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RECURRENCE FORMULAS
FOR MULTIVARIATE ORTHOGONAL POLYNOMIALS

YUAN XU

ABSTRACT. In this paper, necessary and sufficient conditions are given so that
multivariate orthogonal polynomials can be generated by a recurrence formula.
As a consequence, orthogonal polynomials of total degree n in d variables that
have dimII¢ common zeros can now be constructed recursively. The result is
important to the construction of Gaussian cubature formulas.

1. INTRODUCTION

It is well known that every sequence of univariate orthonormal polynomials
{pn}2, satisfies a three-term relation

(1.1) XPn(X) = nPns1(X) + bupn(X) + An—1Pn-1(X).

Moreover, the Favard theorem states that if {p,} satisfies (1.1), then p, is
orthonormal if and only if a, > 0 (cf. [4, 20]). The relation (1.1) is also called
the recurrence formula, as it can be rewritten as

(12) Pust (%) = i(xpn(x) — bupa(X) = Gn1Par (X)),

and used to define p, recursively. In particular, for given {a,} and {b,} with
a, > 0, one can use (1.2) and p_, = 0, to generate a sequence of orthonormal
polynomials recursively.

For multivariate orthogonal polynomials the situation is much more com-
plicated. To state the corresponding theorem, we need some notations. Let
Np be the set of nonnegative integers. For n € Ny we denote by I1¢ the set
of polynomials of total degree at most n in d variables, and IT¢ the set of
all polynomials in d variables. Let .Z be a linear functional defined on II¢
such that #(g2) > 0 whenever g € II¥ and g # 0. Such an . is called
square positive. For convenience, we assume .Z(1) = 1 throughout this pa-
per. Two polynomials P and Q are said to be orthogonal with respect to &
if Z(PQ) =0. For each n € N, let r¢ = dimIl¢ — dimII¢_, = ("*+2-1),
Throughout this paper, the letter d is reserved for the number of variables or
the dimension. It is fixed and will be omitted sometimes.
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For a sequence of polynomials {P}’ ;."= | » Where P? is of total degree »n, we
use the vector notation

(1.3) Pu(x) = [P{'(x), P{(x), ..., PL(x)]".

For our convenience, we shall write {P,};2, instead of {P] ;';0;,“;0. If P=
(pij) is a matrix whose entries are polynomials in I1¢, we denote by Z(P) the
matrix (-Z(p;;)). We say that P, is orthogonal if its elements are orthogonal to
I1,_; . The matrix & (P,PI) is positive definite if P, is orthogonal, since .& is
square positive, and it is an identity matrix if P, is orthonormal. Throughout
this paper, the n x n identity matrix is denoted by I,, or simply 7. The
notation A: i x j means that 4 is a matrix of size i x j. For x € R? we write
X=()C1, ,Xd).

We now state the Favard theorem for the multivariate orthogonal polynomi-
als. This theorem is proved recently in [21, 22]; it improves upon a result of
Kowalski [6, 7] by removing one excessive condition in his theorem.

Theorem 1.1. Let {P,}2,, Po = 1, be a sequence in I1. Then the following
Statements are equivalent.

(1) There exists a linear functional which is square positive and makes
{P,}2, an orthonormal basis in TI .

(2) For n >0, 1 <i<d, there exist matrices A, ;: I'nXTyy1 and By ;2 rpx
rn such that the polynomial vectors P, satisfying the three-term relation

(1-4) xiPnzAn,iPn+l+Bn,i]Pn +A;{—l,iPn—la 1<i<d,
where P_; =0, A_; ;=0, and
(1.5) rank A, = rpy1, A, = (A,{,1| e |A,{,d)T.

This theorem shows that the three-term relation characterizes the orthogo-
nality. However, for d > 2 this theorem is not as strong as the classical Favard
theorem (d = 1). Actually, one direction of the theorem says that if there is a
sequence of polynomials P, that satisfies the three-term relation and the rank
condition, then it is orthonormal. But it does not answer the question when
and which P, will satisfy such a relation. The rank condition (1.5) implies that
there exist matrices D, ;: rp X rpy; such that

d
(1.6) > DI 4y =1,
i=1
where we may take (D] ,|---|DT ;) as the generalized inverse of A, . By (1.6)

and (1.4) we get
d d d

(1.7) Ppyr(x) = Y Dy i XiPa(x) = > Dy iBn,iPu(X) = ) Dy ;A1 iPr1(X),
=1 i=1 i=1

which is a recurrence formula. However, for given matrices 4, ; and B, ;, the
polynomial sequence {P,} defined by (1.7), P_; =0, and Py = 1, in general
does not satisfy the three-term relation, thus, is not orthogonal. Our main result
in §2 gives necessary and sufficient conditions on 4, ; and B, ; such that this
polynomial sequence is orthogonal. This enables us to define the multivariate
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orthogonal polynomials recursively, which is important in constructing {P,}
that has a maximum number of zeros. Here, zero of P, means the common
zero of the components in P, . It is known that P, has at most dimIl,_; zeros
([cf. [18]), and the Gaussian cubature of degree 2n — 1 exists if and only if the
corresponding P, has that many zeros ([13, 17]). We apply our results of §2 to
the construction of Gaussian cubatures in §3.

