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THE SIGMA-SOR ALGORITHM AND THE OPTIMAL STRATEGY
FOR THE UTILIZATION OF THE SOR ITERATIVE METHOD

ZBIGNIEW 1. WOZNICKI

ABSTRACT. The paper describes, discusses, and numerically illustrates the meth-
od for obtaining a priori estimates of the optimum relaxation factor in the SOR
iteration method. The computational strategy of this method uses the so-called
Sigma-SOR algorithm based on the theoretical result proven in the paper. The
method presented is especially efficient for problems with slowly convergent
iteration process and in this case is strongly competitive with adaptive proce-
dures used for determining dynamically the optimum relaxation factor during
the course of the SOR solution.

1. INTRODUCTION

The SOR (Successive Over-Relaxation) method and its line variants are
among the most popular and efficient iterative methods used for solving large
and sparse linear systems of equations arising in many areas of science and en-
gineering. The popularity of SOR algorithms is in a great measure due to their
simplicity from the programming point of view. The rate of convergence of the
SOR method depends strongly on the relaxation factor w ; therefore, the main
difficulty in the efficient use of this method lies in making a good estimate of
the optimum relaxation factor w,p which maximizes the rate of convergence.

For a large class of matrix problems arising in the discretization of elliptic
partial differential equations the coefficient matrices have certain eigenvalue
properties allowing us to determine explicitly the optimum relaxation factor
@opt - In the case when the coefficient matrix is 2-cyclic and consistently ordered
[1] (this property will be assumed in the remainder), wep; can be determined by
finding the value of the spectral radius p(4]) for the associated Gauss-Seidel
iteration matrix .4 .

However, it is well known that the nature of the dependence of wop: on p(-#7)
indicates the sensitivity of the rate of convergence to the accuracy in determin-
ing wopt , as p(-£) approaches unity [1, 2]. When p(.#) is very close to unity,
small changes in the estimate of p(#) can seriously decrease the rate of con-
vergence, and just in this case the availability of an accurate value of p(.%) is
an essential point for the efficient use of the SOR method.
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In practice two approaches are used to determine gy . One approach pro-
posed in the literature [2, 3, 4] is determining w,p; dynamically, as the SOR
iteration proceeds with using some ; < wept . Then by examining certain con-
ditions for quantities derived from current numerical results, w; is updated to
a new relaxation factor w;;; < wqp until the assumed tolerance criterion is
satisfied.

The second approach for determining w,y; is based on obtaining an a priori
estimation of p(-#]), usually by means of the power method or its modifica-
tions. As is well known, the rate of convergence of the power method is governed
by the ratio of the largest subdominant (in the absolute value) to the dominant
eigenvalue. If this ratio is close to unity, the power method will converge very
slowly and in such a case determining w,p; may be more time-consuming than
the SOR iteration itself.

Basically, there is no general comparison procedure to determine which ap-
proach is “best”. However in the case of 2-cyclic consistently ordered matrices,
an accurate estimate for p(-#{) prior to the SOR iteration solution can be ef-
fectively obtained by an appropriate use of power method iterations, and this
topic is the main purpose of the paper.

In the next section the SOR iterative method and the power method are
briefly described, and well-known basic results are recalled. These basic results
are essential in deriving the Sigma-SOR algorithm. The computational strategy
for determining the optimum relaxation factor wop is described in the third
subsection of §2.

The secondary purpose of this paper, discussed in §3, is to give numerical
results for a variety of problems presented in the literature in order to illustrate
the efficiency of the proposed method for the a priori determination of the
optimum relaxation factor wqp; .

2. FORMULATION
2.1. The SOR iteration method. In the iterative solution of the linear system

(1 Ax=b
the n x n matrix A is usually defined by the following decomposition:
(2) A=D-L-U,

where D, L, and U are diagonal, strictly lower triangular and strictly upper
triangular matrices, respectively.
The SOR iterative method [1] is defined by

3)  Dx*V = oLx™V + Ux? +b] - (w-1)Dx?,  ¢=0,1,2,...
or equivalently, if D is a nonsingular matrix

(4) xt*) = Z xO 4+ (D - wL)"'b,
where
(5) Z, =D -owL) '[wU - (v -1)D]

is called the SOR iteration matrix and w is the relaxation factor. For w = 1 the
SOR method reduces to the classical scheme known as the Gauss-Seidel iterative
method and

(6) A=D-L)'U

is called the Gauss-Seidel iteration matrix.
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In the point algorithm, the iteration proceeds for one component of the ap-
proximate solution vector at a time. For block or line algorithms, the iteration
involves improving simultaneously groups of components, and therefore they
are more efficient than the point algorithm. In this case the matrices D, L,
and U have a block structure corresponding to the assumed partitioning of
components.

It is well known [1] that in the case of 2-cyclic consistent orderings, when the
associated nonnegative Jacobi iteration matrix

B=D!(L+U)>0
is convergent (i.e., p(B) < 1), then 4 has only nonnegative eigenvalues 4;
such that
(7 1>p(A)=A>A>43> -,
and the following fundamental relation due to Young (see, for example [1] and

the references given therein) holds between 4; and the corresponding eigenval-
ues v; of %,
. 112
(8) A=t [uw__l] ,
14 w
Moreover, p(-%,) = max <<, |vi| <1 for 0 < w < 2, and its minimum value

is attained when
2

1+ /1= p(A)

b

in which case

1++4/1-p(&A)

In the convergence analysis of iterative methods the (asymptotic) rate of con-
vergence
(11) R(&)=-Inp(¥)
is certainly the simplest practical measure of the speed of convergence for a con-
vergent matrix & . The rate of convergence is especially useful for comparing
the efficiency of different iterative methods, because the number of iterations ¢
required for reducing the error norm in a given method by a prescribed factor
f is roughly inversely proportional to the rate of convergence, and is given by

—Inf
12 O p—

(12) ‘> RE
where & is the iteration matrix of the method.

