as al approaches unity, this becomes a more 
important problem because underestimating C02 drastically decreases the rate 
of convergence. 

On the other hand, however, underestimating Ct2 may be attractive for ac- 
celerating convergence by the use of the Aitken 62-process [5]. This procedure, 
known also under the name of Aitken extrapolation, is a useful tool for improv- 
ing convergence, and can be used for any process converging linearly (i.e., as in 
(14), z(t) = 3?z(t-1)). In the case of the simple power method, the convergent 
sequence {i(t)} for the dominant eigenvalue can be transformed into a more 
rapidly convergent sequence {iJt) } by using 

(45) i(t) = A(t-2) _ 
(A(t-) _ 

V-t1))2 __ P (-2) - 2A(t- 1))2 

This process will be most effective if both eigenvalues v_ vjj and v2 v2+ are 
real and well separated from V3 V+ . As can be easily concluded from Figure 1, 
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this occurs when co is close to (03 , which minimizes V3 for all 1 ?< co < C03 and 
provides the best separation of v1 and v2 from V3 . The distance of separation 
is a decreasing function as co increases for C03 < CO < (02 and vanishes for 
(02 < CO <( co because in this region all subdominant eigenvalues have the same 
absolute value. Thus, the use of GEE, providing an underestimated value of a1, 
can give some advantages in the form of an increased rate of convergence when 
the Aitken extrapolation is applied. This aspect will be discussed and illustrated 
by numerical results in the next section. 

In conclusion it should be stated that in the efficient use of the power method 
for determining an accurate value of the optimum relaxation factor in the SOR 
iterative method, the relaxation factors c02 and C03 play an important role; (02 
maximizes the rate of convergence in the simple power method, whereas C03, 
providing the best separation of two dominant eigenvalues from the remain- 
ing subdominant eigenvalues of the SOR iteration matrix, maximizes the rate 
of convergence of the Aitken extrapolation used as a practical technique for 
improving the convergence of the power method. 

3. NUMERICAL EXPERIMENTS 

In this section the results of numerical experiments are presented for the 
numerical solution of a two-dimensional elliptic equation of the form 

(46) -D(x, y) [O'2 +' 2] + X(x, y)p = s(x, y) for x, y E Q 

with 

(o(x, y)= g(x, y) or g(x, y) for x, y E OQ, 

where Q is an open bounded region with boundary 0 Q, n is the exterior 
normal, D(x, y) > 0, and X(x, y) > 0. 

The standard finite difference discretization of (46) in a spatial mesh imposed 
on Q leads to a system of linear equations of the form 

(47) AO = b, 

where the components of 0 approximate the values of (p at each mesh point 
(x, y) . In the case of the natural ordering of mesh points for the standard five- 
point difference operator, the n x n coefficient matrix A has only five nonzero 
diagonals forming a tridiagonal block structure suitable for the implementation 
of the 1-line SOR algorithm, and is 2-cyclic consistently ordered [1]. 

Five test problems taken from the literature [6, 7] are considered with dis- 
continuous coefficients D and X, but chosen to be constant in each subregion 
Qk, and different boundary conditions on OQ for uniform and nonuniform 
mesh structures. 

Test Problem 1. This example, obtained by assuming D = 1 and X = 0 in Q, 
the unit square (0, 1) x (0, 1), the Dirichlet boundary conditions (o = 0 on 
aQ, is usually used as a model problem in the analysis of numerical solutions 
of elliptic-type problems. A square mesh with width h = 1 yields n = N2 
mesh points, which is also the order of A. We assume n = 48 x 48 = 2304, as 
in Problem A in [6]. 

Test Problem 2. In this problem (Problem B in [6]), whose domain and coeffi- 
cients are depicted in Figure 2 (the numbers on the x-axis and y-axis in this 
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FIGURE 3. Test Problem 3 

and subsequent figures are indices of mesh lines, not values of x and y), there 
is a discontinuity of coefficients in the vertical direction, and mixed boundary 
conditions are used on OQ as shown in Figure 2. The number of mesh points 
is n = 96 x 24 = 2304, where h = 1 is assumed in both horizontal and vertical 
direction. 