2. RECURRENCE RELATION

2.1. Main results. Let A, ;:r, x ryy; and B, ;: r, x r, be matrices that
satisfy the rank condition (1.5). Let DI it Tny1 X I'n be matrices such that
DI = (DI ||---|DI ;) is the generalized inverse of Ay,

(2.1 Df4, =1

We note that (2.1) is equivalent to (1.6). We now define a sequence of polyno-
mials {P,} by the recurrence formula

d
(2.2) Prp1(X) = D Dy iXiPn(X) = ExPy(X) = FyPyoi(x),

i=1

where P_; =0, Pp =1, and

d d
(2.3) E,=) DI B, and F,=)» Dl .AI_,

i=1 i=1
Our main result in this section is as follows.

Theorem 2.1. Let {Py}2, be defined by (2.2). Then {Py}2, satisfies the
three-term relation (1.4) if and only if By ; are symmetric, and
1° (rank condition).

(2.4) rank Ay ; = 1y, rank Ay = ri4q;
2° (commuting conditions).

(2.5) Ak, idks1,j = Ak, jAk+1,i 5
(2.6) Ak, iBis1,j + Bi,idk,j = Bk, jAk,i + Ak, jBr+1,i 5

T T
Aj_y i Ak—1,j + Bi,iBk,j + Ak, i
= ALy jAk-1,i+ Be,jBe,i + Ak jAL

for i#j,1<i,j<d,and k>0, where A_, ;=0.
Moreover, {P,} forms a basis for II.

(2.7)

Combining this result with Theorem 1.1, we can state the following theorem.

Theorem 2.2. Let {Px}2, be defined by (2.2). Then there is a linear functional
& that is square positive and makes {Py}32, an orthonormal basis for I if
and only if By ; are symmetric, Ay ; satisfy the rank condition (2.4), and
together they satisfy the commuting conditions (2.5), (2.6), and (2.7).

This theorem reveals one major difference between univariate and multivari-
ate orthogonal polynomials. Namely, the three-term relation in the multivariate
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case is different from the recurrence relation. For the recurrence formula to gen-
erate a sequence of orthogonal polynonmials, its coefficients have to satisfy the
commuting conditions. Nevertheless, the following observation seems to be
interesting. The commuting conditions are not needed in proving the Favard
Theorem, but they are essential for proving that under certain additional con-
ditions on the coeflicient matrices, the linear functional in Theorem 1.1 has an
integral representation with respect to a nonnegative Borel measure on R? [22,
25]. Actually, the reason that we call (2.5), (2.6), and (2.7) commuting con-
ditions is as follows. For a given sequence of polynomials that satisfies (1.3),
we can use the coefficient matrices 4, ; and B, ; to define a family of block
Jacobi matrices and consider them as linear operators defined on /2. These
conditions are the ones that make these block matrices commuting. Once these
operators commute, we can use the spectral theorem for a commuting family
of selfadjoint operators to establish the existence of the measure.

We note that if {P,}32, is only orthogonal instead of orthonormal, then
S, 'P, is orthonormal, where S, is a nonsingular matrix that satisfies S,S! =
Z(P,PI). Therefore, our theorem may be stated in terms of polynomials that
are only orthogonal. However, it has to be properly modified since the three-
term relation in this case takes a somewhat different form, with a matrix C,,T, i
related to A4, ; through S, , in place of A,{_l’i. Also, the commuting condi-
tions become more complicated. Nevertheless, it seems better to look at the
orthogonality of multivariate polynomials from the point of view of the poly-
nomial space Il being a direct sum of subspaces spanned by polynomials that
are components of P, . This is the point of view we have adopted in [21, 22].

We shall prove Theorem 2.1 in §2.3. In the next subsection we give some
preliminaries and study properties of orthogonal polynomials. We note that the
square positivity of . is not essential in most results of the next subsection,
where it can be replaced by the condition .Z(p?) # 0.

2.2. Properties of orthogonal polynomials. The basic properties of multivariate
orthogonal polynomials are studied in [21, 22, 24]. In particular, if {P,}3%,
is a sequence of orthogonal polynomials, then the coefficient matrices satisfy
the rank condition (2.4) [6, 21] and the commuting conditions [22]. So the
necessity of Theorem 2.1 is known. Here we prove several lemmas that will be
used in the proof of the sufficiency. These lemmas are about the properties of
the matrices in the three-term relation; they are of some interest in themselves.

