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FACTORING POLYNOMIALS OVER FINITE FIELDS 
USING DIFFERENTIAL EQUATIONS AND NORMAL BASES 

HARALD NIEDERREITER 

ABSTRACT. The deterministic factorization algorithm for polynomials over fi- 
nite fields that was recently introduced by the author is based on a new type of 
linearization of the factorization problem. The main ingredients are differen- 
tial equations in rational function fields and normal bases of field extensions. 
For finite fields of characteristic 2, it is known that this algorithm has several 
advantages over the classical Berlekamp algorithm. We develop the algorithm 
in a general framework, and we show that it is feasible for arbitrary finite fields, 
in the sense that the linearization can be achieved in polynomial time. 

1. INTRODUCTION 

Like the classical algorithm of Berlekamp [1], the recently developed deter- 
ministic algorithm of the author [ 12] for factoring polynomials over finite fields 
is based on a linearization of the factorization problem, i.e., on a reduction to a 
system of linear equations. However, the new algorithm uses a completely dif- 
ferent procedure to achieve the linearization, a key step being the consideration 
of differential equations in rational function fields. The algorithm introduced 
in [12] was restricted to squarefree polynomials over finite prime fields, but it 
was shown by Miller [8] that the condition that the polynomial be squarefree 
can be dropped. 

In [ 13] the author has extended the factorization algorithm to arbitrary finite 
fields. Again, the algorithm readily applies to arbitrary polynomials; i.e., no 
prior reduction to the squarefree case is necessary. The analysis in [ 13] revealed 
that, at least for finite fields of characteristic 2, the new algorithm has several 
advantages over the Berlekamp algorithm. In [13] one can, in fact, find two 
ways of generalizing the algorithm in [12] to arbitrary finite fields: one method 
uses normal bases of field extensions, and the other Hasse-Teichmuller deriva- 
tives. The latter approach was further pursued by Niederreiter and Gottfert 
[ 14], who showed that it leads to a feasible linearization technique for arbitrary 
finite fields. Thus, the new algorithm looks more and more like a method that 
is not only of interest for small finite fields, as suggested initially in [12]. This 
will be borne out again by the results of the present paper which, in particu- 
lar, demonstrate the usefulness of the algorithm for large finite fields of small 
characteristic. 
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In this paper it is demonstrated that the method in [13] using normal bases 
yields a feasible linearization, in the sense that the coefficient matrix of the 
appropriate system of linear equations can be calculated in polynomial time. 
We also combine the approach employing normal bases with the method using 
Hasse-Teichmuller derivatives to obtain a generalization of Algorithm B in [ 13]. 
In ?2 we describe the general scheme of the algorithm; some of the underlying 
principles are valid for any field of positive characteristic. The linearization of 
the factorization problem proceeds in two steps: first from a suitable differen- 
tial equation to a system of algebraic equations, and then from this system of 
algebraic equations to a system of linear equations. In ?3 we analyze the first 
step and show how to efficiently compute the coefficient matrix of the linear 
part in the system of algebraic equations. For this purpose, the basic technical 
tool in [ 14], namely the analysis of a certain decimation operator on sequences, 
is exploited further. In ?4 we analyze the transition from a system of algebraic 
equations to a system of linear equations by using normal bases of extensions of 
finite fields. The cost of setting up the coefficient matrix of the system of linear 
equations is bounded, in particular, in terms of the complexity of the normal 
basis. The bound shows that low-complexity normal bases are preferable in this 
context. 

2. DESCRIPTION OF THE ALGORITHM 

We first need to define Hasse-Teichmuller derivatives of formal Laurent series 
(see [5, 1 5]). For an arbitrary field F let F((x- 1 )) be the field of formal Laurent 
series over F in the variable x- . The elements of F((x1)) have the form 

00 

E Snx nz 
n=w 

where w is an arbitrary integer and all sn E F. For an integer k > 0 the 
Hasse-Teichmuller derivative H(k) of order k is defined on F((x-1)) by 

H(k) Snx )=sE(kn n n 
sxnk- 

n=w n=w 

Since F ((x1)) contains the rational function field F (x) as a subfield, H(k) is 
thus in particular defined on F(x). We note that H(k) is an F-linear operator 
on F((x-1)). 