Thus, the efficiency of different iterative methods (with a similar arithmetical
effort per iteration) can be theoretically evaluated by a comparison of the rate
of convergence. The data given in Table 1 (next page) illustrate the efficiency
of the SOR method by comparing it with the Gauss-Seidel method, where
_R(%)

R(H)
is the theoretical coefficient of efficiency and @ = wop -

(10) P(Z5

(13) E,
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TABLE 1
pPA) (%) E
0.9 0.5195 6
0.99 0.8182 20

0.999 0.9387 63
0.9999 0.9802 200

As can be seen from Table i, the efficiency of the SOR method drasti-
cally increases as p(-#]) becomes close to unity. For the case when p(#]) =
0.9999, the SOR method is asymptotically 200 times faster than the Gauss-
Seidel method. Since wqp is a function only of the spectral radius p(.%),
then for any efficient use of the SOR method, computing an accurate value of
p(Z) is needed, and the order of the accuracy in estimating p(.%4]) is depen-
dent on the closeness of p(.#]) to unity.

2.2. The power method. Usually, an estimate for p(.#]) is obtained by using
the ordinary power method [5], which will be used in the analysis presented
in this paper. The power method is conceptually and computationally the sim-
plest iterative procedure for approximating the eigenvector corresponding to the
dominant (largest in modulus) eigenvalue of a given matrix & . It is defined by
the iterative process

(14) 20 = Z7(-D) = 22,02 = ... = 210 | t=1,2,...,

which converges for almost any randomly chosen nonzero starting vector z(© .

We assume, throughout this paper, that the »n x n real matrix & has »
linearly independent eigenvectors u;, and its eigenvalues A; will be ordered
such that

(15) A > Ao 2 [A3] 2 - 2 [Aal.

Since by assumption, & has a complete set of eigenvectors u;, an arbitrary
nonzero vector z(¥ can be expressed in the form

n
(16) 20 = Zai“i )
i=1

where a; are scalars not all zero.
Then the sequence (14) has the representation

n n
(7)) 29 = adu =2 e + Y ai(Ai/A) w | = Al + ).
i=1 i=2

Since |A;/A1] < 1 for all i > 2, it is clear that z{) converges to u; as ¢ — oo,
provided only that a; # 0.

Thus the vector z(®) is an approximation to an unnormalized eigenvector u,
belonging to A;, which can be considered as accurate if ||e(”] is sufficiently
small. Since

z(t+1) — A.t1+l[alll1 +e(t+1)]’
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it follows that for any jth component z; of the vector z,

t+1
2 [al(ul),- + (D),

18 .
(18) 9 a(uy); + (e®);

J
The above result leads to computing the dominant eigenvalue by means of suc-
cessive approximations of the corresponding eigenvector in the simple power
method.
In practice, in order to keep the components of z(®) within the range of
practical calculation, its components are scaled at each iteration step, and (14)
is replaced by the pair of equations

— A1 ast— co.

(19) y =&Y,

(20) 29 =yO/llyOl,,
and in this case,

(21) 29 = wy/|Juyl,
and

(22) Iy, = 41 ast— oo,

where two norms, either the maximum norm || - | or the Euclidean norm
Il + 1|2 , are most commonly used.

The rate of convergence will depend on the constants a; , but more essentially
on the separation of the dominant eigenvalue from the largest subdominant
eigenvalues of &, that is, on the ratios ||/, |43]/41, ..., and it is evident
that the smaller these values, the faster the convergence. However, it may occur
that if z(® is chosen as almost orthogonal to u;, then g; in (17) will be quite
small compared to the other coefficients, and whence for appropriate “small”
values of ¢, |a1A!| < |axA}| and the ratio zS.’“) /z§’) will better approximate
Ay than A;, assuming of course that A; > |1;|. In the case when a; = 0, the
power method converges theoretically to the second eigenvector. However, in
practice rounding errors will introduce small components u; into the vector
z) and those components will be magnified in subsequent iterations. Whence,
convergence is still likely to be to the first eigenvector, although with a larger
number of iterations than in the case when a more suitable starting vector z(®)
would be chosen.

In particular, if |1,|/A; is close to unity, the accuracy of z(*) will be propor-
tional to (JA2]/4;)! and the convergence may be intolerably slow, but still to the
dominant eigenvalue A, . In such cases some practical techniques such as a shift
of origin, or Aitken’s d2-process [5], can be used to speed up the convergence
of the simple power method.

In general, when A; is the principal eigenvalue, the ratio
(23) a=maxM, 2<i<n

i A
will be called the subdominance ratio, which with the assumed ordering of 4;
according to (15) is equivalent to

(23a) o = |Aa|/A1-
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However, it seems that from the terminology point of view some comments are
necessary. In the literature for ¢ the term “dominance ratio” is usually used
by some authors. But it is also interesting to notice that other authors (espe-
cially the authors of books dealing with the convergence analysis of eigenvalue
problems) do not use the term “dominance ratio” at all. In the author’s feeling
the term “subdominance ratio” for ¢ seems to be more appropriate because
o increases with the absolute value of the largest subdominant eigenvalue, and
the dominance of the principal eigenvalue decreases.

Since the convergence to the dominant eigenvalue by the power method is
geometric in the subdominance ratio o, then by an analogy to the analysis of
iterative methods for solving linear systems of equations one can define the
(asymptotic) rate of convergence as

(24) R(®)=-Ino,

which is a useful measure for the speed of convergence to the dominant eigen-
value of a given matrix & in the power method.

Referring back to the SOR method, we find it convenient to first consider
the behavior of the eigenvalues v; of %, as a function of w for the case of
2-cyclic consistently ordered nonsingular matrices A =D —L—U of (1), where
D, L, and U are nonsingular diagonal, strictly lower triangular and strictly
upper triangular nonnegative matrices, respectively. As is well known [1], the
eigenvalues v; of %, are related by (8) to the eigenvalues A; of the Gauss-
Seidel iteration matrix %, the special case of .%, with w = 1. The matrix
A has at least half the eigenvalues equal to zero, and the remaining ones are
positive and real, and such that

(29) 1>p(A)=A > >> .