For o = (ay,...,a4) € N¢{ and x = (x,...,x;) € R? we write x* =
x{t---x7¢. For n € Ng we denote by x" the r,-tuple {x*}j4=, € R™, where
the elements are numbered according to the lexicographical order in {a € N,
|a| = n}. We let L, ; denote the matrices of size r,_; x r, that satisfy

(2.8) L, x" = xx"1, 1<i<d.

Clearly, rankL, ; = r,—, and rank L, = r,, where L, = (L,{,1|~-~|L,{,d)T.
Moreover, the following identity holds:

(2.9) L LT, =1, 1<i<d.

Lemma 2.3. For ne€ Ny, 1<i<j<d, there holds
Ln,iLn+1,j = Ln,jLn+l,i~
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Proof. From (2.8) it follows that for any x € R¥
Ln,iLnpgy, X" = xixx"~V = Ly jLpyy X"

Since the rank of L, ;L,y1,j— Ly, jLnt1,; is at most r,_;, the desired identity
follows. O

We write
(2.10) P, = ann +Gn’n_1xn_l +Gn,n—2xn_2+"' ,

where G, ;: r, xr; and G, = G, , is called the leading coefficient of P,. Our
next lemma gives the connection between the leading coefficient of orthogonal
polynomials and the matrix A4, ; in the three-term relation.

Lemma 2.4. If {P,}3°, satisfies the three-term relation and Ay ; satisfy the rank
condition (1.5), then for all n >0, G, is invertible. Moreover,

(2.11) Ap,i = GyLyy,iGy}

n+1°
Proof. If P, satisfies the three-term relation (1.4), then the coefficient matrices
of x"*! on both sides of the three-term relation are equal. This leads to the
identity
(2.12) An,iGny1 = GuLny1,i, 1<i<d.
Therefore, it follows that
AnGpyy = diag{Gy, ..., Gp}Lpy1.

We now use induction on n. Since Py = 1, we have Gy = 1. Suppose that
G, has been proved to be invertible. Then diag{G,, ..., G,} is invertible, and
from rank L,,, = r,y; we have

rank(A4,Gpy 1) = rank(diag{G,, ..., Gy} Lny1) = I'nt1.
Therefore, by (1.5) and a well-known rank inequality [5, p. 13] we have
rank G, > rank(A4,Gpy ) > rank 4, + rank G| — rpy1 = rank G .
Thus, it follows that
rank G, = rank(4,G,y1) = ne1.

Hence, G, is invertible. The induction is complete. The identity (2.11)
follows from (2.12). 0O

Remark. To prove that G, is invertible for a fixed n, we need only to assume
that {P,} satisfies the three-term relation for 0 <k <n-1.

Our next lemma is a combinatorial identity that gives an interesting relation
among the r/,s. The lemma is known ([15, p. 8]; I thank Professor H. Schmid
for providing me with this reference), but for completeness we give a simple
proof here. The idea of this proof will be used in our further development.

Lemma 2.5. For n € Ny, d > 1, we have

. d d
(2.13) o= ;(_1)’”l <k>r,,_k,
where r, =0 for k <O0.
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Proof. Let A, = {a € N¢: |a| = n}, and A}, ; = {@ € N&: |a| = n, and
a; # 0}. Let u(#") denote the number of elements in a set .#". By counting
the number of integer solutions of |a| = n, we have u(A,) =r,, (M, =
Fne1> WM, iNAn j) =tn2y WA, iNn 0Ny k) = Fn3,.... From A =
M1 U---UA, 4 and the inclusion-exclusion principle

) = Y w )

1<i<d
Yo ulnin S )+ () A 00 A ),
1<i<j<d
the identity (2.13) follows. O
For any given sequence of matrices C;, ..., C;, where all C; are of size

sxt, we define a matrix Zc: dsx (g’)t as follows. Let Z; j:txds, 1<i,j<
d, i # j, be block matrices defined by

(2.14) Ei,j=(-10[C]]---|=CTl0]---);
i.e., the only two nonzero blocks are CJ at the ith block and —C/ at the jth

block. The matrix Z¢ is then defined by using Z; ; as blocks in lexicographical
order,

(2.15) Ec = [E] LIE] 51+ 1B]_, 4l
In particular, we have that Z;, is of the size dr,_; x (2)r,, and that E L7 i
of the size dr, x (9)r,_;. We need to know the rank of these two matrices.
Lemma 2.6. For d > 2 and n > 1, there holds

rankE;r = dry — Fpy1.
Proof. Since the matrix Er is of size dr, x (4)ra—1, we shall prove that the
dimension of the null space of EZ, is ryy;. Let ¥ = (YT, ..., Y])T e R,
where Y; € R . We consider the homogeneous equation in dr, variables

=1,Y = 0.

