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SOME ERROR ESTIMATES FOR THE NUMERICAL 
APPROXIMATION OF SURFACE INTEGRALS 

KURT GEORG AND JOHANNES TAUSCH 

ABSTRACT. Recently, the first author introduced a new approach to the numeri- 
cal quadrature of surface integrals in the context of boundary element methods. 
It is assumed that a global parametrization m of the surface is only indirectly 
given (e.g., via an iterative method) and that m is not accessible analytically. 
Of particular interest are parametrizations which are based on automatic tri- 
angulations of surfaces. In order to avoid an explicit reference to the partial 
derivatives of m, modified trapezoidal and midpoint rules were introduced. 
The present paper discusses some error estimates for these methods. The esti- 
mates are surprisingly difficult since &(h3)-terms have to be shown to cancel; 
this does not occur in the expansion of the standard rules. 

1. INTRODUCTION 

Efficient numerical approximations of surface integrals are important in 
boundary element methods; see, e.g., Atkinson [1, 2], Georg and Widmann 
[4], Hackbusch [5]. 

Recently, Georg [3] introduced a new approach to the numerical quadrature 
of surface integrals. It was assumed that the surface 19 c R3 was modeled 
via a piecewise linear approximation (triangulation). Such approximations are 
typically used in panel methods. Hence, a parametrization m of the surface 
S7 is only indirectly given, e.g., via an iterative method. The main purpose of 
the new method is to avoid the handling of the partial derivatives of m via 
finite differences or interpolation. 

Throughout this paper, let 5I denote a smooth piece of the surface S7 and 
m: a -+ 5I a smooth (parameter) map. For the purposes of our discussion 
it is enough to consider the case that a = {(s, t): 0 < s, t, s + t < 1} is a 
standard triangle which is isomorphically mapped onto RI2. We consider the 
task of numerically approximating 

(1) J f dS. 
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Here, dS indicates the usual measure on S' (surface element). 
The standard approach to this task is to consider the equivalent integral in 

planar coordinates 

(2) Jf dS = jf(m(s, t)) lIms x mtII ds dt. 

Here, ms denotes the partial derivative of m with respect to the parameter s. 
In order to numerically approximate (2), a standard approach is to subdivide 
a into small triangles vi; this corresponds to a subdivision of the surface 5, 
into the pieces 1 := m(ai). Then an approximation of the integral can be 
obtained via one of the composite rules 

JfdS Z j(fom)ydsdt 

(3) ' 2 

Z3 S f(m(xi, j)) y(xi, j) area(ai), 
i j=0 

JfdS= j(fom)ydsdt 

(4) Ria 

f(M (mXi, b)) Y (Xi, b) area(ai). 

Here, the vertices and the barycenter of vi are denoted by xi, j = 0, 1, 2, 
and Xi,b, respectively, and y:= lIms x mtll. 

Methods (3) and (4) are the respective extensions of the trapezoidal and the 
midpoint rule for a triangle. 

The local error, i.e., the error of each summand, is &(h4), where h = 

maxidiam(oi). Under the summation of the composite rule, these local er- 
rors lead to a global error &(h2). It is also known (in the case of an equidistant 
subdivision) that the global error can be expanded in terms of h2, see Lyness [6]. 

If the partial derivatives of m are not available analytically, a numerical 
approximation (e.g., via finite differences or interpolation) may be considered; 
see, e.g., Atkinson [2]. An alternative approach to approximate (1) that does 
not use the partial derivatives of m was proposed by Georg [3]: 

2 

(5) Xf dS1-dj , : f E(vi, j) area[vi, 0 Vi,, I Vi,2], 

I. 1=0 

(6) J dS f (vi, b) area[vi, o, Vi, 1, V, 2]. 

Here, vi, j are the images of the vertices xi, j of vi under m and [vi, o, vi, 1, 
Vi, 2] denotes the triangle spanned by Vi, O, Vi, 1, Vi, 2 . The point Vi, b denotes 
the barycenter of [Vi, o0 Vi, 1, Vi, 2] . Therefore, we need to assume that the inte- 
grand f is extended to a smooth function defined on some open neighborhood 
of 9' so that for sufficiently small h the value f(Vi, b) is defined. 

The main result of the present paper is contained in the following 
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Theorem 1. The global discretization error of both composite rules (5) and (6) is 
&(h2) . 

Hence, our modified rules have the same global order as the corresponding 
standard composite rules (3) and (4). In contrast to standard rules, however, it 
is impossible to prove that the local error is of order four in our modified rules. 
This is the main difficulty we encounter in our analysis. We will show that the 
&(h3)-terms cancel under the summation of the composite rule. 

