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THE NUMERICAL EVALUATION 
OF A 2-D CAUCHY PRINCIPAL VALUE INTEGRAL 

ARISING IN BOUNDARY INTEGRAL EQUATION METHODS 

GIOVANNI MONEGATO 

ABSTRACT. In this paper we consider the problem of computing 2-D Cauchy 
principal value integrals of the form 

fF(Po;P)dP, POeS, 

where S is either a rectangle or a triangle, and F(Po; P) is integrable over S, 
except at the point P0 where it has a second-order pole. Using polar coordi- 
nates, the integral is first reduced to the form 

j2 jR(6) f(r, 0) dr d6, 

where I denotes the finite part of the (divergent) integral. Then ad hoc prod- 
ucts of one-dimensional quadrature rules of Gaussian type are constructed, and 
corresponding convergence results derived. Some inumerical tests are also pre- 
sented. 

1. INTRODUCTION 

In several engineering problems, and in particular in the application of bound- 
ary element techniques to the solution of three-dimensional elasticity problems 
(see for example [2, 3, 4, 9, 15, 22]), we have to deal with integrals of the form 

(1.1) I(F; Po) = F(Po; P)dP, Po S, 

where S denotes either a rectangle or a triangle, and F(Po; P) is integrable 
over S, except at the point Po where it has a second-order pole. These integrals 
are defined in a Cauchy principal value sense (see [20]), i.e., 

(1.2) I(F;ePO)=im F(PO;P)dP, PO S, 

where C6 is a neighborhood of P0 and e is the radius of the smallest circle 
containing C6. 
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As we shall shortly see, the value of the limit in (1.2), whenever it exists, 
depends on the particular form of C. 

Following Tricomi's presentation (see [20]) of two-dimensional Cauchy prin- 
cipal value integrals, we introduce polar coordinates (r, 0) with the origin at 
Po, and assume that in a neighborhood of Po we have 

F(Po; P) = f2(PO; ) + F (Po; P), 

where r = P - PoI and F1 (Po; P) is integrable over S . We can thus write 

F(Po; P) dP = j Fi(Po; P) dP + j f-2(Po; 0) [j -] d6, 

where R(0) and 65(e, 0) describe the contours of S and C6, respectively. 
Taking the limit as e -* 0+, we obtain 

r ~~~~~~~~~27r 
lim 

f Fi (Po; P) dP + j f-2(Po; 0) log R(6) d6 
( 1.3) +0+ s-G 

-lim f-2(Po; 0)log5(e, 6)dO. 

In particular, if we let C, be a circle with center Po and radius t, the last 
integral becomes 

{27 

logj f-2(Po; 0) da, 

and, as stated in [20], a necessary and sufficient condition for the existence of 
the limit (1.2) is 

{27 

(1.4) j f-2(P; 0))d6 = 0. 

If C, is not a circle, but nevertheless 5(e, 0) is such that 

lim ( e 6) = 0(o) 

then 

I(F; PO) = J F, (Po; P) dP + j f-2(Po; 0)log - d6. 

In the remaining part of the paper, C, will denote the circle with center Po 
and radius e, i.e., we shall set 65(e, 0) = e. In this case we have 

lim / f-2(Po; 0) dP 27t R() f-2(Po; 0) drd 
8-O+ jS-C r2 0 R r 

where the symbol I indicates the finite part (see (2.1) and (2.2) of [10]). If we 
use this latter definition, we need only consider a triangular region of integration 
with vertex at P0, since any polygon S, with Po S , can be thought of as the 
union of triangles, each one with the singularity at one vertex. 

In ?3 we will construct quadrature formulas for the more general case 
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where 

R(O) f(r, drd= R() f(r 0) - ( 0) (O, 6) 
dr R(O)f(rr f)-f(O, )log R(6). 