Test Problem 3. In this problem (Problem C in [6]), with n = 24 x 24 = 576 
and discontinuous coefficients, a nonuniform mesh is used. The mesh division, 
assumed the same in both horizontal and vertical direction, corresponds to the 
mesh division used in Problem 5 given in Reference 7 of [6]. The domain, 
coefficients and the mesh division are depicted in Figure 3. 

Test Problem 4. This problem, taken from [7] (and analyzed in [8]), has a 
strongly discontinuous D, and n = 48 x 48 = 2304 in the square mesh shown 
in Figure 4. 
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Test Problem 5. This problem, also taken from [7] (and analyzed in [8]), has a 
slightly modified mesh division, giving n = 42 x 42 = 1764, in order to keep 
the number of horizontal lines divisible by 2 for convenient use of 2-line SOR 
algorithms. The domain, coefficients and mesh division (assumed the same 
in both directions) are depicted in Figure 5. In [7, 8] a uniform mesh with 
h = 0.05 was used, giving the number of mesh points n = 43 x 43 = 1849. 
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For solving (47) in the above five test problems, the following line algorithms 
of the SOR iterative method are used [1, 6]: 

1. SLOR- 1-line system, 
2. S2LOR-2-line system, 
3. S2LCROR-2-line cyclically reduced system. 
In our computations for each problem it was assumed that s(x, h) _ 0 in 

(46), so that the unique solution of each discrete problem is the null vector. All 
components of the starting vector O(M) were equal to unity, and computations 
for each iterative method were continued until the maximum absolute value of 
all components of the iterate 0(t) was less than a prescribed number ec. Thus, 
the stopping criterion 

(48) e(t) = 110(0t11 < e 

can be considered as the most reliable measure of the error vector in estimating 
the accuracy of the solution. 

All computations were carried out on a PC computer in single-precision FOR- 
TRAN for the SOR iteration (including the calculation of the coefficient matri- 
ces A), and in double-precision FORTRAN for the power iteration. The results 
of computation are shown in Table 2 (next page). 

The accurate value of Al was obtained with co = 1 when the stabilization 
to nine significant figures of AE was observed in the power method ((19)-(22), 
using the Euclidean norm); IE and IA are the numbers of iterations observed 
in the power method without and with using the Aitken extrapolation (45), 
respectively; Is is the number of SOR iterations required to satisfy the stopping 
criterion (48) for two successive iterations with -Th as the optimum relaxation 
factor and for two values e = 10-6 and e = 10-8. 

The results obtained when using the SOR adaptive subroutine [1, pp. 368- 
372] are shown under items 6, 7, and 8 of Table 2. 

The data given in items 9-15 are related to computing the accurate value of vi 
(with stabilization to nine significant figures) in the power method with the value 
of co = ci2 determined from (27a) where A2 = {a, [accur]} x Al and a, [accur], 
approximated by CEE (defined by (44d)), was obtained with the calculation of 
Al in item 1 for co = 1. Hence, by (8) and (27), the accurate value of cii can 
be found. Provided a, is known, the accurate value of the optimum relaxation 
factor copt = Ci) can thus be efficiently computed. Comparison of the number 
of iterations IE (or IA) given in items 2 and 13 allows us to illustrate the 
efficiency of the power method used in the case when co = ci2 for each test 
problem. The values of a-F, given in items 14 and 15, and computed from 
(C02 - 1)/vl and (32), respectively, indicate the consistency of the results in all 
cases, except for Test Problem 5 solved by the SLOR iterative method, where 
a, = 0.9944 was found to only four significant figures. 