In fact, numerical experiments also suggest that the error of the modified 
methods (5) and (6) have an h2-expansion; an analytical demonstration of this 
observation seems to be difficult, since Lyness's [6] proof for the standard case, 
which is based on the Euler-Maclaurin sum formula, does not easily carry over 
to our case. 

2. PROOF OF THE ESTIMATE 

In this section we will sketch a proof of the above theorem. The argument 
is somewhat technical, and therefore we will leave some of the more obvious 
details to the reader. 

The subdivision {vi} of a induces a subdivision {S' } of 59 into curved 
triangular pieces. The pieces 9' are approximated by the triangles Ti := 
[vo,i, v,1i, v2, ] and the surface area of 59 is approximated by the area of 
the triangulation 9 = { Ti} of R. We assume that the subdivision {vi} of a 
does not produce arbitrarily small angles. More precisely, there are constants 
ao and al independent of h such that 

(7) ? < ao < a < a1 < Z 

holds for any interior angle a of each Ti. Thus, the sum in the composite rules 
(5), (6) is taken over & (h-2) terms. Let Pi denote the plane in which Ti is 
embedded and ni its normal vector. We project S'i in the direction of ni onto 
a set Ni c Pi and assume that h is chosen to be sufficiently small such that this 
projection is one to one. It is convenient to introduce a new parametrization of 

Let gi(x) denote the distance of a point x E R3 from S'' in direction of 
the normal ni of Pi, and let mL: R2 -+ Pi denote the parametrization of the 
plane Pi defined by 

mL(s, t) = (1 -s-t)oV,i +sVI,i + tv2,i, (s, t) E R2. 

Furthermore, we parametrize S'i via mi': N 9 ' by 

(8) m'(v) = v + gi(v)ni. 

We will need both parametrizations to prove the first result: 

(9) fdS = fA m'(1 + (h2)) dPi. 

Here, dPi denotes the standard measure in the plane Pi. 
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Proof: For an infinitesimal surface element, we have 

(10) 
dS = I1(mi ? mL)s X (mi o mL)tll ds dt 

= I(mL + g(mL) ni)s x (mL + gi(mL) ni)tl ds dt 

= Im X L + (Vgi . mfL)(mL x ni) - (Vgi . mfL)(mfL x ni)II dsdt 

= (ImfSL x mLill2 + ll(Vg, mML)(mL x ni) - (Vgi . mL)(mfL x ni)I12)2 dsdt. 

Here, the derivative Vgi is taken at mL. The last equality holds since m L x ni 
and mf1 x ni are perpendicular to mL x . Furthermore, 

(Vg,.* mL) (mL x ni) - (Vg mL)(mfL x ni)II 2 1 Vgi l IML I MtLI 

( 1 1 ) |1 lVgi ||||MsL X MtLI ||||Vgi ||||MsL X ML || 

< illiML I11Lllal < 21IInIm fiI 

because the angle a is bounded by (7). We now estimate (10) by making use 
of (1 1), and obtain 

d=lmL XmLil (1 +&(l)llVg,ll2)2dst dS = x mfrIIM (1 ds dt. 

It is well known that gi = (h2), and hence Vgi = &(h) , since the triangle T1 
is a linear approximation of the surface element 5'. This implies 

dS = Ims X mx % (1 + (h2))i dsdt = sX mt (1 + (h2))dsdt. 

Since mL is a linear parametrization of Pi, it follows that 

dS = (1 +&(h2))dPi. 

From the above equations it is clear that dS > dPi, and hence (9) follows. o 

The obvious way to proceed from here is to replace the in general irregularly 
shaped projection Ni by Ti in integral (9) . Let us first note that we have 
only the estimate I area(Ni) - area(Ti)I = &(h3), and this estimate cannot be 
improved to order four. Hence, a straightforward replacement of Ni by Ti 
would yield a local error (h3) and a global error &(h) which would be insuf- 
ficient to prove our theorem. We will show, however, that most of the &(h3) 
error terms in the approximation 

INA Pi Tf Jami dP, 

cancel under the summation over i. 
Recall that Ni and Ti = [vi,o, Vi, I, vi,2] lie in the same plane Pi. We 

consider the boundary of Ni near the edge [vi,j-i, vi,j+1] of Ti which is 
opposite to the vertex vi,j. Note that the index j is taken modulo 2. It is not 
difficult to see that for sufficiently small h this boundary can be described as a 
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curve of the form 

(12) tvi,j.1 + (1 - t)vi,j+l + ij(t)ni,, 0 < t < 1. 