The starting point of the factorization algorithm is the consideration of a 
certain differential equation in terms of Hasse-Teichmuller derivatives. Let F 
be a field of prime characteristic p, and let r > 1 be a power of p. Then the 
differential equation in question is 

(1) H (r l)(y)= yr 

with an unknown y E F((x-1)). For the application to factorization we are, 
in fact, interested only in rational solutions y E F(x) of (1). The differential 
equation (1) was introduced and studied in [13]. In the case r = p we have 
H(P-1)(y) = _y(P-1) for all y E F((x-1)), where y(P-1) is the ordinary deriva- 
tive of y of order p - 1 , and so (1) reduces to a differential equation considered 
earlier in [12]. 
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Let r > 1 again be a power of the prime p. We denote by Fr the finite field 
of order r. If the field F contains Fr as a subfield, then J(y) = H(r-1)(y) _yr 
is an Fr-linear operator on F((x-1)), and therefore the solutions of (1) form an 
Fr-linear subspace of F((x-1)). The rational solutions of (1) can be described 
explicitly by the following result, which is a special case of [13, Theorem 2]. 

Lemma 1. Suppose the perfect field F contains the finite field Fr as a subfield, 
and let f E F[x] be a monic nonconstant polynomial. Then the solutions y of 
(1) of the form y = h/f with h E F[x] are exactly given by 

m gi 
y = cigi withc1,... ,CmEFr, 

i=1gi 

where g91 ... , gm E F[x] are the distinct monic irreducible factors in the canon- 
icalfactorization of f over F. 

This result is applied to factorization in the following way. Let F and 
f E F[x] be as in Lemma 1, where f is the polynomial to be factored. Suppose 
we have a computationally feasible method for finding the solutions y of (1) 
of the form y = h/f with h E F[x]. Note that according to Lemma 1, the 
differential equation (1) has exactly rm such solutions. It follows from the form 
of the solutions in Lemma 1 that if y = h/f solves (1), then 

m 
(2) gcd(f, h) i=1 

Thus, if h runs through all rm numerator polynomials of the solutions y = h/f 
of (1), then f/ gcd(f, h) yields all 2m monic factors of the squarefree part 
g... gm of f (with repetitions if r > 2). In particular, we get in this way all 
monic irreducible factors g1, ... , g. of f, which readily yields the complete 
canonical factorization of f . In an alternative strategy, we just strive to get one 
nontrivial factor of f out of (2), and then we apply the factorization algorithm 
again to this nontrivial factor and its complementary factor of f and iterate. 
Compare also with the discussion in [13]. 

The potential bottleneck in the above procedure for determining gi, . .. , gm 
is the calculation of the rm gcd's in (2). For random polynomials f over finite 
fields and r and d = deg(f) of reasonable size, this problem is not so serious 
since the average order of magnitude of the number m of distinct monic irre- 
ducible factors of f is small, namely log d according to [7, ? 6.2.4]. However, in 
unfavorable situations, m can be close to d, and then difficulties arise already 
for moderately large d. We remark that in the frequently encountered case 
r = 2, Gottfert [4] has recently shown that, by a more refined approach, the 
number of required gcd calculations for the determination of g, , ... , gm can 
be reduced from rm to 0(m2). This leads to a polynomial-time factorization 
algorithm over finite fields of characteristic 2. 

The central problem that remains to be discussed is how to actually solve the 
differential equation (1). Let F be an arbitrary field of prime characteristic p, 
let r > 1 be a power of p, and let f E F[x] be monic with deg(f) = d > 1. 
We are interested in the solutions of (1) of the form y = h/f with f fixed and 
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h E F[x] unknown, and so we write (1) as 

( rH(r- 1) = hr. 

It was shown in [13] that any solution h of (3) satisfies deg(h) < d, so that 
we can write h(x) = Ejd-' h xk with all hk E F. Also, by the arguments 
following [13, Eq. (19)] we know that both sides of (3) are polynomials over F 
of degrees < (d - 1)r and that both sides of (3) are polynomials in Xr. Thus, 
(3) holds if and only if the coefficients of Xjr, 0 < j < d - 1, agree on both 
sides. The comparison of coefficients yields a system of d algebraic equations 
for the unknowns ho, . .. , hd-1 . If Nr (f) denotes the d x d coefficient matrix 
over F on the (linear) left-hand side of (3), then (3) is equivalent to the system 

(4) Nr(f)hT = (hr)T, 

where h = (ho, . . . , hd- 1) E Fd is the coefficient vector of h, and hr stands for 
the vector (ho . .. 'hdr 1) E Ed. An efficient method for calculating the matrix 
Nr(f) will be developed in ?3. We will then have achieved a computationally 
feasible transition from (3) to (4). 