The results obtained for the Sigma-SOR algorithm are given in items 16- 
27. The subdominance ratio a,, approximated by CEE is estimated once the 
stopping criterion 

(49) t(t) - __ - () < j = 10-3 

has been satisfied in two successive iterations in all test problems; IEE is the 
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respective number of iterations required. As can be seen in Table 2, the above 
stopping test provides an underestimation of a, in all cases except for the 
S2LCROR method in Test Problem 3, for which CEE gives a slight overesti- 
mation of a,. In computing ci2[est] according to (27a) it was assumed that 
A2[est] = UEE(Kt), where i(t) is the approximation of Al obtained at iteration 
t = IEE and using Aitken extrapolation. In item 20 the value VE approximating 
v1 with W = 6i2[est] is obtained by satisfying the stopping criterion 

(50) I(t) - _-(t-1)I < 3 = 10-, 

which is achieved after IE iterations without Aitken extrapolation The corre- 
sponding values of AE and WE are given in items 22 and 23. In items 24-27 
the same quantities are given when Aitken extrapolation is used. For the SLOR 
method in Test Problem 1 there is a small difference between WOE and WOA = JIi, 
but in all remaining cases it is observed that WE = WA = OJI and IA is smaller 
than IE, as ci2 is more underestimated by ci2[est], because in this case the 
separation of Al and A2 from the remaining eigenvalues increases and Aitken 
extrapolation becomes more efficient. In the case where the Wo used is close 
to the true value of ci2 (item 11), this separation of Al and '2 from the re- 
maining eigenvalues disappears and the numbers of iterations IE and IA are 
comparable (item 13). 

Thus, with the choice 3 = 10-3 for CEE and 3 = 10-8 for VA and with 
the use of Aitken extrapolation, the Sigma-SOR algorithm provides an estimate 
for WA = w, =_ wopt to six significant figures in all considered test problems, 
with IEE + IA (items 17 and 25) being the number of iterations required for 
obtaining this estimate. 

In all eigenvalue calculations carried out by means of the power method, all 
components of the starting vector z(?) were taken to be unity. 

The behavior of CE, CM, CEE, and cEM (defined by (44a, b, c, d)), repre- 
senting different measures for a1 , versus the number of iterations is depicted 
in Figures 6-10 (see pp. 636-638) for all five test problems solved by means 
of the SLOR iterative method. As can be seen in these figures, CEE converges 
most rapidly to a, . (The true value of a1 given in item 9 of Table 2 is marked 
in the figures by a straight line parallel to the x-axis.) In the initial phase of the 
iteration process, CEE provides estimates of a1 from below, which are helpful 
in using the Aitken extrapolation. 

In the convergence behavior of aM, the decreasing character is observed 
as the number of iterations is increasing, but there are strong local variations 
(occurring sometimes also for aEM) visible in all figures, except for Test Problem 
2 depicted in Figure 7. In the case of Test Problems 1 and 4 (Figures 6 and 9), 
it can be observed that for our starting vector z(?), all of whose components are 
equal to unity, all measures considered for a1 tend first to A3b21 and then to 
a1 = A2/ IA1 as the number of iterations increases. This is due to the fact that for 
the assumed starting vector z(?) the inequality a3 > a2 in the representation 
(16) implies that in spite of A2 > A3, the inequality la3At I ?> a2At I holds 
for appropriate "small" values of t, so that the inequality (40) is not satisfied 
because t < t' (where t may not necessarily be very small if t' is very large, 
as occurs in the case of Test Problem 4) and a(t) will converge to A3h21 , the 
dominant term in this range of t-values. 
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M: am (eq (44a)); E: cE (eq. (44b)); EM: cEM (eq. (44c)); EE: CEE (eq. (44d)) 
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M: am (eq. (44a)); E: cE (eq. (44b)); EM: cEM (eq. (44c)); EE: CEE (eq. (44d)) 
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M: aM (eq. (44a)); E: cE (eq. (44b)); EM: cEM (eq. (44c)); EE: CEE (eq. (44d)) 
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M: aM (eq. (44a)); E: cE (eq. (44b)); EM: cEM (eq. (44c)); EE: CEE (eq. (44d)) 
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M: aM (eq. (44a)); E: cE (eq. (44b)); EM: cEM (eq. (44c)); EE: CEE (eq. (44d)) 
Moreover, it is interesting to notice that the convergence behavior of UEE 

and aM has a continuous character when passing from convergence to A3/1I 
to convergence to A?21/ , whereas for aE and YEM strong deviations similar to 
discontinuities are observed. 

