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A CHARACTERIZATION OF POSITIVE QUADRATURE FORMULAE 

YUAN XU 

ABSTRACT. A positive quadrature formula with n nodes which is exact for 
polynomials of degree 2n - r - 1, 0 < r < n, is based on the zeros of certain 
quasi-orthogonal polynomials of degree n . We show that the quasi-orthogonal 
polynomials that lead to the positive quadrature formulae can all be expressed 
as characteristic polynomials of a symmetric tridiagonal matrix with positive 
subdiagonal entries. As a consequence, for a fixed n , every positive quadrature 
formula is a Gaussian quadrature formula for some nonnegative measure. 

1. INTRODUCTION 

Let a be a nonnegative measure on the real line JR with an infinite support 
and finite moments. For n E N and 0 < r < n, a linear functional 

n 

(1.1) gY-,nr(da ; f) = Zck,nf(Xk,n) Ak,n E R, Xk,n 1R 

k=i 

is called a (2n - 1 - r, n) quadrature formula for da if 
0o0 

(1.2) J p(x)da =Jn,r(da; p), p E rl2n-r-l 

where rln is the set of polynomials of degree at most n . The numbers {Xk, n } 
are called nodes, and the { k, n } weights, of the quadrature formula. When all 
quadrature weights are positive, Jn, r(da ; f) is a positive linear functional; we 
call it a positive (2n - 1 - r, n) quadrature formula. The Gaussian quadrature 
is the unique (2n - 1, n) formula, and it is positive. It is well known that 
(2n- 1 -r, n) formulae are related to quasi-orthogonal polynomials. Let Pn (da) 
denote the orthonormal polynomial of precise degree n with respect to da. Let 
PI, ... , Pr be real numbers. Then the quasi-orthogonal polynomials of degree 
n, order r, are defined by 

(1.3) qn,r(da) =Pn(da) + PiPn-i(da) + + PrPn-r(da) Pr $ 0. 

For convenience we write qn, = Pn. It is easy to see that the nodes of a 
(2n - 1 - r, n) quadrature formula (1.1) are the distinct zeros of a quasi- 
orthogonal polynomial qn, r (da). On the other hand, if a quasi-orthogonal 
polynomial qn ,r(da) has n distinct real zeros, then there is a (2n - 1 - r, n) 
quadrature formula based on these zeros provided the quadrature weights come 
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out to be nonzero. We call such a quadrature formula generated by the quasi- 
orthogonal polynomial qn,,. 

The (2n - 1 - r, n) quadature formulae have been studied by several au- 
thors (cf. [3, 6, 7, 8, 9, 12] and the references therein). In particular, if a 
has as support the interval [-1, 1], then all (2n - r - 1, n) positive quadra- 
ture formulae with nodes in [-1, 1] were characterized in [6] for r = 2, and 
in [7, 8, 9] for all r. The case r = 1 is known already in [10, p. 46]. In 
[12], we studied the case r = 2, 3 by means of a new representation of quasi- 
orthogonal polynomials. We found there that a large class of quasi-orthogonal 
polynomials can be represented as the characteristic polynomials of symmetric 
tridiagonal matrices. As a consequence, the zeros of quasi-orthogonal polyno- 
mials are recognized as eigenvalues of these matrices, and thus can be studied by 
making use of the techniques developed for eigenvalue problems. Based on this 
method, we proved a number of results in [12] concerning quadrature formulae 
and interpolating polynomials. However, not all quasi-orthogonal polynomials 
have such a representation. For those that do, the entries of the symmetric 
tridiagonal matrix used in the representation depend on the coefficients Pk in 
(1.1 ) nonlinearly, and their formulae become very complicated for large r. On 
the other hand, from a numerical point of view, it is very desirable to have 
the quasi-orthogonal polynomial given as a characteristic polynomial of a sym- 
metric tridiagonal matrix, which allows the use of efficient numerical methods 
for studying the zeros of such a polynomial, and for the quadrature formula 
generated by the polynomial. 

The purpose of this paper is to continue the study initiated in [12], and we 
shall base our study on the quasi-orthogonal polynomials expressible through 
symmetric tridiagonal matrices. One of our main results states that every pos- 
itive (2n - r - 1, n) quadrature formula is generated by a quasi-orthogonal 
polynomial that has a symmetric tridiagonal matrix representation with positive 
subdiagonal entries. As a consequence, the nodes of every positive quadrature 
can be interpreted as eigenvalues of a symmetric matrix, thus, can be easily 
computed as such. Moreover, we will also derive explicit and simple formulae 
for quadrature weights. Hence, an efficient numerical method of constructing 
positive quadrature formulae is almost immediate. Another interesting result 
that we shall prove states that every positive quadrature formula, for a fixed 
n, can be realized as a Gaussian quadrature for another nonnegative measure, 
which usually depends on n. 

The paper is organized as follows. In the next section we fix notation and pro- 
vide the preliminaries. In ?3, we discuss the representation of quasi-orthogonal 
polynomials by means of tridiagonal matrices. The characterization of positive 
quadrature formulae is presented in ?4. Finally, in ?5, we discuss the construc- 
tion of positive quadrature formulae, and the location of the quadrature nodes. 