In the analysis of convergence properties of the SOR method, it is very useful
to investigate the behavior of the roots of (8),

1
(26) vt v = 3 [a)zli + \/aﬂli[aﬂl,- —4(w-1D]| - (w-1).
Thus, when w =1, it is clear that v} =4, and v, =0. As w increases from
unity, v} and v; are decreasing and increasing functions of w, respectively,

until w?A; — 4(w — 1) = 0, which occurs when

2

1+
and both roots coincide with the same value, that is, v;" = v = ®; — 1. For
@ > @;, the roots v;* and v, become complex conjugate pairs and increase,
the absolute value being w — 1. It is obvious that, for
_ 2

1+v1-4 ’
p(Z,) = v{ is a real and strictly decreasing function of @ while for W, <
w <2 one has p(&,) =|w-1]|.

However, we should add a note about negative eigenvalues v; which may

exist. The matrix %] has s (usually half of n) eigenvalues positive and n — s
zero. These positive eigenvalues A; give rise to the roots v;" while the zero

(27) w = ;

1<w< o
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Ficure 1. The behavior of v and g, vs. @

eigenvalues A, give rise to the roots v;” with w = 1. If 2s < n, then there
are zero eigenvalues A;, where 2s < j < n, which satisfy also the relation (8);
hence the corresponding eigenvalues v; = —(w — 1) are negative forall w > 1.

The typical behavior of the eigenvalues v; of %, versus w is shown in
Figure 1 for the example in which the three largest eigenvalues of £ are 4,
0.98, A, = 0.94, and A3 = 0.9, and the subdominance ratio g, = 42/4;
0.9592 . As can be seen from Figure 1, there exist only two positive eigenvalues
v and vf for @3 < w < @, only one v for @, < w < Wy, and for
® > @, all eigenvalues v; are complex (and negative if they exist) with the
absolute value equal to w — 1.

It is obvious that the subdominance ratio g, for the SOR matrix %4, is
a function of w and 6, = 0, = A/4; when w = 1. For 1 < @ < @3,
0, = 2/ is a strictly decreasing function as w increases from unity (because
vy = v; decreases much less rapidly than v, = v;") and at

_ 2
w = = e—m
2 1+vV1- 22
achieves its minimum G, = V;/v; = (02 — 1)/v,. For @, < @ <@, 0, =
|w—1|/vy is astrictly increasing function of @ and forall @, <w <2, g, =1
because all eigenvalues v; have the same absolute value equal to |w — 1.

In the example shown in Figure 1, the dashed curve illustrates the behavior
of o, versus w, where the minimum &, = 0.6639 occurs at @, = 1.6065.
In terms of the rate of convergence the theoretical coefficient of efficiency
_R@)

R(a1)
is equal to 9.84. Thus for this example the computation of p(.-%,) by means
of the power method with @ = @, is asymptotically about 10 times faster than
with w = 1.

(27a)

(28) E,
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2.3. The Sigma-SOR algorithm and computational strategy. The observations
in the previous subsection show the existence of the minimum value &, < g
and moreover they allow us to precisely identify its locality which occurs at
w = @, minimizing the value of the subdominant eigenvalue v, . The question
now arises whether there exists a mathematical basis for determining the value
of 7, in dependence on g, = A,/A;. The following theorem gives an answer
to this question.

Theorem. Let v; be the eigenvalues of the n x n SOR iteration matrix
Z, = (D - owL)"[wU - (w - 1)D]

and let J; be the eigenvalues of the Gauss-Seidel iteration matrix

F=D-L)"'u
If the eigenvalues of both matrices are related by

1 [vi+o—1]
b [t
and A has only nonnegative real eigenvalues such that
(30) 1> >4 >A3>---,
then the subdominance ratio o, = v,/v, of %, achieves its minimum G, =
U, /vy with
2 2

T 1+V1=4, 1+VI-ah
and is defined by the following formula

2 1= 1-vVI-0
1+vT-0a 1+vVi—a,’

(31) ' W=,

(32) Ty =

where a; = Ay /A .
Proof. By using (29), one obtains that

—17? 1ot ]?
(33) Ul:fﬁ:_'j_l[ﬂzia’__l_]:w___"zj
M nlin+to-1 1+aw“’yz
or equivalently
2
1 [0+ 2
(333) g = a [1_-}-_("_7_1-_1— .

The proof follows immediately from a close inspection of (33). As was al-
ready stated, g, is minimized when w = @, and its value is g, = 7, = 7, /v;,
where 7, = @, — 1. Hence, for w = @;, (33) reduces to

2 2
(34 0 =0 | e |
and has the solution
E___Z___l_l—\/l—a'l
w_1+\/1—0'1 _1+\/1—0'1.

This completes the proof of the theorem. 0O
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It is necessary, however, to make some comments on the above result, because
(34) has two roots G, < 1 (corresponding to the above result) and 7, > 1.
Since with @ = @, the matrix ., has only four real eigenvalues (see Figure
1) such that v} > v =v; =7, =m, -1 > v >0, then for g, < 1

— Uy 2 — Uy _ 2

a‘”_uf“_1+\/T——al 1<1 and U“’_ul‘_l—\/T—_al I>1.
But both 7; and v,  are subdominant eigenvalues and therefore the fact that
7, > 1 has no practical significance.

The most interesting conclusion from this theorem is the fact that the mini-
mum values of both spectral radius and subdominance ratio for the SOR iter-
ation matrix are governed by the same formula (see (10) and (32)). In other
words, for the same values of both p(4) and o, the quantities p(-%,) and g,
achieve the same minimum value but with different values of w. It is evident
that replacing p(%), p(-%), and E, in Table 1 by 0,, G, and E, (defined
by (28)), respectively, the data of this table illustrate also the efficiency of the
power method in the asymptotic range as in the case of the SOR method.

Thus, the result of this theorem is of fundamental importance in the compu-
tational strategy for a “rapid” estimate of an “accurate” value of the optimum
relaxation factor wep; in the SOR method.