Once we have a rule for this type of integral, it will then be straightforward to 
obtain a corresponding formula for our Cauchy principal value integral (1.1). 
Notice that (1.5) is always defined, while (1.1) exists if and only if (1.4) is 
satisfied. However, when this latter holds, (1.5) with 61 = 0, 02 = 27r, and 
f(r, 0) = r2F(Po; P) gives us the values of (1.1). 

Several papers have been written on the numerical evaluation of (1.1); see for 
instance [5, 8, 18, 19, 21]. However, the accuracy of the methods proposed in 
these papers appears to be poor, and the methods themselves are unsatisfactory 
also from a theoretical point of view. Also the algorithm recently presented in 
[6] has a drawback, since it requires some preliminary analytic computation. 

The integration rules we propose for (1.5) are of product type; they are 
obtained by using a Gauss-Legendre (or Gauss-Lobatto) formula in the 0- 
direction, and a Gauss-Radau (or Gauss-Lobatto)-type formula for the finite- 
part integral. 

In ?2 we present two very simple rules of Gaussian type for the finite-part 
integral and derive corresponding error estimates. In ? 3 we obtain a convergence 
result for the product formulas we propose to compute (1.5) and present some 
numerical tests. 

2. GAUSSIAN RULES FOR THE FINITE-PART INTEGRAL 

Here we examine two Gaussian rules for the numerical evaluation of a finite- 
part integral of the form 

(2.1) w (x) f(x) dx 

where w(x) is the Jacobi weight function w(x) = (b - x)a(x - a)9 , a > -1, 
-1 < ,B < 0 . The two rules (with a = ,B = 0) have already been suggested in 
[19], but without any analysis of their properties. 

Although the case of importance for the approximation of (1.1) is a = ,B = 
0, here we will consider the more general integrals (2.1) since they may be 
of interest in their own. In deriving our results, we have to observe that the 
property 

fb )f(x) + yg(x) d b f(x) d b g(x) 
R(X) x) dxx + - wJ(x adx 

is valid, whereas the inequality 

fb If(x) g(x) I db?(0 fwxIf (x)I d 
de w (x) g r x a dx < ligeloo chnW (X) fa rl i dn 

does not hold in general. Also, the usual linear change of variable rule is not 
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permitted. For instance, we have 
b w(x) f dx 

= (b2a) +flf(1-t)a(l +t)flf( ft t+ 4dt 

(see (2.3) below). 
The first Gaussian formula we propose is 

(2.2) i; w(x) f(x) dx = wyf(a) + E wbf(x[) + d 

2 1 t + 1~~~~~~~= 

where the interior nodes {xI} coincide with the images in (a, b) of the zeros 
-1 < x( 4) < (4 < x( 4 < 1 of the nth-degree Jacobi polynomial 
P(4)~(x) defined in (-1, l); that is 

I= 2x( - a 2- i -t,..,n 

The coefficients {wi} are given by the expressionss 

____(bha) B 
l) i =1 .,n 

b= fw(x)d n, 
|2I2) 

W(X) dx=wfa wfx)+RIf 

(2.3) i=ax - a 1 
n 

log(b -a) if ca=/J=--O, 
f bW(X) d J a +f,B+l1(b) ,>+fF(a+l1)F(fl+l1) 
JaX-a x= F B ( a (a+fl+2) 

where {he in} denote the weights of the standard Gauss-Jacobi quadrature rule 

1 2 

(2.4x) j (1 d x)i( +x)f(x)dx = ( thti 
1 2 i=1 

and F(x) is the gamma function. 
Formula (2.2) is of Radau type and can be defined as the rule we obtain when 

we replace f(x) by the corresponding Lagrange interpolation polynomial. 