2. PRELIMINARIES 

Let 11 be the set of all polynomials, and rl, the set of polynomials of degree 
at most n. Let Y be a linear functional defined on 11. We call 2 positive if 
Y(p) > 0 for every nonnegative p E H1, and Y(p) = 0 only if p = 0. From 
the moment theory it is known (cf. [1]) that every positive linear functional 
admits an integral representation with respect to a nonnegative measure a, 
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such that a' > 0 a.e. and 

5(f) =Jf(x) da, fe l. 

Let X' be the class of measures a on R with an infinite support and finite 
moments such that a' > 0 almost everywhere in its support set. For a E AX, 
normalized so that f da = 1 for convenience, we denote by {np(da)}?'0o a 
sequence of orthonormal polynomials with respect to da, 

Pn(da, x)pm(da, x) da = An,m, Pn(da, x) = Yn(da)xn + 
-00 

where Yn (da) > 0 for all n E N0. For our study of the quasi-orthogonal 
polynomials we shall need a number of properties of orthogonal polynomials. 
All of them can be found in standard books on orthogonal polynomials, such 
as [1, 3, 10]. We begin with 

The three-term relation. There exist sequences of real numbers an > 0 and bn 

such that 

(2.1) xpn(da) = anpn+I(da) + bnpn(da) + an- lPn-I(da), n> 1 

where p_ 1 (da) = 0 and po (da) = 1 . 

In this equation we wrote an for an (da). As a rule, whenever there is no 
danger of confusion, we shall omit da from our notation. For example, we 
shall write Yn for Yn (da). The coefficients an in the three-term relation and 
the leading coefficients Yn of Pn (da) are related by 

(2.2) an = n or y- = aO ... an-l. 
Yn+i 

Moreover, the three-term relation actually characterizes the orthogonality, which 
is the content of 

Favard's Theorem. Let {Pn }I?o o, po = 1, be a sequence ofpolynomials, Pn E ln . 

Then {pn}I?'Io is orthonormal with respect to d,u for some uE -A' if and only 

if it satisfies a three-term relation with an > 0 and bn E R, n E N0. 

The coefficients in the three-term relation defines a tridiagonal matrix, called 
the Jacobi matrix, with bn on the main diagonal and an on the subdiagonals. 
This matrix plays an important role in the theory of orthogonal polynomials. 
We have, for example, 

Representation of orthonormal polynomials. Let Jn be the truncated Jacobi ma- 
trix 

bo aO 0 
aO b1 a, 

(2.3) Jn= . 

bn.2 an-2 

O an-2 bn- I 

Then 

(2.4) Pn(da) = Yndet(xI -Jn), 

where Yn is the leading coefficient of Pn and I is the identity matrix. 
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From this representation, all zeros of p, (da) are eigenvalues of the matrix 
Jn. We denote these zeros by Xk,, = Xk ,(da), and assume the following 
order: xi," < x2,n < ... < Xn, n. The properties of the zeros of Pn (da) are 
collected in the following statement. 

Properties of zeros. All zeros of Pn are real and distinct. If a has compact 
support [a, b], then all zeros are located inside [a, b]. The zeros Of Pn(da) 
and Pn+i(da) interlace: each interval [xk,n, Xk+1, n] contains exactly one zero 
of Pn+l, where Xo,n = a and xn+in = b. 

If supp a = [a, b], then because Yn > 0 and pn(da) = Ynxn + , we have 

(2.5) signpk(a) = (_ )k and signpk(b) = 1. 

Another property of Pn(da) that follows from the three-term relation is the 
Christoffel-Darboux formula. Let Kn (da, *,*) be defined by 

n-i 

Kn(da, x, y) = EPk(da, X)Pk(da, y), 
k=O 

which is the reproducing kernel function of {p,(da)}. Then we have 

Christoffel-Darboux formula. For n E N, there holds 

Pn (X)Pn- i (Y) -Pn (Y)Pn-i (x) (2.) n(da, x, y) = an-Ix- 

For the Gaussian quadrature formula with respect to da, the quadrature 
weights are given in terms of Kn (da) as 

(2.7) Ak,n = [Kn(da, Xk,n, Xk, n)]I, 

where Ak, n is the weight corresponding to the node Xk,n . This ends our pre- 
liminaries. 

There are other definitions to be given later. The most important one is the 
symmetric matrix representation of quasi-orthogonal polynomials, which will 
be given after the proof of Theorem 3.1. 

3. THE QUASI-ORTHOGONAL POLYNOMIALS 

For the quasi-orthogonal polynomial qn,r defined as in (1.3), it is clear that 
qn,r is orthogonal to the space fln-r-l . This fact is sometimes taken to be the 
definition of the quasi-orthogonal polynomials of order r, since every polyno- 
mial orthogonal to In-r_-1 can be expressed in the form of (1.3). From this 
point of view, the formula (1.3) seems to be the natural starting point for the 
study of the quasi-orthogonal polynomials, and it is indeed so in the literature. 
In this section, we shall present a different way of dealing with quasi-orthogonal 
polynomials, which shows that many of these polynomials can be represented 
as characteristic polynomials of symmetric tridiagonal matrices. This represen- 
tation has been considered only recently in [12]. We begin with 
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Theorem 3.1. Let a E ' and let Tn, 2s-1 be a matrix defined by 