From (2.14) and (2.15) it follows that these equations can be rewritten as
(2.16) Lo Y=L, Y, 1<i<j<d.

By (2.8), the elements of L, ; are either 0 or 1. Moreover, there is exactly one
1 in each row, and the rank of L, ; is r,. Using the notation .4, and /%, ;
in the proof of Lemma 2.5, we can consider L, ; as transforms from .#, to
Ay .i. We fix a one-to-one correspondence between the elements of .#;, and the
elements of a vector in R | and write Y;| 4, , = Ln,;Yi. We can then write the
linear systems of equations (2.16) as

(2.17) Y,~|/,4w= fl/’ﬁ,u’ 1<i<j<d.
This gives (¢)r,_; equations in dr, variables of Y, but not all of them are
independent. For any distinct integers i, j, and k, we have
YII-/Vn,jn'/Vr;,k = jl-/,/n,tﬁ-/,/n,k > )/il/’/r;,kn%,] = Ykl%,ln‘/’/;l,] >
il ity = Yelay 0t e
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Therefore, there are exactly u(#,,jNA, ) = rn—2 duplicated equations among
these three systems of equations. Counting all combinations of three different
systems of equations in (2.17), we have (‘;’ )ra—2 equations. But among these
equations some are counted more than once. Repeating the above argument
for four distinct systems of equations in (2.17), we have that there are
WM, iNMy, j0My ) = ry_3 many equations that are duplicated. There are (4)
combinations of four different systems of equations. We then need to consider
five systems of equations, and so on. Therefore, we have that there are
d
(‘;)rn—Z - (Z)rn—3 +-+ (—1)d+lrn—d+l = Z(—l)k-'-l (Z) Tn—k+1
k=3

duplicated equations in (2.17). Thus, among the (g )r,,_l equations of (2.16),
the number of independent ones is

(4)rmer= S0 (o = S0 (s

Since the dimension of the null space is equal to the number of variables minus
the number of independent equations, and there are dr, variables, we have
that

d d
. _ d d
dim{nullE];} = dr, = Y (=D*(, )racksr = D (=D ) rwsick = Pt
" k=2 k k=1 k

where the last equality follows from Lemma 2.5. The proof is complete. O
Lemma 2.7. For d > 2 and n > 1, there holds

rankE;, =dr,_; — rp_.
Proof. We shall prove that the dimension of the null space of E{" is r,_». For
Y=(Y7,...,Y))T € R%-1, where ¥; € R~ , we consider the homogeneous

equation E{n Y = 0. By definition, this equation is equivalent to the systems
of linear equations

(2.18) LT, =L7 Y, 1<i<j<d.

We use %, and ., ; as in the proof of the previous lemma. We note that
LT .;Y; is a vector in R™, whose coordinates corresponding to %, ; are those
of Y; and whose other coordinates are zeros. Thus, the equation (2.18) implies
that elements of Y; are nonzero only when they correspond to /%, ; N ;
in LT .Y;, thatis, (LT ,Y;)ls; .., and the nonzero elements of Y; are
(LT ;Y|4 .n.s,, - Moreover, these two vectors are equal. Since for any X €
R™ we have :
Ly—1,jLn i X = X|s, ,ns;,, »
which follows from L,_; ;L, jx" = x,‘xjx”‘2 , from (2.9) we have that
(LY iY)lsy s, = Lot jLn,i(Ly ;Y)) = Loy, Y5 = Yilu, -
Therefore, the nonzero elements of Y; and Y; satisfy

K'%—l,i=n'%—1,;’ ISI<JSd
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Thus, there are exactly u(.%,—,;) = r,—» independent variables in the solution
of (2.18). That is, the dimension of the null space of E{n is r,—p. O

This lemma will be used in §3. Our next lemma deals with the singular value
decomposition of 4,D] .

Lemma 2.8. Let Ay ; and By ; be given matrices such that the Ay ; satisfy the
rank condition (2. 4) and the commuting condition (2.5). Let {]Pk} 2, Satisfy

(2.19) x;Px = Ay iPis1 + Bk, iPk+Ak 1, Pr—1, 1<k<n-1,1<i<d.
Then Y € R is in the null space of I — A,DT if :AT Y = 0. Moreover, if
Y=(YT,...,Y]), YieR™, then ET, Y =0 is equlvalent to
n—1
An-1,iY; = Ap—1,; Y5, 1<i<j<d.