Remark 1. Formula (2.2) can also be obtained by "subtracting out" first the 
singularity from (2.1), i.e., setting 

(2) (dx- 
n Yx)( -f (a) )b x) 

(2.5) w(xdx [ - w(x! ' dx+fa 

Ta x a f xF-a Ja x-a 2 

IThe expressions given in the third and fourth lines of (2.3) spring directly from the definition 
of finite part of an integral (see [7]). In the case a t 0, fi = 0 there does not seem to exist a simple 
analytic expression for the corresponding integral, and thus one should compute it numerically. 
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and then applying rule (2.4) to the ordinary integral on the right-hand side. This 
implies, for instance, that the degree of precision of (2.2) is 2n, i.e., RI (f) = 0 
whenever f(x) is a polynomial of degree < 2n . Furthermore, RI (f ) coincides 
with the remainder produced by the Gauss-Jacobi formula (2.4) when the latter 
is applied to the function f(x)_f(a) 

Lemma 1. For the coefficients {wi} in (2.2) we have 
n 

I r0(logn) if, = O, 

i=O - l O(n-2fl) if,8 < . 

Proof. Since wi > O, i= 1, ...,n, and 

i=~1 i=O i=1 

it is sufficient to examine the behavior of the quantity 

E= 2 ) 1= +Xta f) 

Notice that, given any 0 < ( < 2, we have 

E Z + X1a ' ) E I + 0(1). 
j1+X (a, l)j(<5 1 

Furthermore, since by [17, (15.3.14) with a, ,B interchanged, and (8.9.1)]2 the 
relation 

(2.6) hia fl) 2f+ 1n1 , i2fl+ ln -21-2 1 1 

where 6i = arccosx(a,) , holds uniformly with respect to i and n for e < 

6i < , we have 

i 02l-1 'n-1 , i2fi- 1 n-2fi 

1 + x (a, 

When ,B = 0, then 

Z u4I <c E =0(log n), 
Il+x(R #)l<di=l 

while for < 0, 
n 1 

wi < cn-2Z =0Y(n-2). 5 

l1+x (a, ?) 1 <,5 i=1 

Remark 2. We recall that the quantity Kn = EZ=0 IwlBI represents the condition 
number for the quadrature sum. Its growth rate is very mild; it is the same as 
that for the case of a 1-D Cauchy principal value integral (see [13]) when we use 
interpolatory type rules based on zeros of Jacobi polynomials. Here are some 

2And also recalling that Pn( - n 
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computed values in the case a = -1, b = 1, a = fl = 0: 

n 2 4 8 16 32 64 128 
Kn 5.31 7.64 10.28 12.83 15.54 17.28 21.04 

From Remark 1 it would be straightforward to derive for the remainder term 
R1(f ) the bound O(n k+1)w(f(k); n-1), whenever f E Ck[a, b, ], k > 1. 
However, by proceeding differently, when ,B = 0 we are able to obtain a better 
estimate (when -1 < ,B < 0, see Remark 3 below). 

Theorem 1. Assume f E Ck[a, b], k > 1, and fi = 0, in (2.2). Then 

(2.7) RI(f) = O(n-k)(f(k); n-1), 

where (w(f(k); *) denotes the modulus of continuity of f(k) in [a, b]. 
Proof. First we recall (see [16]) that for each integer n > 2k + 1 there exists a 
polynomial qn(x) of degree n such that 

I ~~~~~k 
(2.8) It(x) - qn(X) I <_ c ( +/(b -X)(x - a) ) o(f (k); n-1). 

Then (with xI = a) we write 

R(If) = w (x)J( ) ( ) dx - wi'[f(xi)-qn (XI) I- n x- a i=O 

where now the integral is no longer defined in the finite-part sense, since qn (a) = 

f(a) and f E Ck[a, b], k > 1 . Notice that, in view of (2.8), in the sum above 
we need only bound the quantity 

n n h (a, ) 
Ewi(xi -a)kll < CY E i 

i=l i=1 I +XI 

since xOa = i (1 x( 0)) and k > 1. This task can be accomplished fairly 
easily once we recall the estimates used in (2.6). In this case, when e < Oi < 7r 
we obtain h ( a, ) (1 + Xa, 0)) - 1/2 n1- , and hence 

n h(a 0) 

Z , v = 0(1). 
i=1 XIa 

The derivation of (2.7) is then straightforward. 5 

The second Gaussian rule is of Lobatto type: 

(2.9) fw(x)J() dx = wg'f(a) + Zw" f(x4') + w, IIf(b) + RI'(f). 