It is a well-known fact that for the SOR iterative method the optimum relax- 
ation factor woopt1t =I which maximizes theoretically the rate of convergence 
does not provide the best results. In practice, one observes the existence of 
a best relaxation factor (0B (slightly greater then wopt) which minimizes the 
number of iterations for the required accuracy of the solution. Unfortunately, 
there is no rigorous analysis in the literature explaining the reasons for this C0B 

and predicting its value. From numerical experience, it can be concluded that 
(0B is a function of woopt and the required degree of accuracy of the solution. 
One observes the following empirical formula: 

1 
(51) ln(WOB - 1) = - ln(w0Opt - 1 ), 

where the correction coefficient c = 1.02 when using e = 10-6, and c = 1.01 
when using e = 10-8, provides a quite satisfactory estimate for C0B. The use 
of (0B obtained from the above formula allows us to improve the convergence. 
Usually, the number of iterations obtained with (0B is about 15% less than that 
obtained with w1opt for slowly convergent problems. The results obtained with 
(0B for two different stopping criteria are given in items 28-31. 

The deterioration in the rate of convergence resulting from using an inaccu- 
rate value of woopt is strongly dependent on the closeness of p(Y2) to unity, 
and it seems to be reasonable that this dependence should be taken in consid- 
eration when estimating woopt a priori. The nature of calculating p(YI) by 
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FIGURE 1 1. Test Problems 1 and 2 

means of the power method is such that the first few significant figures of p(Y2) 
are rapidly fixed at the beginning of the power iterations, whereas convergence 
to the next figures begins to be governed by the subdominance ratio a, . The 
behavior of p(Y2) versus the number of power iterations for Test Problems 
1 and 2 is depicted in Figure 11 where the dashed curves (denoted by 1 a and 
2a) correspond to using Aitken extrapolation for accelerating the convergence 
in the power method. 

In the determination of wo13pt based on a priori estimates for p(YI), the 
application of the stopping criterion 

(52) os~~( ) = |RA() -A(I t) I < OS _031(1 -A(t))| (52) A() A 0 

where RA) is an approximation of Al p(YI) in the power iteration t using the 
Aitken extrapolation, yields results strongly competitive with the SOR adaptive 
procedure [1] when the values of p(YI) are close to unity. 

In items 32-35 of Table 3 (next page) results are given for all test problems 
solved by the SLOR method in which the estimate of wo13pt is based on the 
computation of Al _ p(Y2) by using the stopping criterion (52); the remaining 
items quoted from Table 2 are given for comparison purposes. 

Table 4 summarizes the results obtained for different computational strate- 
gies implemented in four programs used for solving the test problems. The data 
given in this table represent the numbers of iterations required to obtain the so- 
lution which the stopping criterion II (b) II < 10-6 satisfied for two successive 
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TABLE 3. Results obtained with using the "dynamic" stopping 
criterion (52) 

Test Test Test Test Test 

Problem I Problem 2 Problem 3 Problem 4 Problem S 

1. A [ accurl .991815239 .998951986 .999961143 .999983580 .999956430 

2. I 650 462 571 329 145 
A 

3. 1i 1.83407 1.93728 1.98761 1.99193 1.98689 

4. I [c-10- 1 106 269 1347 2048 1281 
S 

6. 1 1.83328 1.93587 1.98765 1.99186 1.98700 
Adap - 

7 I [c-b10 127 343 1853 3090 1738 

17. IE E 39 46 22 25 22 

25. I 100 67 76 69 27 
A 

28. g8 1.83704 1.93847 1.98785 1.99209 1.98715 

a 29. 1 ( c=108 99 29 13 76 17 

32. A [6=10_ (1-X )) .991816463 .998929054 .999960952 .999983490 .999956396 

33. I 35 96 155 101 18 
A 

34. 1.83408 1.93662 1.98758 1.99191 1.98688 

35s. 1 6 1 106 283 1365 2077 1286 

TABLE 4. Comparison of computational strategies 

Program Test Test Test Test Test 
Method No. Problem I Problem 2 Problem 3 Problem 4 Problem S 