Proof. The rank condition (2.4) implies that the singular value decomposition
of A, is of the form ([5, p. 414])

z

An = Vn ( On ) W/nT s

where X,: rpy1 X rpyq is a nonsingular diagonal matrix, V;: dr, x dr,, and
W, rne1 X rpyy are orthogonal matrices. Moreover, the columns of V, are
the eigenvectors of A,A4% . Let V, = (V,.1|Va,2), where V, : dr, x r,y; and
Vi, 2t dry x (dry — rpy1) . Then by

X 0

A, AT =V, [0 0} v,

the columns of ¥, , form an orthogonal basis for the null space of 4,47 .
Since DI is the generalized inverse of 4, , we have that DI = W, (X, '|O)V,]
and

o ol (vrf
1= a0] = Vo) |9 F] (i) = Tea¥ila
n,
Therefore, it follows that Y belongs to the null space of I — A4,D! if and only
if ¥, 2V, T,Y = 0. The last equation is equivalent to ¥,7,Y = 0, since the
columns of V, » are orthogonal.

Let G, be the leading coefficient matrix of P, that satisfies (2.19). From
(2.12) and the definition of the matrix Z it follows that

diag{G7T, ..., G,{}EA; =B,y diag{Gy-1, ..., Gu_1},
where the size of the block diagonal matrix on the left is dr, x dr,, and the

one on the right is (¢)r,—; x (¢)r,—;. Therefore, by Lemma 2.4, the remark
that follows it, and Lemma 2.6 we have

(2.20) rankEAr =dry — rny.

From (2.5), (2.14), and (2.15), it follows that ATE Eqr = = 0, which, by (2.1), is

equivalent to
AnA HAT = 0.

Therefore, the columns of = AT belong to the null space of A,Al. Since
rank A, AT = rank A, = r,,, , the rank condition (2.20) shows that the columns
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of = 47_, actually span this null space. Thus, there exists a matrix Qy: (4)rn-1x
(dry—rns1) , whose columns are linearly independent, such that V,, , =& AT O,.
Therefore, V,7,Y =0 if 1, Y=0. O

AT

Corollary 29. Let d =2 and n > 1. Then Y = (YT, Y[)), Yi e R¥, isin
the null space of I — A,DY ifand only if Ap—1,1Y2 = Ay—1,2Y1.
Proof. For d =2 we have 2r, —rn,1 = r,_1 . Therefore, the matrix Q, in the
proof of Lemma 2.8 is of size r,_; x r,—; and invertible. Thus, V, »Y =0 if
and only if E‘Z’LY =0. In this case, Z;r = (47_; ,, —4;_, 7. O
Lemma 2.10. Let A,_, ; and A, ; satisfy (2.11). Let G, and G, be invert-
ible. If the Y; e R™, 1< j<d, satisfy

An—l,in=An——1,jYia 1S1<]Sd’

then there exists a Y € R such that Y; = A, ;Y .
Proof. First we prove that if the X; € R™ satisfy L, ;X; = L, ;X;, then there
isan X € R such that X; = L,,; ;X . We can actually define X by

L,H_l,,'X:X,', or X!/V =X,'.

n+l,1
Indeed, using X| 4., = X;, we have

X tpor 0 Hr,, = LniLnr jX = Ln,i Xj,
= X;, we have

Xy,

Therefore, X is well defined. Now let Y; satisfy the assumption. Then by
(2.11) we have

and using X| .,

+1,iNSns1,; = L",jLn+1,iX = L",in'

L, G;'Y; =L, ;G,'Y;.
Thus, there is a Y € R+ such that

Lns1,iGunY = G, 'Y;.
By (2.11), this is the same as 4, ;Y =Y;. O

2.3. Proof of Theorem 2.1. Suppose that {P,}32, is defined recursively by
(2.2) and that the matrices 4, ; and B, ; satisfy the rank condition (2.4) and
the commuting conditions (2.5), (2.6), and (2.7). We shall use induction. For
n=0 wehave Pp=1, P_; =0; thus

d d
— § T . E T .
IP] = Do,ix, - DO,iBO,l'
i=1 i=1

Since Ag,; and Dy ; are both of size 1xd , we have that 4, and D, are both
d x d matrices. It then follows from DI 4y = I that 4oD} =1, which implies
4o,:Df j = 9i,j - Therefore, we have

Ao,jIPl =Xj— Bo,j = XjP() - Bo,j]Po.
We now assume that we have proved that
(2.21) Ak,j]Pk+1 =Xij—Bk,j]Pk—A£_1,j]Pk_1, 0<k<n-1.
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We show that this equation also holds for k =n.
From (2.10), (2.2), and (2.3), we get

d
T
Gni1 = ZDn,iGnLn+l,i >

i=1

d
Gnit,n = DI (Gu n1Ln,i = Bn,iGn),
i=1

d
T
Gn+l,n—1 = ZDn,i(Gn,n—an—l,i - Bn,iGn,n—l - A,{_l,iGn—l)-

i=1
First we prove that for each j the highest three coefficients of
Ap jPry1 = An,j(Gnav-lanrl + Gpy1 nX" + Gn+1,n—lxn_l +---)
are equal to the corresponding coefficients of
XjPy = By, Py — AL_y jPu_y = Qn X" + Ry X" +8, X" -0,

where

(222) Qn,j = GnLn+l E

(2.23) Ry, j=Gpn-1Ly,j— By, jGn,

(2'24) Sn,j = Gn,n—an—l,j - Bn,jGn,n—l - A;];—l,jGn—l'

