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ON A THEOREM OF C. POSSE 
CONCERNING GAUSSIAN QUADRATURE OF CHEBYSHEV TYPE 

KLAUS-JURGEN FORSTER 

ABSTRACT. We consider (n, m) Chebyshev formulae of algebraic degree m 
using n nodes. The aim of this short note is to show that by a simple algebraic 
method C. Posse's theorem conceming Gaussian quadrature of Chebyshev type 
can be improved. Furthermore, we given an application of this method to 
Gauss-Kronrod quadrature of Chebyshev type. 

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT 

Let L be a (bounded) linear functional on C[a, b]. We say that L admits 
an (n, m) Chebyshev formula if there are n nodes XC E JR such that 

( 1) L[p4= L[ pI(Xc, n? for u=O, ,. ..,m, 
v=1 

where, here and in the following, pu denotes the monomial p1(x) = xu . 
Chebyshev formulae have been investigated for more than a hundred years 

(see, e.g., [6] and the references cited therein). They were first considered by 
Chebyshev [3], who showed that the linear functionals Ta, fi, 7 

(2) Ta,fl,y[f ] := V j fj2 dxI a, fl, y E R 

admit (n, 2n - 1) Chebyshev formulae for each n E N, i.e., that each Gaussian 
quadrature formula is of Chebyshev type. Let us additionally note that the linear 
functionals S ,,: 

(3) S^,,[]:=lf(4), lj1,4E R, 

trivially admit (n, m) Chebyshev formulae for all n, m E N. By a result of 
Posse [ 1 1], T, fl, y and S,7, are the only linear functionals on C[a, b] admit- 
ting (n, 2n - 1) Chebyshev formulae for each n E N. Recently, using methods 
of complex analysis and Faber polynomials, Peherstorfer [8] has proved the 
surprising result, that T f, , y and S,, , also are the only (positive) linear func- 
tionals on C[a, b], admitting (1, 1) and (n, n + 1) Chebyshev formulae for 
each n E N\{ 1}. For other improvements of Posse's result see, e.g., [6, 5, 9]. 
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The aim of this note is to show that by a simple algebraic method, introduced 
by Radau [ 12] and extended, e.g., in [2, 1, 4], we can obtain more general results. 
This method is based on Newton's identities (see, e.g., [10, p. 150 ff]), which, 
for n arbitrary complex numbers zr,, yield 

r +a, = 0, 
( S2+alsl+2a2=0, 

(4) t...... 
|Sn-I + alsn-2 + * * + an-2S1 + (n - )a,-, = , 
SA+n +a,sA+n-I + + an_ISA+l +ansA = (A= 0, 12 ... 

where 
n 

5 s=~~~~~~zI ( ,=, 1, 2, .........) 
v=1 

F(t) = (t- z1)(t- Z2) (t -Zn) =tn + altn-I + + an-it +an- 

Theorem. Let (nj)l= be a strictly increasing sequence of natural numbers. Let L 
and H be linearfunctionals on C[a, b], both admitting (ni, ni+i) Chebyshev 
formulae for each i EN . If 

(6) L[p] = H[p] for = 0, 1, ...,n, 

then the identity L = H follows. 
Proof. First, let L[po] : 0. Applying Newton's identities to (1), we get for 
i = 1,2, ... 

nn 
(7) E(xcn ),U = L[ ]L[pu] for 0 ,1,I... ni+l . 

v=1 
n 

L[po] 

For given L[po], L[pj], ... , L[pni] we directly obtain that the values of L[p] 
are uniquely determined for each ,u E {0, 1, 2, ... , nji }. Using (6), we 
have L[p] = H[p,] for each ,u E N0. Since L and H are bounded, by the 
approximation theorem of Weierstrass the result follows. If L[po] = 0, then 
with (1) we have L = H =0. cl 

The following corollary extends the results on Chebyshev formulae men- 
tioned in the introduction. 

Corollary 1. Let (nj)=1 be a strictly increasing sequence of natural numbers. Let 
L be a linearfunctional on C[a, b] admitting (ni, ni+i) Chebyshevformulae 
for each i E N. Then there exist 17, 4 E R or a , y E R, such that, using the 
notations in (2) and (3), 

(i) L=S7, if nI=1, 
(ii) L=S?7, orL=Ta,fl,y if nI=2 and ni+I<2ni for each iEN. 