. Al 127 343 1853 3090 1738 

1-line Bl 106 (35) 283 (96) 1365 (155) 2077 (101) 1286 (18) 

.i . . .___ _ 99 (139) 229 (113) 1139 (98) 1736 (84) 1077 (49) 

. 2 83 208 1132 2047 1154 

2- Ine B2 72 (21) 193 (58) 866 (74) 1501 (55) 890 (8) 
C2 66 (82) 160 (91) 740 (93) 1284 (69) 759 (80) 

D2 61 169 752 - - 

. A3 70 195 997 1705 925 
2-line 
cyclically 63 (17) 162 (45) 733 (70) 1270 (43) 775 (4) cycl ical ly 
reduced C3 58 (82) 136 (87) 634 (75) 1103 (62) 654 (99) 

D3 52 145 681 - - 

iterations. The numbers given in parentheses correspond to the number of 
iterations required to compute the relaxation factor co for a given strategy. 

The A program uses the SOR adaptive procedure [1]. In the B program 
the estimate of coopt is based on computing Al1 p(2I) by using the stopping 
criterion (52) and Aitken extrapolation as an acceleration procedure. The C 
program uses the Sigma-SOR algorithm for computing COB. The numbers at- 
tached to the programs correspond to the applied solution methods, which are 
specified in the first column of the table. In addition, the results from [6] are 
quoted under the D2 program, which uses the 2-line cyclic Chebyshev method 
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applied to the original system, and the D3 program, which uses the 2-line cyclic 
Chebyshev method applied to the cyclically reduced system. Both these pro- 
grams were used in [6] for solving Test Problems 1, 2, and 3 only; the results 
from these programs for Test Problems 4 and 5 were not available. 

4. CONCLUDING REMARKS 

From the practical point of view, the best solution method is one that for the 
required accuracy provides the solution with the minimum total arithmetical 
effort, which is what mainly determines the cost of computations. In the case 
of the SOR iterative method, the arithmetical effort is roughly proportional to 
the number of SOR iterations required for obtaining the solution with a given 
degree of accuracy, and the number of power iterations required for estimating 
the appropriate relaxation factor co. Since the number of arithmetical opera- 
tions per iteration in both SOR and power methods are comparable (the power 
method defined by (1 9)-(22) needs a few additional arithmetical operations for 
computing the Euclidean norm and for division by this norm), the efficiency of 
the assumed solution method can be measured in terms of the total number of 
iterations. Moreover, this total number of iterations, as well as the fraction of 
both SOR and power iterations, may change from problem to problem. 

The number of SOR iterations is roughly inversely proportional to the rate of 
convergence where the deterioration of the convergence rate resulting from using 
an inaccurate value of co,,pt is strongly dependent on the closeness of p(Y1) 
to unity. The speed of convergence in the power method is governed by the 
value of the subdominance ratio a, which determines the rate of convergence, 
similarly as p(Y,,) does in the SOR method, and the number of power iterations 
is also strongly dependent on the closeness of a, to unity or on the degree of 
separation of two dominant eigenvalues from the remaining ones, if the Aitken 
extrapolation is used. Thus, it seems that the selection and application of the 
iterative strategy for solving different problems should be based more on the 
analysis of results obtained in practice than on theoretical considerations. 

In the test problems considered in this work and representing a class of nu- 
clear engineering problems, we have 

0.978 < p(YI) < 0.99999 and 0.96 < a, < 0.995, 

so that the analysis of numerical results obtained for these problems should also 
be conclusive with solving large-scale scientific problems. 

