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ON A THEOREM OF C. POSSE
CONCERNING GAUSSIAN QUADRATURE OF CHEBYSHEYV TYPE

KLAUS-JURGEN FORSTER

ABSTRACT. We consider (n, m) Chebyshev formulae of algebraic degree m
using n nodes. The aim of this short note is to show that by a simple algebraic
method C. Posse’s theorem concerning Gaussian quadrature of Chebyshev type
can be improved. Furthermore, we given an application of this method to
Gauss-Kronrod quadrature of Chebyshev type.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let L be a (bounded) linear functional on C[a, b]. We say that L admits
an (n, m) Chebyshev formula if there are n nodes x¢ , € R such that

(1) L[p,,]=-L[nL°]Z(xVC,,,)# foru=0,1,...,m,
v=1

where, here and in the following, p, denotes the monomial p,(x) = x*.

Chebyshev formulae have been investigated for more than a hundred years
(see, e.g., [6] and the references cited therein). They were first considered by
Chebyshev [3], who showed that the linear functionals T, g ,,

! f(x)
(2) Topylf =0 dx, a,p,7€R,
b 5 VIx—BlIx — 7]
admit (n, 2n—1) Chebyshev formulae for each n € N, i.e., that each Gaussian
quadrature formula is of Chebyshev type. Let us additionally note that the linear
functionals S, ¢,

(3) Sn,é[f]:= nf(é)s ﬂ,feR,

trivially admit (n, m) Chebyshev formulae for all n, m € N. By a result of
Posse [11], T, g, and S, ¢ are the only linear functionals on C[a, b] admit-
ting (n, 2n—1) Chebyshev formulae for each n € N. Recently, using methods
of complex analysis and Faber polynomials, Peherstorfer [8] has proved the
surprising result, that T, z , and S, . also are the only (positive) linear func-
tionals on C[a, b], admitting (1, 1) and (n, n+ 1) Chebyshev formulae for
each n € N\{1}. For other improvements of Posse’s result see, e.g., [6, 5, 9].
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The aim of this note is to show that by a simple algebraic method, introduced
by Radau [12] and extended, e.g., in [2, 1, 4], we can obtain more general results.
This method is based on Newton’s identities (see, e.g., [10, p. 150 ff]), which,
for n arbitrary complex numbers z, , yield

si+a; =0,

S +ai1s1+2a, =0,
(4) e

Sn—1+a1Sp—2+---+ay-251+(n—1a,_1 =0,

Sitn + ASpen—1 + -+ An_1S41 + ans; =0 (1=0,1,2,...),
where

n
se=Y.z¢  (u=0,1,2,...),

(5) v=1

Fy=(t—-z)(t—z2) - (t—zn)="+ait" '+ - 4+ a,_1t +an.

Theorem. Let (n;)2, be a strictly increasing sequence of natural numbers. Let L
and H be linear functionals on Cla, b], both admitting (n;, n;y1) Chebyshev
SJormulae for each i e N. If

(6) L[p#]=H[pll] fory:O,la"'s’“)

then the identity L = H follows.

Proof. First, let L[pg] # 0. Applying Newton’s identities to (1), we get for
i=1,2,...

n
C __hi _ '
(7) g(x,,,n,)ﬂ_mupﬂ] foru=0,1,..., n1.

For given L[po], L[p1], ..., L[ps] we directly obtain that the values of L[p,]
are uniquely determined for each u € {0,1,2,..., n;1}. Using (6), we
have L[p,] = H[p,] for each u € Ny. Since L and H are bounded, by the
approximation theorem of Weierstrass the result follows. If L[py] = O, then
with (1) wehave L=H=0. O

The following corollary extends the results on Chebyshev formulae men-
tioned in the introduction.

Corollary 1. Let (n;)2, be a strictly increasing sequence of natural numbers. Let
L be a linear functional on Cla, b] admitting (n;, n;r1) Chebyshev formulae
Jor each i € N. Then there exist n, £ €R or o, B,y € R, such that, using the
notations in (2) and (3),

(i) L=Sy ¢ ifn=1,

(i) L=S,,¢g or L=T, g, if ny=2 and n;;, < 2n; for each i € N.
Proof. As in the proof of the theorem, we can assume that L[pg] # 0. First,
let L{p,]L[po] = L*[p:]. We define

(8) H=358y, n=Llpl, &= LIp1]l/LIpo]).
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We have L[p,] = H[p,] for u =0, 1, 2; therefore, the result follows from the
theorem. Now let L[p,]L[po] > L*[p;]. We define

= _Lip]l ,_Lpl-6 __Lipl+d
H=T,p,y, a_T’ ﬂ—m—, 7—‘—LE]—‘,

¢ = [2(L[p2lLIpol - L*[p1])]"/>.