We need to prove that, for 1 < j<d,

d d
An,jZDnT,iQn,i=Qn,ja An,jZDnT,iRn,i=Rn,j’
i=1

i=1
d
An,jZDnT,iSn,j = Sn,i-

i=1
We can write these equations in a more compact form as
AnD;];Qn = Qn ) AnD{Rn = Rn ) AnD;];Sn = Sn-

Therefore, we need only prove that the columns of Q,, R,, and S, belong to
the null space of I — A,DI . But by Lemma 2.8, this reduces to showing that

An—l,iQn,j = An—l,an,ia An—l,iRn,j = An—l,jRn,ia
An_1,iSn,j = An-1,jSn,i-
From (2.21), we have that
(2.25) Gn—an,i = An—l,iGn )
(2.26) Gn—l,n—an—l,i = An—l,iGn,n—l - Bn—l,iGn—l ’
(2.27) Gt ,n-3Ln-2,i = An-1,iGn n—2 — Bu=1,iGn-1,n—2— A}_5 ;Gn_2.
By (2.22), (2.25), and Lemma 2.3 we get
An—1,iOn,j = Gn_1Ln,iLps1,j = An—1,;On,i-
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By (2.23), (2.25), (2.26), Lemma 2.3 and (2.6), we have
An—1,iRy,j = An_1,i(Gn n—1Ln,j — Bn,jGn)
= Gn_1,n—2Ln_1,iLn,j = Bn—1,iGn-1Ln,j — An-1,iBn, jGn
= Gn-t,n—2Ln-1,iLn,j — (Bn_1,iAn-1,j + An-1,iBn,j)Gn
= Ap-1,jRn,;.
Similarly, from (2.24), (2.27), (2.25), (2.26), Lemma 2.3, (2.6), and (2.7) we
get
Ap—1,iSn,j = An—1,i(Gn,n-2Ln—1,j — Bn,jGn,n-1 — Aj_y jGn_1)
= Gnot,n—2Ln=2,iLn-1,j — (Bu—1,iGn-1,n-2+ An_3 ;Gn-2)Ln-1,;
- An—l,i(Bn,jGn,n—l + A;{_l ,jGn—l)
=Gpt,n-2Ln—2,iLn_1,j — Bn_1,i(An-1,;Gn,n—1 + Bu—1,;Gn-1)
- Af_zAn—Z,jGn—l - An—l ,i(Bn,jGn,n—l + A;T;—l ,jGn—l)
= Gn—l,n—ZLn—Z,iLn—l,j - (Bn—l,iAn—l,j +An—1,iBn,j)Gn,n—1
— (AT _,Ap—2,j+ Bu_i1,iBu_t,j + An-1,iAL_| ;)G
= Ap—1,jSn, i
Therefore, we have proved that the highest three coefficient matrices of 4, ;P
and x;P, — B, ;P, — A,f_l ,j are equal. In other words, we have proved
(2.28) A, jPuiy = XjPy— By Py — AL Py 1+ Qu2,j,
where Q,_»,; € R™ are polynomial vectors whose components are elements of
Hn’}é .complete the proof, we now prove that Q,_, ; = 0. Multiplying equation

(2.28) by D,,T ¥ and summing up for 1 < i < d, from the recurrence formulae
(2.2), (2.3), and equation (2.1), we get

d d
(2.29) > DI Qua,j= > DI Ay, jPrii —Pry1 = 0.
=1 j=1

On the other hand, from (2.21) and (2.28) we have
Ap-1,iQu-2,; = An—1,i(An, jPus1 + Bn jPn + AL_; Py — XiPp)

= Ap—1,i(An, jPust + By jPn + AL, ;Pn_i)
— Xj(XiPy—t — By—1,iPno1 — AL, Py_2)

= An-1,i(An, jPns1 + Bn, jPn + A,{_l ,an—l)
— XjXi{Py_1 + Bu_1,i(An-1,jPn+ By, Pu_i + A1, Pn-2)
+ AT, (An—2,jPuot + Buo2, jPo_a+ A5_3 Pr_3)

= = XiXjPp_1 + An—1,i4n, jPns1
+ (An=1,iBn,j + Bn—1,i4n-1,)Pn
+ (An—1,iAY_| j+ Buoy,iBu_1,j+ An_3 iAn—2,j)Pr-1
+ (AT (Bu-a,j+ Bu—1,iAl 3 )Pu_a+ Aj_, ;Af_3 iPn3.
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By the commuting conditions (2.5), (2.6), (2.7), and x;x;Pn,—1 = xjXxiPp_y, it
follows that

(2.30) An—1,iQn-2,j = An-1,jQn-2,:.