It is of interpolatory type and the nodes {xII} are the images in (a, b) of the 
zeros of the Jacobi polynomial Pn,a+1, f) (x); its degree of precision is 2n + 1 . 
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For the coefficients w1I it is not difficult to derive the following expressions: 

w 'I (2) I (tl,X i= 1..,n, 

(2.10) wiAi = 

(, l 

(2.10) t Wn+1 2 (2 ) n+l1 
b 

I f (X) II 
wo xfw a)dx Z- 

where the ia, f) 's are the weights of the Gauss-Radau formula 

(2.11) j w(x)f(x) dx Z, 4f)f(x( +l f)) +An 
-1 i=l 

Notice that rule (2.9) can also be obtained by applying (2.11) to the ordinary 
integral in (2.5). 

The proof of the next lemma is very similar to that of Lemma 1. 

Lemma 2. For the coefficients {w'II} in (2.8) we have 
n+1 {O(log n) iif/Jl=0, 

(2.12) 1=0llP { O(l) if < - 0. 

Proof. It is sufficient to note that 

h(a+l , Al) 
i(, 

l _ 
-i(+)' i= 15 *.., n, 

hence that 

/A\Ja-iEl 
i Z II ~ (\u-a)a+ S 1 (al,4 

i=W 1 - V Ei=1 

1(b-a a+zf ha+l,fl) h za+ ,Ll) 
2 2 1 +X(a+l , f i) 1 XXa+l(l 5) 

I+(a+l )< l-X(a+ l<d i 

+ 0(1). 

By the same argument used in the proof of Lemma 1 we then obtain that the 
last two sums are both 0(logn) if ,B = 0 and Q(n-2fl) if ,B < 0. Since 

(a, l=) =0(1) we have (2.12). 5 

The next theorem is the analogue of Theorem 1 for rule (2.9) and can be 
proved in the same way. 

Theorem 2. Assume f(x) E Ck[a, b], k > 1, and ,B = 0, in (2.9). Then 

(2.13) RI I(f) = 0(n-k)w((k); n-1) 
Remark 3. Formulas (2.2) and (2.9) can be used to evaluate finite-part integrals 
of the form (see [7]) 

b f(x) 0<j<1 
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Indeed in such a situation it is sufficient to consider w(x) = (x - a)-,, that is, 
a = 0, ,B = -,u. When f E Cl[a, b], the rate of convergence of the formulas 
wouldbe 0(n-1)w(f(1); n-1) if 0 < u < 2 , O(n'logn)w(f(l); n-l) if ,u= 
l , and O(n-2+21z)wj(f(l); n-l) if I <,U < 1. When f EC Ck[a, b], k > 2, the 
bound Q(n-k)w)(f(k); n-1) holds for any 0 < ,u < 1. 

3. PRODUCT OF GAUSSIAN RULES FOR THE 2-D SINGULAR INTEGRAL 

In this section we will use the quadrature formulas introduced in ?2 to con- 
struct a product rule for the numerical evaluation of the integral 

(3.1) I(f) = [|2 ,R() f(r, u) drd, 
111 T0 r 

where the domain of integration is a triangle T as in Figure 1; hence R(6) = 
d if t is represented by y = cx + d, or R(0) - d if t is given by snO0-c cos 0 Co is 

x = d. 
The outer integral in (3.1) can be approximated by an m-point Gauss- 

Legendre rule, the inner one by (2.2) with a, ,B = 0. In so doing, we obtain 

a a m n 

(3.2) 0(f) 62 61 Zh0' ) wif(rij, j) + R'(f) 
j=1 i=O 

where 
=ro 0, 

rij 
R 

(2) (1 +x0' ?), =1 , 

_ 

I 

I(? 