bo* aO* ? 0 0 ~ 0 
aO* b* a* 

(3.1) Tn,2s-1 = b a 

bn_2 an-2 

a*2 b*1 O a~~~~~~~~~~~~~~~~~~~~n-2 bn-lI 

where a= ak(da), O<k<n-s-1, b=bk(d),O<k<n-s- 1, and 

a*=ak(da)(1- Tk+s-n+l) n - s < k < n -2 
bk= bk(dc)-ak(da )k+ +l, n-s < k < n-l, 

and ak, 1 < k < s, and Tk, 1 < k < s - I, are real numbers. Also let Tn 2s-2 
be the matrix Tn, 2s- 1 with a1 = 0, and take Tn, 0 = Jn . Then the characteristic 
polynomial of Tn, r, r = 2s - 1 or 2s - 2, is a quasi-orthogonal polynomial, 

(3.2) 
qn,r(dxa, 

x) = Yn det(xI- Tn, r) 

= Pn (da) + PlPn- I(da) +* + PrPn-r(da), 

where P1, ... Pr are functions, in general nonlinear, of Ti, ...T, Is_ and 
ai a * s . 

Proof. Since Tn 2s-1 becomes Tn,2s-2 when a1 = 0, we use induction on 
Tn, 2s l . For s = 1 we have 

qn, (da XY=(Yn det I [ ani - l ) 
= Pn (da, x) + ynan- I Ol det(xI -Jn- l) 

= Pn (da, x) + apPn- 1 (da, x) , 

where if a1 = 0, then we have qn ,o(da, x) = Pn (da, x) . In general, we write 

qn, r (dax, x) = Yn det(xI - Tn,r) = p (da) + _ + + pnpnrn(da), 

where p .r = p5a)(1 . , r, Tl ... T,r-i) 1 < j < r. Suppose (3.2) has 
been proved for Tn, 2i-I for i < s . We now prove (3.2) for r = 2s + 1 . By the 
definition of Tn ,r we have 

0 0 
0 an-,sa1 an-sT 

an-sT1 an3-s+ 1 q2 an -s+1T2 
Tn,2s+I = Jn- . . 

an-3zTs2 an-267s-1 an-2Ts-1 

0 an-2Ts-1 an- sJ 
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Expanding the determinant det(xI - Tn,2,+I) by its last row, we have 

qn ,2s+l(da) = y,(x-b,_l + a,-,as+,)det(xI- Tn-l,2s-1) 
2 ynn _( 1TS)2 det(xI -Tn-2, 2s-3) 

= a II(x - bn + an-1acs+)qn- 1,2s-l(da) 

+ a - I 
an- Ts)2qn-2,2s-(:) 

= a-' (x - bn + an-Is+0) 

x [Pn-I(da) + p(n-1) lPn-2(da) + + p (n- ) 

+a 1a a2( -Ts) 

X [Pn-2(da) + p(n-2) (n-2+ 
x1 ,2s+3Pn-3(da) + + P2Is-32s-3Pn-2s+I (da)] 

where we have used the induction hypothesis. Let p(m) = 1. We can rewrite 
the above formula and use the three-term relation to get 

2s- 1 

qn2s ( ()= a71_1 E (X -bn_1-k ) Pk,s-lpn k-1 (d&() 
k=O 

2s- 1 

+ aqn 1 l (bn-l-k-P Pn-a-ls+)Pk,2slpdak(da) 
k=O 

2s-3 
+ a-'a2( )a p, 3pl2~(c)Pn1 +n 1 n-I2 (bn-Ts ) -E bnk 2s-1(7s--k,2(d n )kda 

k=O 
2s-1 ~ ~ s- 

n-= 1n 2 Pk 2s-T (ank- s-k (R a 

k=O 
2s+1 

+ a1 z p P2 )2s ankPkn(d)d) 
k=2 

2s 
+ an-l 1 y - p 22s-l(bn -k - -2an2lsI+n)Pn-k(da) 

k=l 
2s-1 

+ a1 I (1 n- ( 1 ) (2sIk (db) 
k=2 

which is in the desired form (3.2) with 
(ni) P(n-i1) - 1 

PO,2s+1 = Po 2s-1 - 

and 

p(n) - a11[Pk 2s- 1I an-k 1 + Pk-2,2s-1 an-k Pk,2s+1 -= 
- k s -,s 

+P (n- 1,2s_n-k bn-I -an-as+l) 

+ p n2 s3an-2( -Ts)] 

for 1 < k < 2s, and 
(n) a-I an-2s--1 P (n-1) 

P2s+ 1, 2s+1 = an- af2p2s-12s- I 
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where we take p(m) - 0 if j > k or j < 0. In particular, we can iterate the 
last equation to conclude that 

(n) a-1 -1 (n-s) 
P2s+ 1, 2s+1 = an -1 *... anlsanf-2s- I1 an-s - 

a- 1 1'' an-s n-2s- 
... 

an-s- Uv 
Therefore, if a, = 0, then p 12s+1 = 0 and qn,2s+I(da) becomes qn,2s(da). 
This concludes the proof. O 

A weaker version of this theorem appears in [12]. For r = 1, every quasi- 
orthogonal polynomial 

qn, I (da) = Pn (da) + P lPn- I (da) 

admits the representation (3.2) with a1 = Pi . However, it is important to note 
that not every quasi-orthogonal polynomial has such a representation if r > 1 . 
For example, only those 

qn,2(da) = Pn(da) + Plpn- 1(da) + P2Pn-2(da) 

under the restriction P2 < an-2/an-l admit a formula (3.2). For r = 2, 3 
and those qn,r that admit a representation (3.2), formulae of Uk and Tk in 
terms of Pk are given in [12]. They are quoted in ?5. The complexity of these 
formulae increases rapidly with r. 