The next step is to linearize (4). For this purpose, we now assume that F 
is an arbitrary finite field, say F = Fq. Let Fr be a subfield of Fq; then all 
the theory described above applies. In most practical implementations one will 
take r = p, the characteristic of Fq, so that Fr is the prime subfield of Fq, 
but the case of an arbitrary finite extension FqlFr of finite fields that is treated 
here is also of interest. A convenient linearization of (4) is achieved by utilizing 
normal bases of the extension. This method was already developed in [13] for 
the special case r = p, and it can be generalized in an obvious fashion. If 
q = r, then hr = h, and the system (4) is already linear. Thus, we can assume 
that q = rt with an integer t > 2. 

We recall that a normal basis of Fq over 'Fr is an ordered basis of Fq over 
Fr of the form {ca, ar, ar 2 ... , ar } with some ae E Fq. A normal basis 
exists for any extension Fq/Fr (see [6, Theorem 2.35]). Now we fix a normal 
basis B of Fq over Fr and write the entries of the matrix Nr(f) and the 
unknowns hk, 0 < k < d - 1, as linear combinations of the elements of B 
with coefficients from Fr. For 0 < k < d- 1 let h(i) E Fr E O < i < t- 1, be the 
coefficients in the representation of hk . We insert all these linear combinations 
into (4), and on the left-hand side we express each product of elements of B as 
a linear combination of the elements of B. Finally, we carry out a comparison 
of coefficients of the elements of B on both sides of the resulting equations. In 
this way we arrive at the system of homogeneous linear equations 

(5) Kq,r(f e B)H =OEJFrE 

where Kq,r(f, B) is a dt x dt matrix over Fr and H E Frdt contains the 
unknowns 0) in some order. For the sake of definiteness, we put the k) 
in lexicographic order, that is, h(o). h(ot 1), h(?), h(t 1) . The sys- 
tem (5) is equivalent to the system (4), and hence equivalent to the differential 
equation (3). This provides the desired linearization. In principle, this lin- 
earization works also if we use an arbitrary ordered basis of Fq over Fr, but 
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the choice of a normal basis simplifies the treatment of the right-hand side of 
(4) considerably. 

The facts that (3) and (5) are equivalent and that (3) has exactly rm solutions 
imply that the matrix Kq,r(f, B) in (5) has rank dt - m . In ?4 we will analyze 
the cost of deriving the coefficient matrix Kq,r(f, B) of (5) from the matrix 
Nr(f) and also the total setup cost of Kq,r(f, B) . We note that if r = p, then 
Kq,r(f, B) is the same as the matrix Kq(f, B) introduced in [13]. 

3. FROM THE DIFFERENTIAL EQUATION TO ALGEBRAIC EQUATIONS 

In this section we analyze the transition from the differential equation (3) to 
the system (4) of algebraic equations. The main result of this section (Theorem 
2) shows that the matrix Nr(f) can be calculated in polynomial time, where 
the time unit is taken to be one arithmetic operation in the underlying field. 

We consider (3) under the conditions stipulated in ?2, namely that F is 
an arbitrary field of prime characteristic p, that r > 1 is a power of p, and 
that f E F[x] is monic with deg(f) = d > 1. Let F? be the vector space 
(over F) of all sequences of elements of F under termwise operations. We 
abbreviate a sequence so, sl, ... of elements of F by (sn). We define two 
linear operators on F??, the shift operator T(s,) = (s,+i) and the decimation 
operator Ar(sn) = (Snr). Let S(f) be the kernel of the linear operator f(T) 
on F??. The restriction of Ar to S(f) is again denoted by Ar. If f(x) = 

jd=0 ajxJ with all aj E F, then we put 

d 

fr(x) Zaxj E F[x]. 
j=o 

The following basic lemma is a special case of [1 1, Corollary 1], but we include 
its simple proof for the sake of completeness. 