? 
q i 1 n X( ) 

n 

WI logR(4;) - Wi 

i=1 

012 - X + 02 + j ,...,m. 
2 4'0 2 

Denote by H,(u, ui), 0 < ut < 1, the space of functions f(r, 6) with all 
partial derivatives of order j = 0, ... , s continuous on a rectangular region 
9= [O, R] x [6, 6 02], R = maxo,<6<02 JR(6) , and such that each derivative of 

61 

0 

FIGURE 1 
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order s satisfies a Holder condition of order ,u, i.e., 

If(s)(T, f3) - f(s)(r, 0)1 < c[1i- rVl + IO9 - 6j1]. 
The rate of convergence of (3.2) is given by the following theorem. 

Theorem 3. If in (3.2) we assume f E Hs(,u, ,u), s > 1, then we have 

(3.3) RI (f) =O(ml1s + nl-s-logn). 
Proof. To obtain (3.3), we first write our integral (3.1) as follows: 

(3.4) I(f) = F()2dO, F(6) = fR(Q) f(r, 0) dr. 
610 r 

We remark that in practical applications the function F(6) is always analytic 
in [1, 0221. For instance in the case R(6) = sind ccosd it has infinitely many 
real poles at 0(k) = arctan(c) ? k7r, k = 0, 1, 2, ... , but they are all outside 
[01, 02] and very often sufficiently far away from it. 

It is not difficult to show that when f E Hs(Au, At) we have3 F E Hs(It - , 
with e > 0 as small as we like (for a proof of this statement, see for example 
[12, Lemma 3]). 

Applying the m-point Gauss-Legendre rule, we obtain 

=(f- 62- 6 Zh0 )F(E,) +Rm(F). 
j=1 

Notice that since F E Hs(y - e), the estimate lRG(F)l = lRG(F - qm)l < 

2102 - 61l IF - qm,jo, where qm denotes the mth-degree polynomial of best 
uniform approximation, implies (see also [1 1]) RG (F) = O(m-s-I+8) . Finally, 
we use (2.2) to approximate F(lj); we get 

02 -01 m 0 mG 
I (f ) = 2, ) 

wif(rij, ) + R (F); 
2 1 _n I;-1 

hence 

(3.5) RI (f) = 626 Z h50'0)R (f ; Xj) + Rm(F). 
j=1 

Setting f(r, 6) = f(O, 6) + rfo(r, 0), we let Pn,m(r, 0) be the polynomial of 
best (uniform) approximation of degree n in r and m in 0 for the function 
fo(r, 0) defined on the rectangle 91. Define 

fn,m(r, 6) = f(?, 0) + rPn,m(r, 0) . 

While in general Tn, m(r, 6) is not a polynomial in the variable 0, it is a 
polynomial of degree n + 1 in the variable r. Thus, since (2.2) has degree of 
precision 2n > n + 1 , we can write 

RR(f) f(r, j) - Tn,m(r ) dr 

n 

w Z [wf(rij, j) "-, m (rij X)]; 

3 Hs(u) denotes the space of functions F whose derivatives of order up to s exist and are 
continuous, and such that F(s) satisfies a Holder condition of order ,. 
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T3 (X0'YO Ti 

FIGURE 2 

that is 

RI'(f; Xj) = 
J 

[fO(r, Xj) - (r, Xj)]dr 

(3.6) n 

- S wirij[fo(rij, Xj) -Pn,m(rij , :i) 
i=O 

After noticing that fo E Hs-i (u, 1i), and recalling that (see [11, p. 90]) 