In the following we show that the class of polynomials given by (3.2) with 
a* > 0 is of special importance. For convenience, if a quasi-orthogonal polyno- 
mial qn has a determinant representation (3.2), then we say it has a symmetric 
matrix representation. If all subdiagonal elements a* > 0 in such a representa- 
tion, we say that qn has a positive symmetric matrix representation. 

We introduce the following notation. For a E X4 and r < n, we let qn, r be 
a quasi-orthogonal polynomials of degree n and order r and assume that qn, r 
has a symmetric matrix representation with matrix Tn,r . With respect to this 
fixed qn,r we define a sequence of quasi-orthogonal polynomials qn-k,r-2k of 
degree n - k and order r - 2k by 

(3.3) qn-k,r-2k = Yn-k det(xI - Tn-k,r-2k), 0 < k < []' 
where Tn-k,r-2k is the (n - k) x (n - k) submatrix of Tn,r at the left upper 
corner. We note that the definition of qn-k r-2k in (3.3) is consistent with 
(3.2). For convenience, we denote 

Qk =pk(da), 0< k < n-[ - 1, and 
(3.4) r 

Qn-k = qn-k,r-2k(da), < k < ' 

and 
Pk = Qk, 0<k < n - [ _1 , and 

Pn-k = (l 
- 

T1)_ (1 
- 

*(lTs-k) lQn-k, ? < k < [2 
where r = 2s - 1 or r = 2s - 2. We shall use these notations throughout the 
rest of the paper. By the similarity of (3.1) and (3.2) with the representation of 
orthogonal polynomials in (2.3) and (2.4), the following theorem seems natural. 
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Theorem 3.2. Let qn,. be a quasi-orthogonal polynomial that has a positive 
symmetric matrix representation. Let Qk and Pk be defined as above. Then 
Qo, ... , Q, are the first n + 1 members of a family of orthogonal polynomials. 
Moreover, PO, ... , Pn are the correspondingfamily oforthonormalpolynomials. 
Proof. For k < 0, let Tk = Uk = 0 and Tm,k = Jm. Let r = 2s + 1. Then by 
the definition of qn, k we have 

det(xI -Tk+1,2(k+s-n+1)-1) 

= (x - b,) det(xI - Tk, 2(k+s-n) - (a*-, )2 det(xI - Tk-l 2(k+s-n-1)-i), 

for 0 < k < n - 1 . From this equality we obtain that the Qk satisfy the relation 

YkjI Qk+l = (x-b*)y1 Qk-(a*-l)'Y-1lQk-l 0 < k < n-1. 

Since a* = ak ( - Tk), we obtain from this relation that the Pk satisfy a three- 
term relation 

XPk =a*Pk+l +b*Pk+a*lPkl, 0< k < n-1, 

where a- = a, Let {ak}, k > n, be a sequence of positive numbers and 
{bk}, k > n, be a sequence of real numbers. We can define Pk, k > n, by the 
recurrence formula 

(x - b*~P -a2 Pk a a* (-k-l )Pk-I a* PK-2. akl k, akl 

With this definition, the sequence of polynomials {Pk}J?=0 satisfies the three- 
term relation 

xPk = a*Pk+l + b*Pk + a*1Pk.l, k > 0. 
Since a* > 0 for all k > 0, by Favard's theorem, we conclude that {Pn} I?% is 
orthonormal with respect to a measure ,u E Xi. O 

We remark that it is very difficult to find explicitly the measure ,u with respect 
to which Qk are orthogonal. Actually, this measure also depends on n and the 
choices of a* and bZ for k > n. In general, we should write ,u = pn to 
indicate the dependence of u on n. Nevertheless, the following examples, in 
which ,u is independent of n, seem to be of interest (cf. [1, p. 205]). 

Let Tn and Un be the Chebyshev polynomials of the first and the second 
kind, respectively. Let b < 1. Then the quasi-orthogonal polynomials 

(3.5) ql,I(u, x) = x-b/2, qn,1(u, x) = Un(x)-bUn_1(x), n >2, 
with respect to the weight function u(x) = ( -x2)1/2 on [-1, 1] are orthogonal 
with respect to the weight function 

(3.6) u*(x) 1+b2-2bx'x -1 <x< 1. 
And the quasi-orthogonal polynomials 

(x) = T a- 1 
(3.7) qn,2(X =n(x) + a + Tn-2(X) a = V,-b 

with respect to the weight function v(x) = (1 -x2)-l/2 on [-1, 1] are orthog- 
onal with respect to the weight function 

(3.8) v*(x) = - -1 < X < 1. 
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Further discussions on the dependency of u on n is given after Theorem 4.4. 
There are several important corollaries of Theorem 3.2, which will have ap- 

plications in the study of quadrature formulae. 