From (2.28) we get

An,iGn+l = GnLn+l,i~
By Lemma 2.4, G,,; is invertible. Therefore, we can apply Lemma 2.10 to
conclude that there is a vector Q, such that Q,_; ; = 4,,;Q, . It then follows
from (2.28) and (2.1) that Q, = 0, and thus, Q,—,; = 0. The proof is
complete. O

3. GAUSSIAN CUBATURE FORMULAE OF DEGREE 21 — 1

In this section we consider the application of Theorem 2.1 to the construction
of Gaussian cubature formulae of degree 2n — 1. Let . be a square positive
linear functional. A linear functional

N
In() =Y Aif(xk), A >0,x €RY,
k=1

is called a cubature formula of degree m , if Z(f) = Iy(f) whenever f € I1¢,,
and Z(f*) # Iy(f*) for at least one f* € l'I‘,"n+1 . For fixed m the cubature
with a minimal number of nodes N is called the minimal cubature, or the
Gaussian cubature. A lower bound for N is [19]

im I1¢
N > dimIIj, o).

We are interested in Gaussian cubature of degree 2n—1, thatis, m = 2n—1. In
this case, the following important result is due to Mysovskikh [13]. In order that
there exists a cubature formula which is exact for polynomials in II,,_; and
uses N =dimIl,_; knots, it is necessary and sufficient that P, has N distinct
real zeros. Here, P, is the vector of multivariate orthogonal polynomials with
respect to . defined by (1.3). A zero of P, means a common zero of the
components of P, .

It is known that all zeros of P, are real, simple, and distinct. Moreover, P,
has at most dimIl,_; many zeros. Furthermore, the following theorem is true
(cf. [13, 18, 24]).

Theorem 3.1. The polynomial vector P, has N = dimIl,_, distinct zeros if and
only if
(3.1) An—l,iAZ—l,j =An—l,jA;{—1,i

forall 1 < i,j < d, where the A,_, ;’s are the coefficient matrices in the
three-term relation (1.4).

In view of this theorem, P, does not have N = dimIl,_; zeros in general.
Actually, if & is centrally symmetric, i.e., £ (x'y*~) =0, 0 < i < k, for
all odd k € N, then Moller [12] proved that for d = 2 the Gaussian cubature
of degree 2n — 1 does not exist; thus, the corresponding P, does not have
dimII,_; zeros. On the other hand, a positive example is constructed in [14]
for polynomials of degree 5 in two variables. The existence of common zeros
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of multivariate polynomials is in general very difficult to establish. There does
not seem to be a general theorem that guarantees a sequence of multivariate
polynomials to have a given number of common zeros. However, for orthogonal
polynomials we have

Theorem 3.2. Let Ay it rp X Iny1, Bn, it ra X 1y be given matrices. Let {P,}2,
be defined by (2.2) and P_; =0, Py = 1. Then the orthogonal polynomial P,
has exactly N = dimIl,_, distinct real zeros if and only if B, ; is symmetric,
Ay i satisfy the rank condition (2.4) and the condition (3.1), and together they
satisfy the commuting conditions (2.5), (2.6), and (2.7).

Clearly, this theorem is a consequence of Theorems 2.1 and 3.1. By the
Favard theorem, it actually characterizes all possible Gaussian cubatures of
degree 2n — 1 with respect to square positive linear functionals. However,
Favard’s theorem only establishes the existence of a linear functional £ ; for
practical purposes we would like to know whether there is a measure u such
that & f = [ fdu. From the results in [7], .2 always has an integral represen-
tation with signed measure. But it may fail to possess an integral representation
with nonnegative measure [3, 8]. For this, we quote the following result from
[22], which is proved by using the spectral theorem for a commuting family of
selfadjoint operators.

Theorem 3.3. Let {P,}2,, Po =1, be a sequence in 11 . Then the following
statements are equivalent:
(i) There exists a nonnegative Borel measure u with compact support in R?
such that {P,}32, is orthonormal with respect to i .
(i) {P.}2, satisfies the three-term relation (1.4), the rank condition (1.5),
and
sup [| 4 ill <oco,  sup||Bg |l < oo,
k>0 k>0

where

-|| means the spectral norm for matrices.