The algorithm for determining ey, called the Sigma-SOR algorithm, is
based on the following computational strategy. Assume that A* and ¢*, ap-
propriate estimates for 4; = p(¥]) and o, respectively, are known. Using

2
T 1+V1=—g*A*’
we can obtain v* = p(£,-) by the power method iteration until a required
convergence criterion is satisfied. Then from the relation (29) one obtains

N

(35a) w*

1 [v*+w*-1 2
(35b) A= oy [T] )
which allows us to determine
2
35¢ 0= ——,
(35¢) YTy viea

an a priori “accurate” estimate for wqp . Thus, the accuracy of wep is condi-
tional to the computation of an accurate value of v*.

As is demonstrated in numerical experiments given in the next section, the
above algorithm, even with crude approximations A* and o*, is very efficient
and strongly competitive with the SOR adaptive procedure [1] when p(.#]) is
very close to unity (0.999 < p(#A) < 1).

Estimates for o* approximating g, can be obtained by observing the decay
rate of some quantities, for instance

(t+1) 10
@y _ 1A |
(36) A FIOB T

or ratios of differences between the components of successive eigenvectors in the
iteration process of the power method (19), (20), using a suitable norm (see, for
example, [4], where the term dominance ratio is used for o). As follows from
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(18), for each jth nonzero component z; of z approximating the eigenvector
corresponding to the dominant eigenvalue in the power method, we have that

(t+1)
A a (u ).+ (e(’+1))~]
(t+1) _ 7J — 1\B1)j J
e A Ay
where
n l t
(38) €)=Y (£) atw),

i=2
Substituting (37) into (36), one obtains

S — @(un); + (D), [(e(’“))j —2(e®); + (e(“”)j]
Coai(wy)j+ (e®); [(e®); —2(et=D); + (et=2); ]’

and for ¢ sufficiently large, a;(u;); > (e®);, so that

o (D), —2(e); + (1)),
(e®); — 2(et=D); + (e=2));

Assume now that for any ¢’ > 1

(39) gt+D

¢ N A
(40) (j:—f) ar(wp); > (j:—I) ai(n;); forall3<i<n.
Equation (38) can be written in the form
(1) 2\ a(t)
(41) (e); = (/1—1) a(wp); + (&),
where
n l t
) @ =3 () atw);
i=3

Substituting (41) into (39) yields
t t—1 t—2
2[(8) -2(8) 7+ (B)] antua)s + @), - 2600), 4 @0,

[(%f)t -2 (%)H + (%)1_2] ax(W)j + (80); — 2(8¢=D); + (8-2)); '

But when ¢ > ¢, the relation (40) implies that (&¥); becomes sufficiently
small, and it can be concluded that
(43) g+ 22 _ o
A1

In the calculation of p(#]) (or p(%,)) by means of the algorithm of the
power method defined by (19)-(22), the notation Ay = p(&A) (or vy = p(Z%))
corresponds to using the maximum norm || - ||, and Ag = p(&A) (or vg =
p(Z,)) corresponds to using the Euclidean norm ||-||, in the scaling procedure.
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With these notations,
| ). t+1) (t)l

A0 — A4V
(t+1) z)
gt —ap)

g =201
Usually, the convergence behavior of both Ay and oy have a monotone de-
creasing character, whereas for Ax and or it was observed that they first in-
crease and then (mainly for Ag) slowly decrease as the number of iterations
increases.

In the case of using the Euclidean norm for scaling purposes, the following
two additional measures for ¢ can be used:

(44a) AR

1
(44b) ot =

1)
(440) St _ LIYE oo = ||y">||oo|
EM
| ”yE floo — ”yE ||<>0|
and
1) -1
(44d) S _ |||y’+ — ¥ 2 = Iy’ — g "l
EE 1 1 -2
90 38— o T~y Dl

where the successive eigenvectors y(’“) , yg) , yg b , and y’ ) are generated
by (19)-(22) with using the Euchdean norm for scahng

As demonstrated in numerical experiments, the most rapid convergence is
observed for ogg with a monotone increasing character, which provides certain
values estimating the true g; from below.

As can be seen from Figure 1 the behavior of o, near @, is similar in
nature to the behavior of p(.%,) near @;. From an inspection of the slope of
the curve for ¢, near @,, it follows that errors with underestimating @, give
larger values of ¢, than errors (comparable in size) with overestimating @, .
In the range 1 < w < @,, the value of ¢, can be determined from (33) in
dependence on g, and (w—1)/v, (or (w—1)/v, in the case of (33a)), and in
the range @, < w < @y, it is defined by |w — 1|/v; .

Thus, from the viewpoint of obtaining the maximum rate of convergence in
the power method, overestimating @, is less dangerous than underestimating
@, by the same amount, but as o, approaches unity, this becomes a more
important problem because underestimating @, drastically decreases the rate
of convergence.

On the other hand, however, underestimating @, may be attractive for ac-
celerating convergence by the use of the Aitken §2-process [5]. This procedure,
known also under the name of Aitken extrapolation, is a useful tool for improv-
ing convergence, and can be used for any process converging linearly (i.e., as in
(14), z0 = £2(-D). In the case of the simple power method, the convergent
sequence {AV} for the dominant eigenvalue can be transformed into a more
rapidly convergent sequence {A()} by using

( A= 2) _ A= 1) )

A0=2) _22(=1) 1 A0
This process will be most effective if both eigenvalues v; = v and v, = v; are
real and well separated from v3 = v; . As can be easily concluded from Figure 1,

(45) A0 = 22 _
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this occurs when w is close to @3 , which minimizes v; forall 1 < w < @; and
provides the best separation of v; and v, from v;. The distance of separation
is a decreasing function as @ increases for @3 < w < @, and vanishes for
W, < w < w; because in this region all subdominant eigenvalues have the same
absolute value. Thus, the use of ogg, providing an underestimated value of o,
can give some advantages in the form of an increased rate of convergence when
the Aitken extrapolation is applied. This aspect will be discussed and illustrated
by numerical results in the next section.

In conclusion it should be stated that in the efficient use of the power method
for determining an accurate value of the optimum relaxation factor in the SOR
iterative method, the relaxation factors @, and @3 play an important role; @,
maximizes the rate of convergence in the simple power method, whereas @;,
providing the besi separation of two dominant eigenvalues from the remain-
ing subdominant eigenvalues of the SOR iteration matrix, maximizes the rate
of convergence of the Aitken extrapolation used as a practical technique for
improving the convergence of the power method.