Corollary 3.3. Let qn,r be a quasi-orthogonal polynomial that has a positive 
symmetric matrix representation. Then all zeros of qn,r are real and distinct. 
Moreover, the zeros of qn,r and qn- 1, r-2 mutually separate each other. 

Corollary 3.4 (Christoffel-Darboux formula). Let qn,r be a quasi-orthogonal 
polynomial that has a positive symmetric matrix representation. Let 

n-i 

K* (x, y) = Pk (X)Pk (Y) 
k=O 

n-[r/2]-1 

(3.9) = E Pk(da,X)pk(da, y) 
k=O 

[r/2] 

+ E(l - .2 (1- Ts-k) qn-k,r-2k(x)qn-k,r-2k(Y), 

k=O 

where r=2s- 1 or r=2s-2. Thenfor x$y, 

Kn*(x, y) = an_1(1 - T)-2... (1 Ts-l)-2 
(3.10) qn,r(x)qn-,r-2(Y) -qn,r(y)qn-1,r-2(x) 

x -y 

andfor x =y, 

(3.11) Kn(x, x) = an-1(1 - T) ;... (1T-TS-2 

(q (x)q-I,r-2(X) - qn,r(X)qn-1,r-2(X)). 

Both these corollaries follow from the fact that Pk are actually orthonormal 
polynomials and from the well-known properties of the zeros and the Christoffel- 
Darboux formula (2.6) shared by all orthogonal polynomials. To emphasize 
their importance in the study of quasi-orthogonal polynomials, we stated them 
in terms of qn,k. Their applications to quadrature formulae are presented in 
the next section. For r = 3 these corollaries are proved in [12], where Corollary 
3.4 is proved using a different method. 

4. POSITIVE QUADRATURE FORMULA 

Using the symmetric matrix representation of quasi-orthogonal polynomials, 
we give our characterization of positive quadrature formulae in this section. For 
completeness, we give a complete proof for the following theorem, although part 
of the first half is standard. 

Theorem 4.1. Let qn,r generate a (2n - r - 1, n) quadrature formula 5n,r r 

Then n, r is a positive quadrature formula if and only if qn, r is a quasi- 
orthogonal polynomial of degree n, and order r, that has a positive symmetric 
matrix representation. 

Proof. Let qn, r be a quasi-orthogonal polynomial that has a positive symmetric 
matrix representation. By Corollary 3.3, qn, r has n distinct zeros, which we 
denote by xi,n, ... , xn,n . For a given function f on R, let Ln(f) be the 
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nth Lagrange interpolating polynomial based on the zeros of qn,r. Then it is 
easy to verify that 

Ln (f , X) = f(xk, n) lk, n (x) lk, n (X) = K* Xk) 
k=i 1 X,n~X,n 

where Kn* is defined in (3.9). Indeed, from (3.9) and (3.10) we have lk, n E I-In- 
and 

lk, n(Xi, n) = k,j 1 < k, j < n, 
which implies Ln (f Xk, n) = f(xk n). The integration of Ln(f) leads to a 
quadrature formula for da, 

n 

(4.1) -n,r(f) =jLn(f X) dZa fE f(kXn)[Kn(Xk,nXk,n)1 
k=1 

If P E Il2n-r-1, then P can be written uniquely as P = gqn,r + R, where 
g e fln-r---1 and R E Iln-1. Therefore, we have 

n 

-Yn,r(P) = ZR(xk, n)[Kn*(xk,nxk,n)f- = Jn,r(R) = JR(x) d. 
k=i 

Since qn, r is a quasi-orthogonal polynomial which is orthogonal to FI'n-r- 1, we 
have that f gqn,r d&a = 0. Thus, 

-n, r(P) = J [g(x)qn, r(X) + R(x)]d& = JP(x) da PE I12n-r-l, 

which shows that Jn, r is a (2n - r - 1, n) quadrature formula. Moreover, from 
(3.9) we clearly have that the quadrature weights Ak,n = [Kn*(Xk,n, Xk,n)] 1> 
0, 1 < k < n . Thus, the quadrature formula Jn r is a positive one. 