Here, ni j denotes the vector in the plane Pi with unit length which is orthog- 
onal to the edge [vi,j-l, vi,j+1] and points out of T1, and 3ij denotes the 
distance of the curve from this edge in the direction of ni j. Furthermore, we 
introduce the orthogonal coordinate system of Pi corresponding to (12): 

(13) m1,j(t, s) = tvi,j1I + (1 - t)vi,j+I + sni,j. 

This is used to introduce a parametrization of 9: 

(14) fmi,j(t . s) = mi,j(t, s) + g(mi,j(t, s))ni. 

The difference between the integrals over Ni and Ti can now be expressed in 
the following formula 

(15) f fomidPi= J TomidPi+Ii,j, 

where 

(16) Iii:= j j ( f( ,j(t, s))11vi,j1 - vi,j+ l1 dsdt. 

Note that 

(17) 
i,j(t) = sinaij,(t) 11 m(tx1,j1l + (1 - t)xj,j+i) - (tvi,j-l + (1 - t)vi,j+l) 11, 

di, j (t) 

where ai,j(t) describes the angle between di,j(t) and the normal ni of T1. 
The sign of a,1j(t) is chosen so that d,1j(t) points out of the prism {v + Tn1: 

v E Ti, TERI} over Ti forpositive ai,j(t). 
The vector d ,j(t) is the error term of a linear interpolation, and hence 

11d1,j(t)HI = 6(h2). It is not possible to give an &(h)-estimate for the angle 
aij,(t); thus a straightforward estimate of (17) only leads to I,j = &(h3). 
When summing in (15) over i, these terms add up to &(h) instead of &(h2). 

To overcome this difficulty, we consider an edge [vi,j_i, vi,j+1] = [vii,j-l, 
v1'j1+ ] of two adjacent triangles Ti and Ti, . Since ai,j(t) represents the 
angle between ni and d ,j(t), and ai,,j,(t) represents the angle between ni, 
and di,j(t) = di,,1I(t), it is not too difficult to see that 

( 18) (xi, j (t) + ail, j, (t) = 13i, if , 

where f3i, , is the angle between the normals of ni and ni, . Since the edges of 
the triangles have length &(h), it is well known that f3i, p = '(h) . Therefore, 
(18) and (17) immediately imply that 
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Furthermore, the following estimate can be obtained: 

(20) Iihn,j(t, s) - hiizi,(t, -s)ll = IsI&(h). 

The estimates (19) and (20) imply the following estimates for neighboring edges: 

(21) Ii, + Ii,j, = 6(h4). 

We are now in a position to show the central estimate of this section: 

(22) Jf dS= ( JTlf?mi dP1) + &(h2). 

Proof. Given formula (9) and the notation, we have 

f dS = f ? m(1 + &(h2)) dPi 

= ( 

AJ 

A 

fo mi dPi) 
+ 

6(h2) 

+EI,j. 
It remains to estimate the last sum E j, Ii,j in which the number of terms is 
&(h-2). Most edges [vi,jl l, vi,j+l] occur in pairs and because of (21) only 
contribute an error &(h4) per pair. The number of edges which are not common 
to two triangles and which hence belong to the boundary of the triangulation, 
is only &(h-1). These edges contribute an error &(h3) per term. Taking the 
sum now yields Z j Ii, j = &(h2), and the proof is complete. o 

The conclusion of the proof of Theorem 1 now follows from standard argu- 
ments. Note that the integral 

f fom dPi IT, 
is taken over a triangle, using planar coordinates. We can hence apply the well- 
known error estimates for the standard trapezoidal and midpoint rules, see, e.g., 
Lyness [6]: 

2 
f A ml dPj - EV( o mi)(vi i, area[vi,0, vi, I , vi, 2] + &(h 4) 

(23) 2 
- 3 Zf(vi, j) area[vi,o, Vi, 1, Vii 2] + &(h 

j=0 

for the trapezoidal rule, and 

(24) Jfo m'dPi= (f om')(Vi b) area[vi,o, vi I, vi, 2]+ 6(h 

= f(vi,b) area[vi,o, vi, I , Vi,2] + &(h4) 
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for the midpoint rule. In these estimates we made use of the fact that 

vi, j = m'(vi, j), Vi, b = m'(Vi, b) + 6(h2) 

for the midpoint rule. Incorporating the estimates (23) and (24) into the central 
estimate (22) finishes the proof of Theorem 1. 