Proof. As in the proof of the theorem, we can assume that L[po] 5 0. First, 
let L[p2]L[po] = L2[p, ]. We define 
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We have L[p,] = H[p,] for ,u = 0, 1, 2; therefore, the result follows from the 
theorem. Now let L[p2]L[po] > L2[pl]. We define 

a9 L[po] TL[pl I-J Y L[pl] + , 

a = [2(L[P2]L[po] - L2[pl])]1/2 

A short calculation, using 

(10) H[fI=aJ f(Y2f y+ 2 y2)(1y2)-1/2dy 

gives L[p,] = H[p,] for ,u = 0, 1, 2. Since H admits (n, 2n - 1) Chebyshev 
formulae for each n E N, the result follows from the theorem. Finally, let 
L[p2]L[po] < L2[p,]. This inequality is equivalent to the inequality 

(11) )2 )2 < (Xc 2 /2 

which is impossible for real numbers. 51 

Remarks. 1. We say that a linear functional L on C[a, b] admits extended 
(n, m) Chebyshev formulae if xCn E C XC n real or complex conjugate, and 
(1) holds. Newton's identities (4) are valid for zv E C, and therefore the 
theorem is also valid for extended Chebyshev formulae. 

2. In the proof of Corollary 1, we see that (11) is possible if and only if 
xc xC E C, xC = u + iv, x2C = u - iv, and v 0. We obtain 1,2' ~ 2,2 1,222 

L[pl] = uL[po], L[p2] = (U2 v2)L[po]. Defining f := (P - upo)2 + v2po/2, 
we have 

(12) L[f I=-v2L[po], f>O, 

which is impossible if L[po]L is a positive functional. Therefore, for posi- 
tive functionals L, Corollary 1 also is valid for extended Chebyshev formulae. 
For ni = i + 1 this has been proved in [8]. 

3. In Corollary 1 (ii) the assumption ni+I < 2ni cannot be omitted: consider 
the functional Si , , , defined by S: , , Jf ] = 2 [f(g I) + f(g2)I, which admits 
(2n, m) Chebyshev formulae for all n, m E N. 

4. In Corollary 1, we only have considered n, = 1 or n, = 2. For n, > 2, 
using the method described, we are also able to investigate linear functionals 
admitting (extended) Chebyshev formulae. The author intends to state such 
results and further applications in a forthcoming paper. 

2. APPLICATION TO CHEBYSHEV FORMULAE HAVING PREASSIGNED NODES 

The above method is also helpful if some of the nodes xC, of the Chebyshev 
formulae are preassigned. As an example, we assume that the linear functional 
L also admits a Gaussian formula of order k; i.e., there exist k nodes xG v,k 
and k weights aG k e R such that 

k 

(13) Lp=Ea G (XGk for= 1, ..., 2k - i. 
V=1 
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If L[po] : 0, then a Gaussian formula of order 1 trivially always exists and is 
uniquely determined by 

(14) XG =L[pi]/L[po]. 

If there exists also a (3, 2) Chebyshev formula such that xGl is one of its 
nodes, then a short calculation using (13) and (1) shows that 

XC43:= X1, 1 X2, 3 1, 3 /2yi, X3C 3 = X1, 3 + N3/2y, 

(15) 1 
= L[po] LUo]LU2]-L2L1] 

Therefore, it is necessary and sufficient for the existence of such a (3, 2) Cheby- 
shev formula that 

(16) L[po]L[p2] > L2[pl]. 

Furthermore, if this (3, 2) Chebyshev formula is also a (3, 3) Chebyshev 
formula, then it follows that 

( 17) L[P3 ] = L2[Pu I (3L[po]L[p2] - 2L2 [p,]). (17) L[p3] = ~L2[ 

Inequality (16) is equivalent to the existence of a (2, 2) Chebyshev formula, 

(18) xc 1 x-c i x 

where y, is defined in (15). A further short calculation shows that this (2, 2) 
Chebyshev formula is also a (2, 3) Chebyshev formula, i.e., a Gaussian formula 
of order 2, if and only if (17) additionally holds. Therefore, the existence of a 
(3, 3) Chebyshev formula using the node xGl is equivalent to the existence 
of a (2, 3) Chebyshev formula. 

Now, one may ask, e.g., if there exists an (n, m) Chebyshev formula hav- 
ing some of the nodes xG of a Gaussian formula of order k. In this sit- v,k 
uation, using methods from the theory of orthogonal polynomials, Notaris 
[7], for positive L, has recently proved the following interesting result: If, 
for each n E N, there exists a (2n + 1, 3n + 1) Chebyshev formula with 
{x1nIv = 1, 2, n., n} C {Xc2n+IV = 1, 2, ..., 2n + 1}-i.e., these Cheby- 
shev formulae are so-called Gauss-Kronrod formulae-then L is of type S.,, 
being defined in (3). The following Corollary 2 extends this result. 