On the other hand, suppose a (2n - r - 1, n) quadrature (1.1) of da exists. 
We let q(x) = (x-Xi, n) ... (x-Xn,n) . Then q E In and for every polynomial 
PE fln-r-I we have 

~~~~~n 
q (x)p (x)da= Eq(Xk n)p(Xkfn)k4n = 0; 

k=1 

therefore, q is orthogonal to fln-rl- with respect to da, and it is a quasi- 
orthogonal polynomial of the form (1.3). Each f E n has a unique represen- 
tation f = gq + Rq (f), where g E H, Rq (f) E rlnu I . Following [9], we define 
a linear functional Yq: H I-4 ]R associated with q as follows: 

Yq: rn 7-i, R Sq(f) = jRq(f, x)da. 

Since q generates a (2n - r - 1, n) quadrature, this linear functional is positive 
on IH2n- . This fact is proved in [9, p. 397]; for completeness we reproduce 
the proof here. Every nonnegative polynomial f E r'2n- 1 can be written as 
f = p 2 + p 2 for some PI , P2 E rln i. Such an f, if not identical zero, cannot 
vanish at all n nodes of the quadrature formula. Hence, by Rq (f, Xk, n) = 

f(xk,n) we obtain 
n 

Y(f) = jRq(f, x)da = j(f-gq)(x)da =Eknf(Xk,n)> ? 
k=1 
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and , is positive. Moreover, for every p E rln-1 we have pq E Il2n-1, and 
Y (pq) = 0. This means that q is orthogonal to 7I,_ with respect to the 
linear functional q. By the Gram-Schmidt orthonormalization process, the 
positivity of q on fl2,-1 implies the existence of polynomials qo, ..., q, 
that are orthonormal with respect to q . Moreover, qk = y(q)xk + *-, where 
yk(q) > 0. Since Yq2(f) = f f da for f E rL2n,s, we also have qk = Pk(da), 
0 < k < n - [r/2]. These orthonormal polynomials satisfy a three-term relation, 
which can be written as 

(4.2) qk+ =-a'(x-bk)qk- a' qk-1, 1 < k < n-2, 
akak 

where by the orthogonality and the positivity of Yq we have 

a' =S'q(xqkqk+ )- = Yk(q) (qk2+1) yk(+(q) > 0 0 < k < n -2. 

The polynomial q E FIn can be written as q = yn-lxqn-I + ZEkn- Ckqk * By the 
orthogonality of qk, 0 < k < n - 1, and q with respect to Yq, we obtain that 

q = y-I1 (xqn-1 - bn-4qn-1 - a'n-2qqn-2) 

where bn_ = , (xqn21). From this equality and (4.2) it is readily seen that 
q admits a symmetric matrix representation as in (3.2) with a* = ak. Since 
all a' > 0, 0 < k < n - 2, the representation is positive. Let Tk = 1 - ak/ak. 
Then a' = ak(l - Tk). We can also define ak, 1 < k < s, by bn_s+k 1 = 
bn-s+k- I- an-s+k- Uk Thus, the matrix representation takes exactly the form 
of (3.2). o 

Using this theorem, we can state several corollaries. The first comes directly 
from the proof of the theorem; it provides an explicit formula for the weights 
of a positive quadrature formula. 

Corollary 4.2. If n, r in (1.1) is a positive quadrature formula generated by 
qn, r, then its weights are given by 

(4.3) Ak,n = [Kn (Xk,n X Xk, n)I1 
1 n-l(-r)2 (1nTs1)2[q,r(Xk,n)qn-1,r-2(Xk,n)1 

We note that if one of a* = 0, then Tk = 1, and the right-hand side of the 
equation (4.3) becomes zero. Thus, [Kn*(Xk,n, Xk,n)]- = 0, and they cannot 
be weights for any quadrature formula. Actually, in this case, qn,r is not a 
quasi-orthogonal polynomial; it will not generate a (2n - r - 1, n) formula, 
positive or not. 

The next corollary of Theorem 4.1 is of particular interest, for it provides 
another characterization of positive (2n - r - 1, n) quadrature formula, which 
states that such a formula is actually a Gaussian quadrature for some nonnega- 
tive measure. 

Corollary 4.3. Let n E N be fixed. If J',n,r(da) in (1.1) is a (2n - r - 1, n) 
positive quadrature formula for a E #, then it is a Gaussian quadrature formula 
for another measure An E X# 

Proof. If JnAr(da) is a (2n - r - 1, n) positive quadrature formula, then by 
Theorem 4.1 it is generated by a quasi-orthogonal polynomial qn, r of degree 
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n which has a positive symmetric matrix representation. Because of such a 
representation, by Theorem 3.2, qn,r is a member of a family of orthogonal 
polynomials with respect to a nonnegative measure un . By (2.7), the nth Gaus- 
sian quadrature formula with respect to pn is 

n 

_3n (dun i f) = f(xk, n)[K,*(xk, n , Xk, n)] 
k=1 

where Xk, n are zeros of qn,r. By Corollary 4.2, we see that this is exactly the 

quadrature J'n,r(da). cl 

In our definition of a (2n - r- 1, n) formula, we have 0 < r < n . Since each 
positive quadrature is at least (n - 1, n) type if its nodes are distinct, the union 

of the class of (2n - r - 1, n) positive quadrature formulae for 0 < r < n - 1 is 
the class of all positive quadrature formulae. Therefore, we have the following 

characterization of positive quadrature formulae, which we state as a theorem. 

Theorem 4.4. Let a e X# and n e N befixed. A quadrature formula Jn, r(da) 
with distinct nodes is positive if, and only if, it is a Gaussian quadrature formula 
for some measure Yn E X -. Moreover, if x1 n, n. . ., Xn, n are the nodes of the 