3. NUMERICAL EXPERIMENTS 

In this section we illustrate the behavior of the composite trapezoidal (3) and 
midpoint (4) rules and give numerical evidence for the following conjecture (see 
[3, Conjecture 5.1]): 

Conjecture 1. If J(h) denotes the approximation (3) or (4) of the integral (1) 
when a is uniformly subdivided, then >J(h) can be expanded in terms of h2, 
i.e., 

,J(h) = goJ + h2Ij + + h2kJk + (h2k+l) 

Note, that the first term in the expansion is the true value of integral (1). 
In our example we integrate the function f (x, y, z) = x2 + y2 + z2 on the 

surface 
S9={(x, y, z): x2+y2+ z2 = 1, x,y, z > O}. 

Then we have gJo = - for the integral. The surface 59 is parametrized in the 
following way: First, the standard triangle a is mapped affinely on the triangle 
[aei, be2, ce3] in R3; here a, b, c are positive coefficients and {ei, e2, e3} 
denotes the standard basis of R3. This triangle is mapped via the radial pro- 
jection x l x onto R1. It is possible to generate very slanted and therefore 
ill-conditioned projections onto 5I by varying the constants a, b, c. 

The meshsize of the standard triangle a is ho = 1. By subdividing a 
uniformly, we generate a sequence of meshsizes hi = 2-i. For each mesh- 
size we calculate the corresponding approximate integral >J(hi) and generate 
a Romberg tableau with entries Ti, k in the ith row and kth column in a stan- 
dard manner. Provided that the Conjecture 1 holds, we obtain the following 
error estimate (see [7, ?3.4]): 

Tik-o= (-l 1)khi2-kh2-k hi ( 1 + 6(hi-l-k) )- 

In order to verify this last estimate, we calculate the logarithmic ratio 

Ai,k= 1o4 T -Ik-go 
Ti, k --O 

and compare the numerical result with the assymptotic behavior 

(25) Ai,k = k + 1 +&(hi-k-1)- 

The following Romberg tableaus display the results for two different sets of 
coefficients a, b, c and for both composite rules (3) and (4). 
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Trapezoidal Rule: a = 1, b = 1, c = 1 
Absolute Errors Logarithmic Ratio Ai, k 

2.6e-01 
7.7e-02 1.3e-02 0.897 
2.0e-02 1.2e-03 4.3e-04 0.965 1.721 
5. le-03 8.5e-05 6.7e-06 5.6e-08 0.991 1.945 3.006 
1.3e-03 5.4e-06 l.le-07 3.1e-09 3.4e-09 0.998 1.986 2.979 2.079 
3.2e-04 3.4e-07 1.7e-09 4.le-11 2.9e-11 2.6e-11 0.999 1.997 2.983 3.128 3.433 

Midpoint Rule: a = 1, b= 1, c= 1 
Absolute Errors Logarithmic Ratio Ai, k 

6.2e-01 
2.Oe-0 I 5.3e-02 0.836 
5.3e-02 4.9e-03 1.7e-03 0.947 1.714 
1.3e-02 3.4e-04 3.2e-05 5.7e-06 0.986 1.932 2.864 
3.4e-03 2.2e-05 5.4e-07 3.9e-08 1.6e-08 0.997 1.983 2.948 3.600 
8.4e-04 1.4e-06 8.7e-09 2.3e-10 8.0e-11 6.4e-11 0.999 1.996 2.981 3.693 3.841 

Trapezoidal Rule: a = 0.5, b = 1, c = 2 
Absolute Errors Logarithmic Ratio A, k 

3.9e-01 
1.5e-01 7.4e-02 0.678 
4.3e-02 6.9e-03 2.4e-03 0.909 1.711 
1.le-02 4.7e-04 4.2e-05 4.7e-06 0.977 1.936 2.916 
2.8e-03 3.3e-05 3.6e-06 3.0e-06 3.0e-06 0.994 1.921 1.776 0.326 
7.1e-04 2.1e-06 4.7e-08 9.8e-09 2.1e-08 2.5e-08 0.998 1.985 3.135 4.127 3.556 

Midpoint Rule: a = 0.5, b = 1, c = 2 
Absolute Errors Logarithmic Ratio Ai, k 

8.6e-01 
3.8e-01 2.3e-01 0.577 
1.2e-01 2.8e-02 1.4e-02 0.860 1.527 
3.1e-02 2.le-03 4.1e-04 1.90e-04 0.962 1.854 2.550 
7.8e-03 1.5e-04 1.5e-05 8.4e-06 7.7e-06 0.990 1.928 2.404 2.265 
2.0e-03 9.3e-06 2.2e-07 9.9e-09 4.3e-08 5.0e-08 0.997 1.984 3.031 4.866 3.742 

These tableaus confirm our Conjecture 1, given the finite-precision arithmetic 
of the computer used and the &(hi-k-1) error of the asymptotic behavior of 
(25). 
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