Lemma 2. The operator Ar is a linear transformation from S(f) into S(fr). 
Proof. It suffices to show that ArU E S(fr) for all a E S(f). Since f(T) is 
the zero operator on S(f), and f(x) divides f(x)r = fr(xr), it follows that 
fr(Tr) is the zero operator on S(f). Thus, for any a E S(f) we get 

fr(T)Arc = Arfr(Tr)a 0 E F?, 

which means that ArU E S(fr) E 

Every sequence from S(f) satisfies a d-term linear recurrence relation with 
characteristic polynomial f. Consequently, each element (sn) of S(f) is 
uniquely determined by its initial state vector (so, ..., Sd_1) E Fd, and we 
have dim(S(f)) = d. If with each a = (Sn) E F?? we associate its generating 
function 

00 

, snx-n-l E F((x- 
n=O 

then by [10, Lemma 1], or by a straightforward verification, we obtain that 
a E S(f) if and only if the generating function y of a has the form y = h/f 
with h E F[x] and deg(h) < d. 
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For an ordered basis E of S(f), let the row vector [alE E Ed be the 
coordinate vector of a E S(f) relative to E. For another monic polynomial 
g E F[x] with deg(g) = d, let E' be an ordered basis of S(g). Then for 
a linear transformation A from S(f) into S(g), we denote by [AlE,E' the 
d x d matrix over F representing A relative to E and E', in the sense that 

[Aa]T, = [AIE,E'[a]TE for all a E S(f). 

As in [14], we work with two special ordered bases of S(f). Let co = (u,) 
be the impulse response sequence with characteristic polynomial f, i.e., the 
sequence from S(f) with initial state vector (0, ..., 0, 1) . If (0k = Tkco for 
O < k < d - 1 , then 

El=El(f)={w)o,...,o d-l} 

is an ordered basis of S(f), called the canonical basis. The generating function 
of WOk iS Xk/f(X). As noted above, any a E S(f) has a generating function 
of the form h(x)/f(x) with h(x) = EZd-I hkXk and all hk E F . Then 

h(x) d-1 h xk 

f (x) k=O 

and so, by turning to the corresponding sequences, we obtain 

d-1 
a = E hkwk. 

k=O 

In other words, we have 

(6) [alE1 = (ho,***, hd-1), 

so that the coordinate vector of a relative to E1 is the coefficient vector of the 
numerator polynomial of the generating function of a. 

The second special ordered basis of S(f) is the standard basis 

E2=E2(f) = {0o, .-- , d-1}- 

Here the Ck, 0 < k < d - 1 , are the sequences from S(f) whose initial 
state vectors are the standard basis vectors of Ed in their natural order. Thus, 
co has the initial state vector (1, 0, ... , 0), e1 has the initial state vector 
(O, 1, 0, ... , 0), and so on. If a = (sn) is an arbitrary sequence from S(f), 
then 

d-1 

a = ESkck- 
k=O 

Thus, 

(7) [alE2 = (So, ***, Sd-1), 

so that the coordinate vector of a relative to E2 is the initial state vector of 
a. We can now give the following formula for the matrix Nr(f) in (4). 
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Lemma 3. We have Nr (f) = [Ar]Ei, El with E1 = El (f) and El = El (fr). 

Proof. If Nr(f) = (njk)O<?j, kd-1 and El = {o,..., Od- l }, then we have to 
show that 

(8) [Arwk]E; = (nOk f nlk* l nd-l ,k) for O < k < d-1. 

Writing h(x) = EdI- hkXk with all hk E F on the left-hand side of (3), we 
obtain 

frH(r-1) (h) = Zf(x)rH(r-) (J1 ) hk. 

Thus, it follows from the definition of Nr(f) that nik is the coefficient of Xjr 

in f(X)rH(r-1)(Xk/f(X)). By the discussion after (3), f(X)rH(r-1)(Xk/f(X)) is 
of degree < (d - 1 )r and a polynomial in Xr. Therefore, 

( k \d1 
(9) f(x)rH(r-l) y f = () njkX for 0 < k < d - 1. 

From the proof of [14, Theorem 2.1] it follows that if y is the generating 
function of an arbitrary (Sn) E F??, and if z is the generating function of 
Ar(Sn) = (Snr), then 

00 00 

(10) H(r )(y) = E SnrX-nr-r = E Snr(Xr)-n- = Z(Xr). 
n=O n=O 

If for 0 < k < d - 1 we let Yk = Xk/f(x) be the generating function of (Ok, 
and Zk the generating function of ArWOk, then by (10) and (9) we obtain 

Zk(Xr) = H(r l)(yk) = H(r-1) = f(X)r EnjkXr 

d-1 

r(Xr) Zj=kXjr 

and so 
d-1 

Zk = 0Z injkXj for 0<k<d-1. 
fx)j=O 

In view of (6) this shows (8). E 

A formula for Nr(f) that is more explicit than that in Lemma 3 can now be 
derived in Theorem 1 below. We define three more d x d matrices over F as 
follows. The matrix G(fr) is obtained from the coefficients of the polynomial 
fr, namely 

ar ar ar a ar 

a2 a3 a4 * d ? 