quadrature, then the polynomial qn(x) = (x - x1, n)*** (x - Xn,n) has a positive 
symmetric matrix representation. 

For example, the (2n - 2, n) quadrature formula generated by qn (U) in 

(3.5), for the Chebyshev weight function of the second kind u, is also the 

Gaussian quadrature formula for the weight function u* in (3.6). The (2n - 

3, n) quadrature formula generated by qn (V) in (3.7), for the Chebyshev weight 

function of the first kind v, is also the Gaussian quadrature formula for the 

weight function v* in (3.8). 

However, we remark that these examples are somewhat special, as the mea- 

sures u* and v* are independent of n . In general, the measure un in Theorem 

4.4 has to depend on n . To show this, we recall the definition of the Chebyshev 

quadrature formula. A quadrature formula is called a Chebyshev quadrature if 

it is equally weighted, 

n 
J f(x) da = An f(xk,n), f E In-1 

k=1 

If a weight function w admits a Chebyshev quadrature formula for every pos- 

itive integer n, we say that the weight function w has property T. It is well 

known that the Chebyshev weight function v (x) = (1 - x2)-/2 has property T, 

and the corresponding quadrature is the Gaussian quadrature. Moreover, it is 

the only weight function all of whose Gaussian quadratures is equally weighted 

(cf. [4]). There are other weight functions that have property T (cf. [4, 1 1] and 

the references therein). As an example, we mention wo(x) = (1 -x2)- (1 +bx), 

IbI < 1/4 [11]. Clearly, the Chebyshev quadrature formulae are positive ones. 

If all measures ,u in Theorem 4.4. were independent of n, then ,u' correspond- 

ing to wo would be a weight function whose Gaussian quadrature formulae are 

equally weighted for all n, which, however, would contradict the uniqueness of 

the Chebyshev weight function, for it is the only one having such a property. 
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5. CONSTRUCTION OF POSITIVE QUADRATURE FORMULAE 

Theorem 4.1 characterizes all positive (2n - r - 1, n) formulae. Moreover, 
our discussion in the previous two sections, notably Corollary 4.2 and Theo- 
rem 3.1, actually provides a very efficient method to construct such a formula. 
Indeed, by Theorem 3.1 and Corollary 3.3, the zeros of qn,r are distinct eigen- 
values of the symmetric matrix Tn, r. Thus, for a given Tn,r, they can be 
found numerically using one of the existing methods of computing the eigen- 
values, for example, the QR method. Once the zeros are found, the quadrature 
weights can be computed by the use of (4.3) in Corollary 4.2. We summarize 
this construction process in the following. 

Theorem 5.1. Let qn, r be a quasi-orthogonal polynomial that has a positive 
symmetric matrix representation (3.2). Let Jn, r be the positive (2n - r - 1, n) 
quadrature formula generated by qn, r. Then the nodes of the quadrature formula 
are the eigenvalues of the matrix Tn, r, and the weights of the quadrature formula 
are given by formula (4.3). 

From this point of view, in the study of positive quadrature formulae, it is 
very natural to define the quasi-orthogonal polynomial qn, r by means of the 
matrix (3.1). However, in the literature and perhaps in some applications, the 
qn, r is usually given in the form of 

(5.1) qn, r =Pn (da) + PlPn- 1 (da) + + PrPn-r(da). 

As we pointed out in ?3, not every qn, r given in this form has a symmetric 
matrix representation. But our Theorem 4.1 asserts that if qn, r generates a 
quadrature formula, then it must have a positive symmetric matrix represen- 
tation. In [12], we discussed the symmetric matrix representation of qn,r and 
used such representations to study the quadrature formula. But our discussion 
there takes (5.1) as the starting point, and we found, for r = 2, 3, the class 
of quasi-orthogonal polynomials in (5.1) that have a symmetric matrix repre- 
sentation. This requires explicit formulae for Tk and (k in terms of Pk. The 
complexity of these formulae for r > 3 is the main reason why we restricted 
our discussion in [12] to r = 3. The fQrmulae developed in [12] allow us to 
state the characterization in Theorem 4.1 in terms of Pk . We give the results 
in the following. 

For r = 1 , the quasi-orthogonal polynomial is qn, I = Pn(da) + PIPn-i (da), 
and it generates a (2n - 2, n) quadrature formula with respect to da. In this 
case, it is well known that all (2n - 2, n) quadrature formulae are positive, and 

qn, 1 has a positive symmetric matrix representation with a, = P1 . 
We list the next two cases as corollaries. The case r = 3 actually includes the 

case r = 2, since qn, 3 becomes qn, 2 when p3 = 0 and our definition of the 
matrix representation is consistent with this fact. However, we still state these 
two cases separately in the following, as we feel that our results may be better 
illustrated this way. The derivation of the formulae below are carried out in 
[12]. 

Corollary 5.2. Let qn, 2 be a quasi-orthogonal polynomial defined by 