3. NUMERICAL EXPERIMENTS

In this section the results of numerical experiments are presented for the
numerical solution of a two-dimensional elliptic equation of the form
(46) —D(x,y) ?Lz + %] +Z(x,y)p=s(x,y) forx,yeQ

b ax2 ayz b b b
with 5
p(x,y)=g(x,y) or B—S =g(x,y) forx,ye€oQ,
where Q is an open bounded region with boundary 9Q, » is the exterior
normal, D(x, y) >0, and X(x, y)>0.

The standard finite difference discretization of (46) in a spatial mesh imposed
on Q leads to a system of linear equations of the form
(47) Ap=b,
where the components of ¢ approximate the values of ¢ at each mesh point
(x, y). In the case of the natural ordering of mesh points for the standard five-
point difference operator, the n x n coefficient matrix A has only five nonzero
diagonals forming a tridiagonal block structure suitable for the implementation
of the 1-line SOR algorithm, and is 2-cyclic consistently ordered [1].

Five test problems taken from the literature [6, 7] are considered with dis-
continuous coefficients D and X, but chosen to be constant in each subregion
Q, , and different boundary conditions on 9Q for uniform and nonuniform
mesh structures.

Test Problem 1. This example, obtained by assuming D=1 and Z=0 in Q,
the unit square (0, 1) x (0, 1), the Dirichlet boundary conditions ¢ = 0 on
0%, is usually used as a model problem in the analysis of numerical solutions
of elliptic-type problems. A square mesh with width h = zl; yields n = N?
mesh points, which is also the order of A. We assume n = 48 x 48 = 2304, as
in Problem A in [6].

Test Problem 2. In this problem (Problem B in [6]), whose domain and coeffi-
cients are depicted in Figure 2 (the numbers on the x-axis and y-axis in this
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and subsequent figures are indices of mesh lines, not values of x and y), there
is a discontinuity of coeflicients in the vertical direction, and mixed boundary
conditions are used on 9 as shown in Figure 2. The number of mesh points
is n =96 x24 = 2304, where A =1 is assumed in both horizontal and vertical
direction.

Test Problem 3. In this problem (Problem C in [6]), with n = 24 x 24 = 576
and discontinuous coefficients, a nonuniform mesh is used. The mesh division,
assumed the same in both horizontal and vertical direction, corresponds to the
mesh division used in Problem 5 given in Reference 7 of [6]. The domain,
coefficients and the mesh division are depicted in Figure 3.

Test Problem 4. This problem, taken from [7] (and analyzed in [8]), has a
strongly discontinuous D, and #n = 48 x 48 = 2304 in the square mesh shown
in Figure 4.
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Test Problem 5. This problem, also taken from [7] (and analyzed in [8]), has a
slightly modified mesh division, giving n = 42 x 42 = 1764, in order to keep
the number of horizontal lines divisible by 2 for convenient use of 2-line SOR
algorithms. The domain, coefficients and mesh division (assumed the same
in both directions) are depicted in Figure 5. In [7, 8] a uniform mesh with
h =0.05 was used, giving the number of mesh points # = 43 x 43 = 1849.
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For solving (47) in the above five test problems, the following line algorithms
of the SOR iterative method are used [1, 6]:

1. SLOR—1-line system,

2. S2LOR—2-line system,

3. S2LCROR—2-line cyclically reduced system.

In our computations for each problem it was assumed that s(x, #) =0 in
(46), so that the unique solution of each discrete problem is the null vector. All
components of the starting vector ¢(® were equal to unity, and computations
for each iterative method were continued until the maximum absolute value of
all components of the iterate () was less than a prescribed number &. Thus,
the stopping criterion

(48) e = ¢ < e

can be considered as the most reliable measure of the error vector in estimating
the accuracy of the solution.

All computations were carried out on a PC computer in single-precision FOR-
TRAN for the SOR iteration (including the calculation of the coefficient matri-
ces A), and in double-precision FORTRAN for the power iteration. The results
of computation are shown in Table 2 (next page).

The accurate value of A; was obtained with @ = 1 when the stabilization
to nine significant figures of Ag was observed in the power method ((19)-(22),
using the Euclidean norm); Iz and I, are the numbers of iterations observed
in the power method without and with using the Aitken extrapolation (45),
respectively; Is is the number of SOR iterations required to satisfy the stopping
criterion (48) for two successive iterations with @; as the optimum relaxation
factor and for two values ¢ = 10~% and ¢ =1078.

The results obtained when using the SOR adaptive subroutine [1, pp. 368-
372] are shown under items 6, 7, and 8 of Table 2.

The data given in items 9-15 are related to computing the accurate value of v,
(with stabilization to nine significant figures) in the power method with the value
of w = @, determined from (27a) where 4, = {oj[accur]} x4; and a;[accur],
approximated by ogg (defined by (44d)), was obtained with the calculation of
A1 initem 1 for w = 1. Hence, by (8) and (27), the accurate value of @; can
be found. Provided o; is known, the accurate value of the optimum relaxation
factor wept = @; can thus be efficiently computed. Comparison of the number
of iterations Ig (or I,) given in items 2 and 13 allows us to illustrate the
efficiency of the power method used in the case when w = @, for each test
problem. The values of o5 given in items 14 and 15, and computed from
(W, — 1)/v; and (32), respectively, indicate the consistency of the results in all
cases, except for Test Problem 5 solved by the SLOR iterative method, where
o1 = 0.9944 was found to only four significant figures.