Corollary 2. Let L be a linear functional admitting a (3, 4) Chebyshev formula 
and (2n + 1, 2n + 3) Chebyshev formulae for each n E N\{1} . For L[po] : 0, 
let the node XG o of the Gaussian formula of order 1 be a node of the (3, 4) 
Chebyshev formula, and let the two nodes XG 2G of the Gaussian formula of 
order 2 be nodes of the (5, 7) Chebyshev formula. Then, there exist 7, 4 E ]R 
such that L = SI . 
Proof. Let L[po] : 0. The existence of a (3, 3) Chebyshev formula using the 
node xfG implies that the Gaussian formula of order 2 is a (2, 3) Chebyshev 
formula; see (17) and (18) above. If there exists a (5, 3) Chebyshev formula 
having nodes xc5 := xG2 = xfc2 and xc5 := x2 = xc2, then a short 



GAUSSIAN QUADRATURE OF CHEBYSHEV TYPE 723 

calculation using 

L[p,u] = 5 {E(XVC,2) 
" + E (XVC, )} 

(19) V=1 v=3 

5 {2L[PA +(c>u}, 5) for =,l,2,3 

shows that {4f , 45, 451 = {x 3, 3, 431 , and therefore, since this 

(5, 3) Chebyshev formula is also a (5, 4) Chebyshev formula, it follows that 

L[p0Ir3 ~ 2 

(20) L[p4] = L { , )4 + (XCv )4 

On the other hand, the existence of a (3, 4) Chebyshev formula having a node 
xcf3 =XG 1 yields the identity 

(21) L[p4] - L[po] 
3 

)4. (21) L[P41 3 Z (4XVC. 
v=1 

By comparing (20) and (21), it follows from(15) and (18) that 

(22) L2[po]y,2 = L[po]L[p2] - L2[pl] = 0. 

Therefore, all nodes xC?3 and XC are equal to x 1. Since the (5, 4) Cheby- 
shev formula is also a (5, 7) Chebyshev formula, we have L[p] = S1,[p] 
for ,u = 0, 1, ... , 7, where I and 4 are given in (8). The result now follows 
from the theorem. If L[po] = 0, then with (1) we have L -0, which is- fulfilled 
for S,7, with t = 0. cl 

By Corollary 1 it follows that, if there exists a (2, 3) Chebyshev formula 
and (2n + 1, 2n + 3) Chebyshev formulae for each n E N, then L is of type 

S1,, or Ta,ly. For (2n + 1, 2n + 2) Chebyshev formulae, using the above 

method, we have the following result. 

Corollary 3. Let L be a linear functional admitting (2n + 1, 2n + 2) Chebyshev 
formulae for each n E N. For L[po] $ 0 let xG1 = L[pI ]/L[po] be anode of 
each of these (2n + 1, 2n + 2) Chebyshev formulae. Then there exist t1, 4 E R 
or a, f3, y E R such that L = SI, or L = Ta fl. 
Proof. Let L[po] 0 0. Since L admits a (3, 2) Chebyshev formula having the 

node x3 := xG , the relations (15) imply that L[po]L[p2] > L2[pl]. There- 

fore, there exists a functionalH of type S1,, or Ta ,, such that H[p] = 

L[p] for ,u = 0, 1, 2-see the proof of Corollary 1. Now assume that, for 

given n EN, 

(23) H[p] = L[p] foru =0, 1, ...,2n. 

In the following, by xCH we denote the nodes of the (n, 2n - 1) Chebyshev 

formula of H. Using (1), we have 

2n+1 Lrpu 
(24) Z (XVC 2n+1 )/ = (2n + 1) L>p] for i =0, 1,..., 2n + 2. 

v=1 [o 
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From (23) it follows that the nodes xc 21+1, x x2Cn+l,2n+l are also 
the nodes of a (2n + 1, 2n) Chebyshev formula of H. Let F2cn+ and F2CH 
be the polynomials 

2n+1 2n+1 

(25) Ffc+l (t) = JJ (t-&<2n+1), FfCf1(t) = Jl (t-XCH +1). 
2=1 X=1 

Newton's identities (4) and (5) now show that FEn+ I(t) - F2Cn4[ (t) is equal to 
a fixed constant c for all t E R. Since x 1 is a zero of F2CnH and since 
x 1 is also a zero of FfC+1, it follows that FfCn+ F2CnH. Therefore, (24) 
yields H[p] = L[p,,] for ,u = 0, 1, 2, ..., 2n + 2. Now, by induction, we 
have H[p] = L[p,] for each u E N, which, using the approximation theorem 
of Weierstrass, yields L = H. C1 
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