G (fr) = a3 a4 a5 ... 

kar ? 0 .*. 0 0 



826 HARALD NIEDERREITER 

The Berlekamp matrix Br(f) = (bjk)O<, k<d- 1 is determined by the congru- 
ences 

d-1 

(11l) XIr=Z E bJkXk (modf(x)) for 0 < j < d - 1. 
k=O 

Finally, we introduce the Hankel matrix 

U(f) = (uj+k)0<j,k<d1, 

where (u,) = cc is the impulse response sequence with characteristic polynomial 
fr 

Theorem 1. We have Nr(f) = G(fr)Br(f)U(f). 

Proof. Let I be the identity operator on S(f), let El be the canonical basis 
and E2 the standard basis of S(f), and let I', El , and E2 be the correspond- 
ing objects for S(fr). Then we have the linear algebra identity 

(12) [Ar]E, ,El = [FIE' ,E1[ArIE2 ,E2[IlE1 ,E2- 

If E' = {o, .. ., ad- I}, then for 0 < k < d - 1 the generating function Vk of 
(k has the form 

00 

Vk =X-k-i +,5sX-n-1 
n=d 

with Sn E F for all n > d. Since fVk must be a polynomial of degree < d, 
we have 

d / ? d-k-1i 

frVk= k- X-n-1 +k+ 

i =? n=d j=O 

and so 
d-k-a 

Vk d i()Ea+k+IX - V f(x) Z 
On account of (6) this yields 

[3k]El= (ak+l ak+2 ...ad, , ..., 0) for 0 < k < d -. 

This shows that 

(13) [I']E2,,E = G(fr). 

Now we fix an element Ek, 0 < k < d - 1, of the ordered basis E2 and let 
Ek = (tn) . Since ( 11) implies that Xjr - 1 b_-x1 is a characteristic polynomial 
of gk, we have 

d-1 

tn+jr= Zbjltn+l for n > 0 and 0 < < d - 1. 
1=0 

In particular, we obtain 
d-1 

tjr = Ebjltl=bjk for0<j<d- 1, 
1=0 
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where we used the special form of the initial state vector of Ck in the second 
identity. In view of (7) this shows that 

[ArCk]Ei = (bOk , blk, * , bd- ,k) for 0 < k < d- 1, 

and so we obtain 

(14) [ArIE2,E2 = Br(f). 

It is clear that [MIE,,E2 = U(f). Together with (12), (13), (14), and Lemma 3 
this yields the desired result. E 

Theorem 2. The setup cost for the matrix Nr(f) is O(de + (d2 + d logr)L(d)) 
arithmetic operations in F, where d = deg(f), L(d) = (log d) log log d, and 
e < 2.4 is the exponent offast matrix multiplication. 
Proof. It requires O(d + log r) polynomial multiplications mod f to set up 
the matrix Br(f). By a result of Cantor and Kaltofen [3], each polynomial 
multiplication mod f can be performed using 0(dL(d)) arithmetic operations 
in F. Thus, the setup cost for Br(f) is 0((d2 + d log r)L(d)) arithmetic 
operations in F. Each coefficient of the polynomial fr can be calculated by 
0(log r) arithmetic operations in F, and so the setup cost for the matrix G(fr) 
is 0(d log r) arithmetic operations in F. In the matrix U(f), only the terms 
u0, ui, ... , u2d2 of the sequence wo appear as entries. Since co satisfies a 
d-term linear recurrence relation, the setup cost for U(f) is 0(d2) arithmetic 
operations in F. The desired result follows now from Theorem 1. E 

We remark that in the important special case r = 2 there is no setup cost 
for Nr(f), as was already shown in [12] (note that N2(f) has the same form 
as the matrix M2(f) in [ 12]). 

4. FROM ALGEBRAIC EQUATIONS TO LINEAR EQUATIONS 

The procedure of reducing the system (4) of algebraic equations to the system 
(5) of linear equations by using normal bases was already described in ?2. Here 
we analyze the cost of setting up the coefficient matrix Kq,r(f, B) of (5). 