qn,2 =Pn(da) + Plpn-I(da) + p2pn-2(da). 

Then the (2n - 3, n) quadrature formula generated by qn, 2 is positive if, and 
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only if, P2 < an-2/an- 1. Moreover, qn, 2 has a positive symmetric representation 
with 

U2 = Pt z 1- an_1P2 

an-2 

Corollary 5.3. Let qn, 3 be a quasi-orthogonal polynomial defined by 

qn, 3 = Pn (da) + PlPn- I (da) + P2Pn-2 (da) + p3pn_3(da). 

Then the (2n - 4, n) quadrature formula generated by qn,3 is positive if, and 
only if, 

a-I~ an1IP3 ((anlI ) 2~O 
An := I - a P2 + - (bn-2 - bn- + an-pI) - a3 P3 > 0 

an-2 an-2an3 an-3 

Moreover, qn,3 has a positive symmetric representation with 

an-I= P322=P1 p3, z1= An(p1,p2,p3) 
an-3 an-3 

The complexity of the characterization of the positive quadrature formulae 
in terms of Pk in (5.1) increases rapidly as r increases. Therefore, for r > 3, 
our characterization of a positive quadrature for qn, r given in the form of (5. 1) 
becomes difficult to apply. 

Often in the applications, we want to have some knowledge about the location 
of the quadrature nodes. Suppose that the measure a has compact support 
[a, b]; we would like to know when a positive (2n - r - 1, n) quadrature 
formula with respect to da has all its nodes inside [a, b]. By Theorem 4.1, 
this is equivalent to asking when the zeros of the quasi-orthogonal polynomial 
qn, r are located inside [a, b]. This question has been addressed in [10, p. 46] 
for r=l,in[6]for r=2,in[12]for r=3,andin[7,8, 11]forgeneral r. 
We shall follow the approach used in [12], which is based on a representation 
of the largest (and the smallest) eigenvalue of a symmetric tridiagonal matrix 
in [2], (see also [5]). The result that we need is as follows. 

Theorem 5.4. Let Jn be any truncated Jacobi matrix of the form (2.3). Let the 
largest and the smallest eigenvalue of Jn be denoted by ,n and ,j, respectively. 
Then with X = {XI, ... , Xn+I } ranging over all sequences such that XI = x0, 

Xn+1=0, andXk>O, 2<k<n,onehas 

(5.2) 4j=max min bkl - 2Xk+ 
X 1<k<n XkJ 

and 
a2 

(5.3) ~ n= min max bklI + a_k2 + Xk+I 
X l<k<n Xk 

In [2], this theorem was stated in terms of the entries in a nonsymmetric 
tridiagonal matrix corresponding to the monic orthogonal polynomials. For 
convenience we restated it here in terms of the symmetric matrix which corre- 
sponds to the orthonormal polynomials. Let the zeros of qn, r be denoted by 
tk, n and ordered by tIn < t2n < < tnn . If qn, r generates a positive quadra- 
ture formula, then it has a positive symmetric matrix representation. We apply 
Theorem 5.4 to this matrix representation of qn r. 
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Theorem 5.5. Suppose that a is supported on [a, b] and qn, r has a positive 
symmetric matrix representation. Then the zeros of qn,r are all located inside 
[a, b] if and only if 

(5.4) qn-k, r-2k(b) > 0, ()-1) qn-k, r-2k(a) > O, 0 < k < 
[2 

where the polynomials qnk, r-2k are related to qn,r as defined in (3.3). 
Proof. To simplify the notation, we use the notation Qk in (3.4). The condition 
(5.4) in terms of this notation becomes 

Qn-k(b) > 0, (_ )n-kQn-k(a) > 0, 0 < k < [r/2]. 

Since Qn-[r/2]-l = Pn-[r/2]-l , by (2.5) we obtain that (5.4) is equivalent to 

(5.5) QQk(b) >0, Qk(a) <0 n - rr 

Suppose now that conditions (5.5) are satisfied. By Theorem 4.1, tk,n are 
eigenvalues of a symmetric tridiagonal matrix in (3.1). We apply Theorem 5.4 
to the polynomial qn, r by choosing 

Xk= * Qk-I (a)0 1kn 
Xk =-ak2 Qk(a) 

> 02 a < k < n 

where the positivity of Xk follows from (5.5) and from a*_2 > 0. With this 
choice we get rid of the maximum in (5.2). Let the expression inside the braces 
be defined by t* . Using the three-term relation, we have for 1 < k < n - 1, 

* b* (ak Xk+2 k k-I Xk 
X+ 

b- 1+ a* Qk-2(a) + a* Qk(a) a 

Since by definition of Qn we have 

an-lQn = (x - b*)Qn-I -a* 

the nth inequality becomes 

* Qn-2(a) Qn (a) t 
=b*-I+a=a - a ~ >a. 

Therefore, from (5.2), we conclude ti,n > mink tk > a . The case of the largest 
zero tn, n < b is proved similarly. 

On the other hand, suppose all zeros of Qn = qn,r are inside (a, b). By 
Theorem 3.2, the zeros of Qk and Qk- 1 separate each other. Therefore, all 
zeros of Qk, 0 < k < n - 1, are inside (a, b). By (3.3), Qk(x) = YkXk 

+ ... and Yk > 0, so that signQk(b) = signQk(oo) = 1. Therefore, the first 
inequality of (5.4) holds. Similarly, we have signQk(a) = (_1)k, which implies 
the second inequality of (5.4). O 

This theorem was proved in [9] using Sturm's Theorem. For qn, 1 the con- 
dition (5.4) is given in [12, p. 46]; for qn,2, these conditions are equivalent to 
those given in [6]. See also [7, 8] for a different characterization. Our method 
follows what we used for the case r = 3 in [12], which is different from the 
previous ones. 
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