A short calculation, using
-5 ! - + -
a0 m=af (S ) -,

gives L[p,] = H[p,] for u=0, 1, 2. Since H admits (n, 2n—1) Chebyshev
formulae for each n € N, the result follows from the theorem. Finally, let
L{p2]L[po] < L?[p;]. This inequality is equivalent to the inequality

(11) (X 2)% + (x5 2)* < (xf 5 + x5 5)%/2,

&)

which is impossible for real numbers. 0O

Remarks. 1. We say that a linear functional L on C[a, b] admits extended
(n, m) Chebyshev formulae if xC eC, x,,c » real or complex conjugate, and
(1) holds. Newton’s identities (4) are valld for z, € C, and therefore the
theorem is also valid for extended Chebyshev formulae.

2. In the proof of Corollary 1, we see that (11) is possible if and only if
xCp, x5, €C, xf, =u+iv, x{, =u—iv,and v # 0. We obtain
L{p] = uL[po], Llp2] = (u*> —v*)L[po]. Defining f := (p; — upo)? + v’po/2,
we have

(12) LIf1=—5vLiml,  [>0,

which is impossible if L[pyg]L is a positive functional. Therefore, for posi-
tive functionals L, Corollary 1 also is valid for extended Chebyshev formulae.
Forn; =i+ 1 this has been proved in [8].

3. In Corollary 1(ii) the assumption 7;,; < 2n; cannot be omitted: consider
the functional S, ¢, ¢, defined by S, ¢ &[f1= 2[f(&)+f(&)], which admits
(2n, m) Chebyshev formulae for all n, m € N.

4. In Corollary 1, we only have considered n;, =1 or ny = 2. For n; > 2,
using the method described, we are also able to investigate linear functionals
admitting (extended) Chebyshev formulae. The author intends to state such
results and further applications in a forthcoming paper.

2. APPLICATION TO CHEBYSHEV FORMULAE HAVING PREASSIGNED NODES

The above method is also helpful if some of the nodes x, ,, » of the Chebyshev
formulae are preassigned. As an example, we assume that the linear functional
L also admits a Gaussian formula of order k; i.e., there exist k nodes xG k

and k weights a%, € R such that

k
(13) Lip, )= af ((xg  )* foru=0,1,...,2k—1.

v=1
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If L[po] # 0, then a Gaussian formula of order 1 trivially always exists and is
uniquely determined by

(14) x{ y = LIp]/Llpol.
If there exists also a (3, 2) Chebyshev formula such that le,1 is one of its
nodes, then a short calculation using (13) and (1) shows that

C

e G c _ .C
X1,3 = X1,15 x23—x13 V3/2y, Xx33=x13+v3/2y,

15
(15) w = m\/L[pO]L[pz] - L2[p,].

Therefore, it is necessary and sufficient for the existence of such a (3, 2) Cheby-
shev formula that

(16) LipolLlp2] > L?[p1].

Furthermore, if this (3, 2) Chebyshev formula is also a (3, 3) Chebyshev
formula, then it follows that

an Lip) = T BLiplL] - 2.

Inequality (16) is equivalent to the existence of a (2, 2) Chebyshev formula,
(18) x{o=x0 1 ~v,  x,=x{ +y,

where y is defined in (15). A further short calculation shows that this (2, 2)
Chebyshev formula is also a (2, 3) Chebyshev formula, i.e., a Gaussian formula
of order 2, if and only if (17) additionally holds. Therefore, the existence of a
(3, 3) Chebyshev formula using the node xﬁ , is equivalent to the existence
of a (2, 3) Chebyshev formula.

Now, one may ask, e.g., if there exists an (n, m) Chebyshev formula hav-
ing some of the nodes xG & of a Gaussian formula of order k. In this sit-
uation, using methods from the theory of orthogonal polynomials, Notaris
[7], for positive L, has recently proved the following interesting result: If,
for each n € N, there exists a (2n + 1, 3n + 1) Chebyshev formula with
xZalv=1,2,...,n} C{x$,,4lv=1,2,...,2n+ 1}—i.e., these Cheby-
shev formulae are so-called Gauss-Kronrod formulae—then L is of type S, ¢
being defined in (3). The following Corollary 2 extends this result.