The results obtained for the Sigma-SOR algorithm are given in items 16—
27. The subdominance ratio o, , approximated by ogg is estimated once the
stopping criterion

(49) 60 =gl — gl <5 =103

has been satisfied in two successive iterations in all test problems; Igg is the
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respective number of iterations required. As can be seen in Table 2, the above
stopping test provides an underestimation of o¢; in all cases except for the
S2LCROR method in Test Problem 3, for which ogg gives a slight overesti-
mation of ;. In computing @;[est] according to (27a) it was assumed that
Afest] = ogpA” , where ") is the approximation of 1, obtained at iteration
t = Igg and using Aitken extrapolation. In item 20 the value vg approximating
v; with @ = @,[est] is obtained by satisfying the stopping criterion

(50) o0 =y — i V<o =10"%,

which is achieved after Ig iterations without Aitken extrapolation The corre-
sponding values of Ag and wg are given in items 22 and 23. In items 24-27
the same quantities are given when Aitken extrapolation is used. For the SLOR
method in Test Problem 1 there is a small difference between wg and wa = @,
but in all remaining cases it is observed that wg = ws = @; and I, is smaller
than Iz, as @, is more underestimated by @,[est], because in this case the
separation of A; and A, from the remaining eigenvalues increases and Aitken
extrapolation becomes more efficient. In the case where the w used is close
to the true value of @, (item 11), this separation of 4; and A, from the re-
maining eigenvalues disappears and the numbers of iterations /g and I, are
comparable (item 13).

Thus, with the choice § = 10~3 for ogg and 6 = 108 for v, and with
the use of Aitken extrapolation, the Sigma-SOR algorithm provides an estimate
for wa = @) = wep to six significant figures in all considered test problems,
with Igg + I, (items 17 and 25) being the number of iterations required for
obtaining this estimate.

In all eigenvalue calculations carried out by means of the power method, all
components of the starting vector z(® were taken to be unity.

The behavior of og, oum, 0gg, and opm (defined by (44a, b, ¢, d)), repre-
senting different measures for g, versus the number of iterations is depicted
in Figures 6-10 (see pp. 636-638) for all five test problems solved by means
of the SLOR iterative method. As can be seen in these figures, ogg converges
most rapidly to o;. (The true value of g, given in item 9 of Table 2 is marked
in the figures by a straight line parallel to the x-axis.) In the initial phase of the
iteration process, ogg provides estimates of g; from below, which are helpful
in using the Aitken extrapolation.

In the convergence behavior of oy, the decreasing character is observed
as the number of iterations is increasing, but there are strong local variations
(occurring sometimes also for ggyp) visible in all figures, except for Test Problem
2 depicted in Figure 7. In the case of Test Problems 1 and 4 (Figures 6 and 9),
it can be observed that for our starting vector z(? , all of whose components are
equal to unity, all measures considered for o, tend first to A3/4; and then to
o1 = Ay/A; as the number of iterations increases. This is due to the fact that for
the assumed starting vector z(® the inequality a3 > a, in the representation
(16) implies that in spite of i, > A3, the inequality |a3zA}| > |a45| holds
for appropriate “small” values of ¢, so that the inequality (40) is not satisfied
because ¢ < ¢’ (where ¢ may not necessarily be very small if ¢ is very large,
as occurs in the case of Test Problem 4) and ¢ will converge to A3/4,, the
dominant term in this range of ¢-values.
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FIGURE 6. Test Problem 1

M: op (eq. (44a)); E: o (eq. (44b)); EM: ogy (eq. (44c)); EE: ogg (eq. (44d))
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FiGURE 7. Test Problem 2

M: om (eq. (44a)); E: o (eq. (44b)); EM: ogym (eq. (44c)); EE: ogg (eq. (44d))
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M: oy (eq. (44a)); E: og (eq. (44b)); EM: ogy (eq. (44c)); EE: ogg (eq. (44d))
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M: oy (eq. (44a)); E: gg (eq. (44b)); EM: opm (eq. (44c)); EE: ogg (eq. (44d))

Moreover, it is interesting to notice that the convergence behavior of ogg
and oy has a continuous character when passing from convergence to 43/4,
to convergence to A,/A;, whereas for g and ogy strong deviations similar to
discontinuities are observed.

It is a well-known fact that for the SOR iterative method the optimum relax-
ation factor we, = @, which maximizes theoretically the rate of convergence
does not provide the best results. In practice, one observes the existence of
a best relaxation factor wp (slightly greater then @) which minimizes the
number of iterations for the required accuracy of the solution. Unfortunately,
there is no rigorous analysis in the literature explaining the reasons for this wp
and predicting its value. From numerical experience, it can be concluded that
wp 1is a function of wep and the required degree of accuracy of the solution.
One observes the following empirical formula:

(51) In(wg — 1) = %m(wom— 1),

where the correction coefficient ¢ = 1.02 when using ¢ = 107%, and ¢ = 1.01
when using ¢ = 10~8, provides a quite satisfactory estimate for wp. The use
of wp obtained from the above formula allows us to improve the convergence.
Usually, the number of iterations obtained with wp is about 15% less than that
obtained with gy for slowly convergent problems. The results obtained with
wp for two different stopping criteria are given in items 28-31.

The deterioration in the rate of convergence resulting from using an inaccu-
rate value of wop is strongly dependent on the closeness of p(-£]) to unity,
and it seems to be reasonable that this dependence should be taken in consid-
eration when estimating wqy a priori. The nature of calculating p(£) by
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FIGURE 11. Test Problems 1 and 2

means of the power method is such that the first few significant figures of p(-#)
are rapidly fixed at the beginning of the power iterations, whereas convergence
to the next figures begins to be governed by the subdominance ratio o;. The
behavior of p(-#) versus the number of power iterations for Test Problems
1 and 2 is depicted in Figure 11 where the dashed curves (denoted by la and
2a) correspond to using Aitken extrapolation for accelerating the convergence
in the power method.

In the determination of oy based on a priori estimates for p(), the
application of the stopping criterion

(52) 00 =13 — 247 < = 10711 = A0,

where AX) is an approximation of 1; = p(.4]) in the power iteration ¢ using the
Aitken extrapolation, yields results strongly competitive with the SOR adaptive
procedure [1] when the values of p(.#) are close to unity.

In items 32-35 of Table 3 (next page) results are given for all test problems
solved by the SLOR method in which the estimate of wgp is based on the
computation of 4; = p(-£]) by using the stopping criterion (52); the remaining
items quoted from Table 2 are given for comparison purposes.