As in ?2, we consider a finite extension Fq/Fr of finite fields, where q = rt 
with t > 2, and we let f E Fq[x] be monic with deg(f) = d > 1. Let 
B = {a, ar, ar, ..., art } with ae E Fq be a fixed normal basis of Fq over 
Fr. Let the multiplication table of the basis B be given by 

t-1 

(15) arar' c(i I b)ar for 0 < i, I < t- 1, 
b=O 

where all c(i, 1, b) E Fr,. The complexity C(B) of B is defined as the number 
of ordered pairs (1, b) with 0 < 1, b < t - 1 for which c(0, 1, b) 0 O. This 
concept was introduced in [9]; see also [2, Chapters 4, 5]. It follows easily that 
the number of ordered triples (i, 1, b) with 0 < i, 1, b < t - 1 for which 
c(i, 1, b) $ 0 is given by C(B)t (compare with [2, ?5.1]). It is trivial that 
C(B) < t2. On the other hand, we always have C(B) > 2t - 1, and equality is 
possible in some cases (see [2, Chapter 5; 9]). 
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Theorem 3. Given the matrix Nr(f) over Fq, the setup cost for the matrix 
Kq,r(f,B) is O(d2C(B)t) arithmetic operations in Fr, where d=deg(f), C(B) 
is the complexity of the normal basis B of Fq over Fr, and t is the degree of 
the extension Fq/Fr. 

Proof. With Nr(f) = (njk)O<j,k<d-1 the system (4) can be written in the form 

d-1 

(16) Znlkhk = hy for O < j < d - 1. 

k=O 

If the coefficients n1k E Fq are not yet given by their coordinate vectors relative 
to B, but rather by their coordinate vectors relative to another basis of Fq over 
Fr, then the transition from the latter basis to the normal basis B is effected 
by multiplication with a t x t basis change matrix over Fr. The coordinate 
vectors (relative to B) of all n1k can thus be computed by using O(d2t2) 
arithmetic operations in Fr . Since C(B) > 2t - 1 , this cost can be incorporated 
in the complexity bound of the theorem. Thus, we can assume that the n1k are 
available in their basis representations 

t-1 

nhk = ni)ar for O < j, k < d -1, 

i=O 

where all n(.i) E Fr. We can also write the unknowns hk ntefr 

t-1 

hk all hh)arF for w < k < d - 1e 

k~~~~~~ 
i=O 

where all h(i) E Fr. Now we insert these expressions into (16). On the right- 
hand side, note that the coordinate vector of hy relative to B is obtained from 
the coordinate vector of hj relative to B by a cyclic shift to the right, and so 
no calculations are needed on that side. On the left-hand side, we get for fixed 
0 < j, k < d - 1, by using (15), 

t-l t-l t-l t-l 

klkkhk = E(nS'ar) E h(iar) - E n(')h'l) Zc(i, 1, b)arb 
i=O i=O i,1=0 b=O 

= E ( n c(i, 1, b)h(l)) arb. 
b=O ii,1=0J 

Recall that the matrix Kq, r (f , B) is obtained by carrying out a comparison of 
the coefficients of the basis elements ar b, 0 < b < t - 1, on both sides of (16). 
Thus, a typical coefficient of an unknown h'l) on the left-hand side is 

k 

t-1 

E n(.i)c(i , 1 , b). 

i=o 

These expressions have to be calculated for all choices of 0 < j, k < d - 1 
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and for all choices of 0 < 1, b < t - 1. If we fix again j and k and vary l 
and b, then we need O(C(B)t) arithmetic operations in Fr to calculate the 
corresponding expressions. Finally, if we vary j and k also, then we see that 
the setup cost for Kq,r(f, B) is O(d2C(B)t) arithmetic operations in Fr. E1 

Theorem 3 shows that it is advantageous to work with a low-complexity nor- 
mal basis B. Since we always have C(B) < t2, it follows that even with a 
bad choice of B the cost of deriving Kq,r(f, B) from Nr(f) is only O(d2t3) 
arithmetic operations in Fr. If r = 2 and f E Fq[x] has at most s nonzero 
coefficients, then by the special form of N2 (f) (compare with [12, 13]) the com- 
plexity bound in Theorem 3 reduces to O(sC(B)t + dt) arithmetic operations 
in F2. This is also the total setup cost for Kq 2 (f, B) since there is no cost 
for setting up N2(f). In general, the total setup cost for Kq,r(f, B) is given 
as follows. 

Theorem 4. The total setup cost for the matrix Kq, r (f, B) is 

O(de + (d2 + d log r)L(d)) 

arithmetic operations in Fq and O(d2C(B)t) arithmetic operations in Fr, where 
d = deg(f), L(d) and e are as in Theorem 2, and C(B) and t are as in 
Theorem 3. 

Proof. Apply Theorem 2 with F = Fq and combine it with Theorem3. 01 
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