IIfo(r, 0) -Pn,m(r, 0)IIoo = O(mls + n 
m n 

5 h(? ?)=2 and 51w:11=O(logn), 
j=1 i=O 

from (3.6) and (3.5) we derive (3.3). ci 

If the original region of integration is a polygon that has been subdivided into 
triangles, then it may be more efficient to use Lobatto-type rules. For instance, 
in the case of a single rectangle as in Figure 2, we suggest to use a Gauss-Lobatto 
rule for the integration of F(6) in (3.4), and (2.2) for the integration along r: 

m n 

(3.7) I)E Jj Ewlf (rij, 11j) + Rlln(f) 
j=0 i=O 

where {fj} and {3J} denote the abscissae and the coefficients of the classical 
m-point Gauss-Lobatto formula associated with the interval (01, 02). Also, in 
this case we have a convergence rate like (3.3). 

To test our formulas, we have applied them to the integrals 

II(xo , Yo) = [ X - X O dx dy J [(X - XO)2 + (y -Y o)2]312 

-log1 -Yo + v'(1 +xo)2-+(1 -Yo)2]Hl -Yo+ +/(1 -xo)2+(1 +Yo)2] 

I2(XO, YO) =(x -xo)ex -dx dy, 
Js [(X - xO)2 + (y - yo)2]3/2 

where S = [-1, 1] x [-1, 1], and have obtained the results reported in Tables 
1-3. 

The methods proposed in [18] and [19] are so inefficient mainly because they 
approximate the outer integral in (3.1) by the trapezoidal rule over (0, 27r). 
On this interval the function R(6) has a first derivative which is discontinuous 
at the corners of the square. 
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TABLE 1. Performance on I, with (xo, yo) = (.3606231751, 
.3606231751)(1) and (xo, yo) = (.5479477112, .9509446082)(2) 

rel. error 
m n # points 

(1) (2) 
rule (3.7) 

3 1 16 4.37E-2 3.49E-1 
4 1 24 2.03E-3 1.42E- 1 
5 1 32 2.53E-4 6.47E-2 
6 1 40 3.06E-5 3.23E-2 
7 1 48 3.90E-6 1.70E-2 
8 1 56 5.14E-7 9.24E-3 
9 1 64 6.95E-8 5.17E-3 

10 1 72 9.57E-9 2.95E-3 
16 1 120 8.21E-14 1.31E -4 
32 1 248 - 7.65E-8 

method [19] 
8 8 64 2.85E-1 4 

32 32 1024 4 3.02E-3 

TABLE 2. Performance on I, with (xo, yo) = (.4, 1) (1) , (xo, Yo) 
- (.6, .2) (2), and (xo, yo) =(8, .4) (3) . 

rel. error 
m n # points 

(1) (2) (3) 
rule (3.7) 

3 1 16 4.66E-2 6.27E-2 8.66E-2 
5 1 32 8.46E-5 1.88E-4 6.10E-4 
7 1 48 6.09E-7 3.06E-6 2.81E-5 
9 1 64 5.82E-9 7.50E-8 2.04E-6 

12 1 88 7.53E-12 4.29E-10 5.98E-8 
method [18] 

18 20 360 1.12E-3 1.19E-3 3.61E-4 
36 20 720 1.07E-3 1.53E-4 1.80E-4 
72 20 1440 3.61E-4 1.1OE-5 6.70E-6 

TABLE 3. Performance of rule (3.7) on I2 

m n # points rel. error 
I2(.5, .5) = 2.04712179371331 5 

8 4 140 3.43E-8 
16 4 300 1.1OE-9 
16 8 540 7.03E- 13 

I2(.9, .9) = -4.78691846480268 5 
8 4 140 3.23E-4 

16 4 300 8.97E-9 
32 8 1116 1.20E-11 

4 Value not reported in [19]. 
5 An explicit formula for I2 is not available; however, all 15 decimal digits obtained by using 

our rule with m = 32, n = 8 in case (1), and m = 64, n = 8 in case (2), are believed to be 
correct since they coincide with those obtained with m = n = 64 and m = n = 128, respectively. 
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All computations have been performed on a personal computer using 16-digit 
arithmetic. 
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