The boundedness condition in (ii) can be relaxed to some extent by allow-
ing a noncompactly supported measure in (i) [25]. For practical purposes this
theorem is still too abstract. The problem of getting from the coefficients ma-
trices to the measure is certainly a very challenging problem. The importance
of our Theorem 3.2 is that it gives a constructive way to generate a sequence
of polynomials that has an exact number of real common zeros. That is, if we
can find sequences of matrices {4, ;} and {B, ;} that satisfy (2.4)-(2.7) and
(3.1), then we can use (2.2) and (2.3) to generate a sequence of polynomials
{P,}; P, will have exactly dimII,_; real, distinct, common zeros. However,
the conditions on A4, ; and B, ; are quite restrictive. Our next result narrows
the possible choices of 4, ; and B, ; considerably.

Theorem 3.4. Let A, ; and B, ; satisfy (2.4), (2.5), (2.6), and (2.7). If

(3.2) By,iBn,j =By, jBn,i, 1<i<j<d,
then (3.1) cannot be satisfied. For d =2 we actually have
(3.3) On = rank(A, 1AT ) — Ay 2AL |) = 2[(n +1)/2].

Proof. Suppose A,,; and B, ; satisfy the given conditions and (3.2). From
(2.7) and (3.2) we have

(3.4) An AT = Ap AT = —(AD | jAu_y j— AL jAno1 ).
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Thus, if (3.1) is satisfied, then
AL | jAn_y j— AL jAn_y,i=0, 1<i<j<d.

From the definition of = in (2.14) and (2.15) we can rewrite these equations
as
AT

n—l:‘An—l = O'

Thus, the columns of Z,, , belong to the null space of AI_,. By Theorem
2.1 we can construct P, using 4, ; and B, ;, and by Lemma 2.4, the leading
coefficient matrix G, of P, is invertible. Therefore, as in the proof of Lemma
2.8, we have from (2.12) and Lemma 2.7 that

rankE, _, =rankZ; =dr,_1 — rp—».

On the other hand, we have from (2.5) that A7 | E 47, =0, and it follows from
(2.4) and (2.20) that the columns of = T, form a basis for the null space of

AT, . Therefore,
drp_i —rp_y=rtankZ, < rankEAr_2 =dry,_1 — I'n.
This is possible only for d = 1 since r,_, <r, for d > 2.
We now prove (3.3). Let Ay := A, 14T , — Ay 2A4L | . Since A, is skew-

symmetric, we know that rank A, is an even integer. We consider the null
space of A,. If x,,; € R+ satisfies

(3.5) (Ans1, 1481 2 — Ans1 2401 )Xne1 =0,

then, by (3.4),
(AZ,lAn,Z - A{,ZAn,l)an =0.

= _ |0 T]|(A4s1) _.
o[98 (f2) e

AT T, Apxpy = 0.

This shows that 7,A4,x,,; is in the null space of A . Since the columns of
T,(AT),—1 span the null space of AI, there exists x,_; € R™»-' such that

Hence,

and

TpAnXny1 = Tp(AT)n_1x,_;. Since T, is clearly invertible, we actually have
ApXny1 = (AT)p_1Xp—y oF

(3.6) Xnt1 = Df (A7) p1Xp

by (2.1). From (2.5) it follows that (A4,_1,1, An—1,2)TnAn = 0. Thus,

(3.7) (Ant 1 A7_1 2 — An1 2471 1)Xp—1 =0.

Equations (3.5), (3.6), and (3.7) enable us to use induction. Indeed, since Ay
is of size 1 x 1 and skew-symmetric, we have Ag = 0. Thus, rankAg = 0.
For n = 1 we have from (3.4) that A; = A} ToAy, from which it follows
that A; is invertible. Therefore, rank A; = 2. Hence, rankA,,, = 2m and
rank Ay, =2m+2. 0O

For d = 2 the rank equation (3.3) was first proved by Moller for the case
B, ,; =0. In [24] it is shown that P, can have at most N —o, zeros. Our proof
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of (3.3) follows the approach used in [18]. For a given linear functional .# on
I14, Theorem 3.4 shows that if . (xPyP}) = .Z(x,P,PY), then Gaussian cu-
bature of degree 2n — 1 is not possible. Actually, for most classical functionals,
Gaussian cubature of degree 2n—1 does not exist. Examples of these function-
als include all those considered in [9], in particular, the integrals with respect
to the Jacobi weights on a rectangle, simplex, or sphere ([1, 2]). On the other
hand, there are square positive linear functionals that lead to Gaussian cubature
of degree 2n—1; see [14, 10]. Our Theorem 3.2 provides a method to generate
these cubatures, or rather, the nodes that these cubatures are based on. The
difficult question remains of how to find the measure g from the coefficient
matrices of the three-term relation. In view of the importance of Gaussian cu-
batures in analysis, it can be expected that those measures for which Gaussian
cubatures exist may have some interesting and peculiar properties.
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