It seems that in the selection of computational strategy in solving elliptic- 
type problems, the SOR adaptive technique (implemented in the Al, A2, and 
A3 programs) is favored in the literature [1, 2, 3, 4, and 6] as a more efficient 
solution method in comparison with the computational strategy based on a pri- 
ori estimate of co,pt. However, the numerical experiments on all test problems 
considered here show that the B2, B2, and B3 programs, in which an a priori 
estimate for wo,,pt is obtained by calculating Al- p(YI) with the power method 
accelerated by Aitken extrapolation and using the stopping criterion (52), are 
competitive with the Al, A2, and A3 programs, especially when p(Y1) is close 
to unity. 

As can be seen in Table 4, in the case of Test Problem 1 the Bi program 
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needs 14 iterations more (that is, about 10% more) than the Al program. But 
for Test Problem 4 the difference is equal to 912 iterations in favor of the Bi 
program, which corresponds to about 40% more iterations in the Al program. 
Since both test problems have the same size (2304 mesh points), the advantages 
resulting from solving Test Problem 4 by the Bi program in comparison to the 
Al program can be estimated by this difference of iterations, which in this case 
is about seven times greater than the total number of iterations required for 
solving Test Problem 1 by the Al or Bi programs. 

Suppose that both problems are solved with an a priori estimate for cowpt 
based on using the accurate value of p(2I) given in item 1 of Table 3 and 
obtained with 650 and 329 iterations (item 2 of Table 3) for Test Problems 1 
and 4, respectively. Then, in the case of Test Problem 1 the solution is obtained 
with 106 iterations (the same number of iterations as for the B1 solution), but 
the total number of iterations is increased to 755, that is, 615 iterations more 
than for the Bl solution given in Table 4. For Test Problem 4 the total number 
of iterations (accompanied by a small decrease of SOR iterations) is increased 
to 2377, that is, 199 iterations more than for the Bl solution but still much less 
than for the Al solution. A similar behavior can be observed when comparing 
the results of Table 4 given for the A2 and A3 programs with those given for 
the B2 and B3 programs, respectively. 

From the above comparisons, it is apparent that in the solution method based 
on a priori estimates for co,,pt, the main difficulty lies in the choice of the degree 
of accuracy appropriate for estimating p(YI) in a given problem; it is probably 
for this reason that a priori estimates for co,,pt are given less attention in the 
literature. However, as can be concluded from the results given in Table 4 for 
the Bl, B2, and B3 programs, the simple trick of using the stopping criterion 
(52) conditioned by the closeness of p(2j) to unity allows us in some sense 
to avoid this main difficulty and to make a priori estimation of Cwo,pt a more 
useful computational technique and competitive with the solution method based 
on using the SOR adaptive procedure [1], especially for problems in which 
the values of p(2j) are very close to unity. In the range 0.98 < p(Yi) < 
0.999, represented by Test Problems 1 and 2, the SOR adaptive procedure 
discussed extensively and illustrated numerically in [1] just for this range of 
values of p(2j), provides solutions with a smaller number of iterations than 
in the case of using a priori estimates for co,,pt based on the stopping test (52). 
But as was demonstrated above for Test Problem 1, the advantages resulting 
from decreasing the total number of iterations have no practical significance 
because in this range of spectral radii, the deterioration of the convergence 
rate caused by using an inaccurate value of co,,pt does not strongly change the 
number of iterations. For the class of problems with 0.999 < p(Yi) < 0.99999, 
represented by Test Problems 3, 4, and 5, the efficiency of solution becomes 
more sensitive to the accurate value of co,,pt as p(YI) approaches unity, and 
the computational strategy based on determining an accurate value of Cwo0Pt 
prior to the SOR solution is much superior than the SOR adaptive technique, 
as can be seen in Table 4. In this case, the last estimate for co,,pt in the SOR 
adaptive technique is most time-consuming because ac,, becomes close to unity 
(see Figure 1). It is interesting to note that in the case of Test Problem 5 
extremely small numbers of iterations are required to a priori estimate Cwo0pt in 
the Bl, B2, and B3 programs. 
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In the Cl, C2, and C3 programs, the Sigma-SOR algorithm defined by (35a)- 
(35c) is used for the a priori determination of co,,pt, whose value to six sig- 
nificant figures was computed with the choice of ( = 10-3 for approximating 
a, by SEE and 6 = 10-8 for approximating v* by VA, and using the Aitken 
extrapolation. The detailed results are given in items 16-27 in Table 2. In SOR 
iterations the best relaxation factor COB is used which is computed from the 
relation (51) and is given in item 28 of Table 2. As can be seen in Table 4, 
the Sigma-SOR algorithm needs about 100 iterations for computing cowpt to six 
significant figures in all test problems. For Test Problem 1 the number of iter- 
ations required to obtain this accurate estimate for co,,pt exceeds the number 
of SOR iterations, so that the total number of iterations in the Cl, C2, and C3 
programs is about two times greater than in the Al, A2, and A3 programs, re- 
spectively. However, as p(2 ) becomes close to unity in the next test problems, 
the efficiency of the computational strategy with the Sigma-SOR algorithm is 
strongly improving in comparison to the former solution methods. Moreover, 
it is observed that in the case of Test Problems 3, 4, and 5 solved by the Cl, C2, 
and C3 programs, the total number of iterations (needed for estimating COB and 
obtaining the solution) is smaller than the number of SOR iterations observed 
when using the accurate value of co,Pt = C01 (items 3 and 4 in Table 2). 