Corollary 2. Let L be a linear functional admitting a (3, 4) Chebyshev formula
and 2n+1, 2n + 3) Chebyshev formulae for each n € N\{1}. For L[po] #0,
let the node x{ | of the Gaussian formula of order 1 be a node of the (3, 4)
Chebyshev formula and let the two nodes xl 25 x2 , of the Gaussian formula of
order 2 be nodes of the (5, 7) Chebyshev formula Then, there exist n,& € R
such that L= S, ¢ .

Proof. Let L[po] # 0. The existence of a (3, 3) Chebyshev formula using the
node xﬁ , implies that the Gaussian formula of order 2 isa (2, 3) Chebyshev
formula; see (17) and (18) above. If there exists a (5, 3) Chebyshev formula
having nodes x{ s := x{, = x{, and x{ = x{, = x§,, then a short
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calculation using

Llp,] = L[m] {Z(x,, )# +Z(x,, 5)”}

v=3

Lpo] L[P]
= SO{L[p#]-'-Z( "} foru=0,1,2,3

shows that {x{ 5, x{ s, x{ s} = {x{ 3, x5 3, x{ 3}, and therefore, since this
(5, 3) Chebyshev formula is also a (5, 4) Chebyshev formula, it follows that

2
(20) Lipy) = 120! {Z xC )t +Z<xf,2>4}.
v=1

v=1

(19)

On the other hand, the existence of a (3, 4) Chebyshev formula having a node
x{ 3 =x{ yields the identity

3
1) Lipal = 2O S (¢
v=1
By comparing (20) and (21), it follows from(15) and (18) that
(22) L’[poly? = L[Po]L[pz] - Lp] =

Therefore, all nodes x¢ ; and x{ 5 areequal to x{, . Since the (5, 4) Cheby-
shev formula is also a (5, 7) Chebyshev formula, we have L[p,] = S, ¢[pu]
for u=0,1,...,7, where n and ¢ are given in (8). The result now follows
from the theorem. If L[po] = 0, then with (1) we have L = 0, which is fulfilled
for S, ¢ with n=0. O

By Corollary 1 it follows that, if there exists a (2, 3) Chebyshev formula
and (2n+ 1, 2n + 3) Chebyshev formulae for each n € N, then L is of type
Sy,e or T, g ,. For (2n+ 1, 2n + 2) Chebyshev formulae, using the above
method, we have the following result.

Corollary 3. Let L be a linear functional admitting (2n+1, 2n+2) Chebyshev
Jormulae for each n € N. For Lipy] # 0 let xﬁl = L[p1]/L[po] be a node of
each of these (2n + 1, 2n + 2) Chebyshev formulae. Then there exist n, ¢ € R
ora,B,yeR suchthat L=S, s or L=T, 3 ,.

Proof. Let L[py] #0. Since L admitsa (3, 2) Chebyshev formula having the
node x{ ;:=x{,, the relations (15) imply that L[po]L[p2] > L?[p\]. There-
fore, there exists a functional H of type S, ¢ or T, gz , such that H[p,] =
L[p,] for u = 0,1, 2—see the proof of Corollary 1. Now assume that, for
given n € N,

(23) Hip,]=L[p,] foru=0,1,...,2n.
In the following, by x,,C’,{ we denote the nodes of the (n, 2n — 1) Chebyshev

formula of H . Using (1) we have

2n+1 L[p ]
C u— -~ 7 =
(24) > xE gni1) (2n+1)L[p0] foru=0,1,...,2n+2.

v=1
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From (23) it follows that the nodes x{ 5, ;. X5 5,15 -« » x2Cn+1 ane1 A€ also
the nodes of a (2n + 1, 2n) Chebyshev formula of H. Let Ff , and FGH|
be the polynomials

2n+1 : 2n+1
(25  Foa(0)= H (t = xS 2011) > Fel @) =[] - x55,.,0)-
v=1

Newton’s identities (4) and (5) now show that F (1) — FGH (1) is equal to
a fixed constant ¢ for all t € R. Since x{, is a zero of F{ ¥, and since

x¥ is also a zero of Ff ,, it follows that Ff , = FH . Therefore, (24)
yields Hip,] = L[p,] for n=0,1,2,...,2n+ 2. Now, by induction, we
have H[p,] = L[p,] foreach u €N, wh1ch using the approximation theorem

of Weierstrass, yields L=H. 0O
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