Table 4 summarizes the results obtained for different computational strate-
gies implemented in four programs used for solving the test problems. The data
given in this table represent the numbers of iterations required to obtain the so-
lution which the stopping criterion |[¢{)|l < 1076 satisfied for two successive
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TABLE 3. Results obtained with using the “dynamic” stopping
criterion (52)

Test Test Test Test Test
Problem 1 Problem 2 Problem 3 Problem 4 Problem S

1. A laccur] .991815239 .998951986 .999961143 .999983580 .999956430
2.1, 650 462 571 329 145
3. Z»‘ 1.83407 1.93728 1.98761 1.99193 1.98689
a. rslczlo’el 106 269 1347 2048 1281
6. .. 1.83328 1.93587 1.98765 1.99186 1. 98700
P
7 ls(c-IO-e] 127 343 1853 3090 1738
17. 1, 39 16 22 25 22
25. 1 100 67 76 69 27
28. u, 1.83704 1.93847 1.9878S 1.99209 1.98715
29. l-[c=10'°l 99 229 . 1138 1736 1077
32. Al(3=10':(1-xl)1 .991816463 .998929054 .999960952 .999983490 .999956396
3.1, 35 96 155 101 18
34. Z;[“ 1.83408 1.93662 1.98758 1.99191 1.98688
3s. ls(c-to"l 106 283 1365 2077 1286
TABLE 4. Comparison of computational strategies
Program Test Test Test Test Test
Hethed No. Problem 1 Problem 2 Problem 3 Problem 4 Problem S
i Al 127 343 1853 3080 1738
1-line Bl 106 (35) 283 (96) 1365 (155) 2077 (101) 1286 (18)
c1 99 (138) 229 (113) 1139 (98) 1736 (84) 1077 (49)
A2 83 208 1132 2047 1154
2-1ine B2 72 (21) 193 (s8) 866 (74) 1501 (S5) 890 (8)
: c2 66 (82) 160 (81) 740 (93) 1284 (69) 759 (80)
i D2 61 169 752 - -
A3 70 195 997 1705 925
2-1ine H
cyclically | B3 63 (17) 162 (45) 733 (70) 1270 (43) 775 (4)
reduced c3 s8 (82) 136 (87) 634 (75) 1103 (62) 654 (99)
H D3 52 145 681 - -

iterations. The numbers given in parentheses correspond to the number of
iterations required to compute the relaxation factor @ for a given strategy.
The A program uses the SOR adaptive procedure [1]. In the B program
the estimate of wep is based on computing 4; = p(-#]) by using the stopping
criterion (52) and Aitken extrapolation as an acceleration procedure. The C
program uses the Sigma-SOR algorithm for computing wp . The numbers at-
tached to the programs correspond to the applied solution methods, which are
specified in the first column of the table. In addition, the results from [6] are
quoted under the D2 program, which uses the 2-line cyclic Chebyshev method
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applied to the original system, and the D3 program, which uses the 2-line cyclic
Chebyshev method applied to the cyclically reduced system. Both these pro-
grams were used in [6] for solving Test Problems 1, 2, and 3 only; the results
from these programs for Test Problems 4 and 5 were not available.

4. CONCLUDING REMARKS

From the practical point of view, the best solution method is one that for the
required accuracy provides the solution with the minimum total arithmetical
effort, which is what mainly determines the cost of computations. In the case
of the SOR iterative method, the arithmetical effort is roughly proportional to
the number of SOR iterations required for obtaining the solution with a given
degree of accuracy, and the number of power iterations required for estimating
the appropriate relaxation factor w. Since the number of arithmetical opera-
tions per iteration in both SOR and power methods are comparable (the power
method defined by (19)-(22) needs a few additional arithmetical operations for
computing the Euclidean norm and for division by this norm), the efficiency of
the assumed solution method can be measured in terms of the total number of
iterations. Moreover, this total number of iterations, as well as the fraction of
both SOR and power iterations, may change from problem to problem.

The number of SOR iterations is roughly inversely proportional to the rate of
convergence where the deterioration of the convergence rate resulting from using
an inaccurate value of wqp is strongly dependent on the closeness of p(-#])
to unity. The speed of convergence in the power method is governed by the
value of the subdominance ratio g, , which determines the rate of convergence,
similarly as p(<£,) does in the SOR method, and the number of power iterations
is also strongly dependent on the closeness of g; to unity or on the degree of
separation of two dominant eigenvalues from the remaining ones, if the Aitken
extrapolation is used. Thus, it seems that the selection and application of the
iterative strategy for solving different problems should be based more on the
analysis of results obtained in practice than on theoretical considerations.

In the test problems considered in this work and representing a class of nu-
clear engineering problems, we have

0.978 < p(-£) < 0.99999 and 0.96 < gy < 0.995,

so that the analysis of numerical results obtained for these problems should also
be conclusive with solving large-scale scientific problems.

It seems that in the selection of computational strategy in solving elliptic-
type problems, the SOR adaptive technique (implemented in the Al, A2, and
A3 programs) is favored in the literature [1, 2, 3, 4, and 6] as a more efficient
solution method in comparison with the computational strategy based on a pri-
ori estimate of wepr . However, the numerical experiments on all test problems
considered here show that the B2, B2, and B3 programs, in which an a priori
estimate for wep is obtained by calculating A; = p(-£]) with the power method
accelerated by Aitken extrapolation and using the stopping criterion (52), are
competitive with the A1, A2, and A3 programs, especially when p(#]) is close
to unity.

As can be seen in Table 4, in the case of Test Problem 1 the B1 program
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needs 14 iterations more (that is, about 10% more) than the A1 program. But
for Test Problem 4 the difference is equal to 912 iterations in favor of the Bl
program, which corresponds to about 40% more iterations in the Al program.
Since both test problems have the same size (2304 mesh points), the advantages
resulting from solving Test Problem 4 by the B1 program in comparison to the
Al program can be estimated by this difference of iterations, which in this case
is about seven times greater than the total number of iterations required for
solving Test Problem 1 by the Al or B1 programs.