The results for Test Problems 1, 2, and 3 obtained in [6] by means of the 
D2 program, using the 2-line cyclic Chebyshev method applied to the original 
system, and the D3 program, using the 2-line cyclic Chebyshev method applied 
to the cyclically reduced system, are given additionally in Table 4. From an 
inspection of these results, it is apparent that the solution efficiency of the D2 
and D3 programs, which is the best in the case of Test Problem 1, decreases 
when going to Test Problems 2 and 3 in comparison to the convergence behavior 
of the C2 and C3 programs, respectively. For Test Problem 3, the C2 and C3 
programs provide solutions with the total number of iterations somewhat greater 
than in the D2 and D3 programs. However, as follows from an exact calculation 
of the number of arithmetical operations for the obtained solutions, the C2 and 
C3 programs need somewhat less total arithmetical effort than the D2 and D3 
programs, respectively. This is due to the fact that in each iteration of the 
D2 and D3 programs, except for the arithmetical operations related with the 
solution, additional arithmetical operations are required for the computation 
of the Euclidean norm, whereas in the C2 and C3 programs only about 10% 
of the number of iterations (the numbers given in parentheses in Table 4) are 
related to those additional computations. 

Thus, it can be concluded from the results obtained for our test problems, that 
the Sigma-SOR algorithm based on the important theoretical result given by (32) 
is a useful computational tool for the calculation of an accurate a priori estimate 
of copt, which in turn allows to determine the best relaxation factor COB from 
(51) when solving problems for which 0.999 < p(59 ) < 1 . In comparison to the 
SOR adaptive procedure, the efficiency of the Sigma-SOR algorithm increases as 
p(YI) and a, become closer to unity; and it seems that for the range 0.999 < 
a, < 1, the Sigma-SOR algorithm should be extremely efficient. In the case 
when the matrix problem (47) is to be solved many times for different vectors 
b, the advantages resulting from using COB obtained by means of the Sigma- 
SOR algorithm are obvious. 
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Finally, it should be mentioned that the subsequent updated values of coi in 
the SOR adaptive technique are underestimated with respect to C)opt , but this 
underestimation drastically decreases the rate of convergence as p(Y1) becomes 
close to unity, and therefore the efficiency of the SOR adaptive procedure also 
decreases when p(Y1) approaches unity. 
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