Suppose that both problems are solved with an a priori estimate for wqp
based on using the accurate value of p(£]) given in item 1 of Table 3 and
obtained with 650 and 329 iterations (item 2 of Table 3) for Test Problems 1
and 4, respectively. Then, in the case of Test Problem 1 the solution is obtained
with 106 iterations (the same number of iterations as for the B1 solution), but
the total number of iterations is increased to 755, that is, 615 iterations more
than for the B1 solution given in Table 4. For Test Problem 4 the total number
of iterations (accompanied by a small decrease of SOR iterations) is increased
to 2377, that is, 199 iterations more than for the B1 solution but still much less
than for the Al solution. A similar behavior can be observed when comparing
the results of Table 4 given for the A2 and A3 programs with those given for
the B2 and B3 programs, respectively.

From the above comparisons, it is apparent that in the solution method based
on a priori estimates for wep: , the main difficulty lies in the choice of the degree
of accuracy appropriate for estimating p(-4]) in a given problem; it is probably
for this reason that a priori estimates for wgy are given less attention in the
literature. However, as can be concluded from the results given in Table 4 for
the B1, B2, and B3 programs, the simple trick of using the stopping criterion
(52) conditioned by the closeness of p(.4]) to unity allows us in some sense
to avoid this main difficulty and to make a priori estimation of w,y a more
useful computational technique and competitive with the solution method based
on using the SOR adaptive procedure [1], especially for problems in which
the values of p(#) are very close to unity. In the range 0.98 < p(H) <
0.999, represented by Test Problems 1 and 2, the SOR adaptive procedure
discussed extensively and illustrated numerically in [1] just for this range of
values of p(%]), provides solutions with a smaller number of iterations than
in the case of using a priori estimates for w,p based on the stopping test (52).
But as was demonstrated above for Test Problem 1, the advantages resulting
from decreasing the total number of iterations have no practical significance
because in this range of spectral radii, the deterioration of the convergence
rate caused by using an inaccurate value of oy does not strongly change the
number of iterations. For the class of problems with 0.999 < p(.#) < 0.99999,
represented by Test Problems 3, 4, and 5, the efficiency of solution becomes
more sensitive to the accurate value of wop as p(-£]) approaches unity, and
the computational strategy based on determining an accurate value of wopt
prior to the SOR solution is much superior than the SOR adaptive technique,
as can be seen in Table 4. In this case, the last estimate for wqp in the SOR
adaptive technique is most time-consuming because g, becomes close to unity
(see Figure 1). It is interesting to note that in the case of Test Problem 5
extremely small numbers of iterations are required to a priori estimate wqp; in
the B1, B2, and B3 programs.
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In the C1, C2, and C3 programs, the Sigma-SOR algorithm defined by (35a)-
(35¢) is used for the a priori determination of ey, Whose value to six sig-
nificant figures was computed with the choice of § = 10~3 for approximating
o1 by ogg and 6 = 10~8 for approximating v* by v, , and using the Aitken
extrapolation. The detailed results are given in items 16-27 in Table 2. In SOR
iterations the best relaxation factor wpg is used which is computed from the
relation (51) and is given in item 28 of Table 2. As can be seen in Table 4,
the Sigma-SOR algorithm needs about 100 iterations for computing wep; to six
significant figures in all test problems. For Test Problem 1 the number of iter-
ations required to obtain this accurate estimate for wep; exceeds the number
of SOR iterations, so that the total number of iterations in the C1, C2, and C3
programs is about two times greater than in the A1, A2, and A3 programs, re-
spectively. However, as p(.%]) becomes close to unity in the next test problems,
the efficiency of the computational strategy with the Sigma-SOR algorithm is
strongly improving in comparison to the former solution methods. Moreover,
it is observed that in the case of Test Problems 3, 4, and 5 solved by the C1, C2,
and C3 programs, the total number of iterations (needed for estimating wp and
obtaining the solution) is smaller than the number of SOR iterations observed
when using the accurate value of wqp = @; (items 3 and 4 in Table 2).

The results for Test Problems 1, 2, and 3 obtained in [6] by means of the
D2 program, using the 2-line cyclic Chebyshev method applied to the original
system, and the D3 program, using the 2-line cyclic Chebyshev method applied
to the cyclically reduced system, are given additionally in Table 4. From an
inspection of these results, it is apparent that the solution efficiency of the D2
and D3 programs, which is the best in the case of Test Problem 1, decreases
when going to Test Problems 2 and 3 in comparison to the convergence behavior
of the C2 and C3 programs, respectively. For Test Problem 3, the C2 and C3
programs provide solutions with the total number of iterations somewhat greater
than in the D2 and D3 programs. However, as follows from an exact calculation
of the number of arithmetical operations for the obtained solutions, the C2 and
C3 programs need somewhat less total arithmetical effort than the D2 and D3
programs, respectively. This is due to the fact that in each iteration of the
D2 and D3 programs, except for the arithmetical operations related with the
solution, additional arithmetical operations are required for the computation
of the Euclidean norm, whereas in the C2 and C3 programs only about 10%
of the number of iterations (the numbers given in parentheses in Table 4) are
related to those additional computations.

Thus, it can be concluded from the results obtained for our test problems, that
the Sigma-SOR algorithm based on the important theoretical result given by (32)
is a useful computational tool for the calculation of an accurate a priori estimate
of @opt , Which in turn allows to determine the best relaxation factor wp from
(51) when solving problems for which 0.999 < p(.#]) < 1. In comparison to the
SOR adaptive procedure, the efficiency of the Sigma-SOR algorithm increases as
p(A) and g, become closer to unity; and it seems that for the range 0.999 <
o; < 1, the Sigma-SOR algorithm should be extremely efficient. In the case
when the matrix problem (47) is to be solved many times for different vectors
b, the advantages resulting from using wp obtained by means of the Sigma-
SOR algorithm are obvious.
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Finally, it should be mentioned that the subsequent updated values of w; in
the SOR adaptive technique are underestimated with respect to wep , but this
underestimation drastically decreases the rate of convergence as p(-%#]) becomes
close to unity, and therefore the efficiency of the SOR adaptive procedure also
decreases when p(%4]) approaches unity.
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