
MATHEMATICS OF COMPUTATION 
VOLUME 62, NUMBER 206 
APRIL 1994, PAGES 923-930 

A SPECIAL EXTENSION OF WIEFERICH'S CRITERION 

PETR CIKNEK 

ABSTRACT. The following theorem is proved in this paper: "If the first case of 
Fermat's Last Theorem does not hold for sufficiently large prime 1, then 

E x1-2 
kl 

< x < (k 
X I) =_ 0 (modl1) 

x 
NN 

for all pairs of positive integers N, k, N < 94, 0 < k < N- I." The 
proof of this theorem is based on a recent paper of Skula and uses computer 
techniques. 

0. INTRODUCTION 

The first case of Fermat's Last Theorem states that for each odd prime I the 
equation 

Xi +y1 + zi = 0 

has no integral solution x, y, z with I t xyz. 
One of many methods investigating this problem was introduced by A. 

Wieferich. This method is connected with the Fermat quotients ql (a), 

al-l - 

q, (a) = I 

defined for each integer a such that a is not divisible by 1. 
Let us assume in this paragraph that / is an odd prime which does not satisfy 

the first case of Fermat's Last Theorem. 
In 1909, Wieferich [7] published the following important result: 

q, (2) =- 0 (mod1) . 

Many mathematicians have extended this Wieferich criterion. The latest result 
is due to A. Granville and B. Monagan [1] and states q1 (p) _ 0 (mod 1) for each 
prime p such that p < 89. 

These considerations have been generalized by L. Skula. He studied the sums 

s(k, N) = E 1-2 (kl <x<(k + 1)1) s(k, N) = EX<X 
Yr 
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for integers N, k, 1 < N < 1- 1, 0 < k < N- 1. These sums are connected 
with the Fermat quotients by a formula introduced essentially by M. Lerch [2]: 

N-1 

q1 (N) Nl-2 , ks(k, N) (mod 1). 
k=O 

Skula [4] proved 

s(k, N) _0 (modl), 0 < k < N - 1, 

for each NE {2, 3, ..., 10} U {12}. 
In this paper, Skula's result is improved for integers N < 94 (Main Theorem 

3.2), but only for sufficiently large primes 1. 

Remark. It is easy to prove that the statement 

s(k, N) =- 0 (modl), 0 < k < N - 1, 

is equivalent to the statement 

Bl- (N) - Bl_-I-=0 (modl), 0 < j < N, 

where Bn, B,(x) are the nth Bernoulli number and Bernoulli polynomial, 
respectively. Therefore, our result implies that the polynomial B1 l (t) - B_ l 
has at least 1 + E941 o (N) = 2703 distinct zeros modulo 1 for sufficiently large 
prime 1, where 1 does not satisfy the first case of Fermat's Last Theorem. 

1. BASIC NOTIONS AND ASSERTIONS 

We will assume in this section that there is an odd prime 1 which does not 
satisfy the first case of Fermat's Last Theorem, briefly (FLTI), fails; i.e., there 
exist integers x, y, z such that 

xi +y1 + z- =, l{xyz. 

1.1. Definition. Let TI, ..., rT6 denote the integers satisfying 

XTI -y (modl1), XT3 -Z (mod1) , YT5 -Z (mod1) , 

YT2 - x (mod 1), ZT4 -X (mod 1), ZT6 -y (mod 1). 

The definition of Tm, ... , T6 implies 

1.2. Lemma. The integers , ... , T6 satisfy thefollowing congruences: 

T1T2 -T3T4 T5T61 (modl), 
T1 + T3 -T2 + T5 -T4 + T6 1 (modl), 

? 0 Ti 0 1 (mod1) , 1 < i < 6 . 

According to the results of Pollaczek ([3], See [1, Lemma 15]) we have 

1.3. Lemma. Let rl, . .. , r6 denote the orders of the integers TI, ... , T6 mod 1. 
Then r, = r2, r3 = r4, r5 = r6, and each of the products r1r3, r3r5, rjr5 is 
greater than or equal to 

3 log(l) 

log(1+j) 
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1.4. Definition. Pollaczek introduced a matrix As(t) of size 2(0(s) x (0(s) ((0 
Euler's function) for integers s > 2 and variable t in [3]. Let r(s, t) denote 
the rank of the matrix As(t) over the finite Z/lZ. 

According to the results from [1, Table 1] (see also [4, 5.1.1]) we obtain 

1.5. Lemma. Let s, t be integers, 2 < s < 46 and the order of t modulo 1 
be greater than 44. Then r(s, t) = (0(s) . 

1.6. Definition. Skula ([4, Definition 4.13]) has introduced the following 
square matrix DN = DN(t) of order ) for integers N > 3 and variable 
t by the formula 

DN = DN(t) = [tZ(u,V)-1 + tN-1Z(U,V)I] 

1 < u, v < 2N- gcd(u, N) = gcd(v, N) = 1, 

where z(u, v) is the integer such that 1 < z(u, v) < N - 1, V uz(u, v) 
(mod N). 

Let us denote dN(t) = detDN(t). 
The next theorem follows from Skula's results ([4, Main Theorem 4.14, 

5.4.2]). 

1.7. Theorem. Let N be an integer, N > 2, (N-2)(N-1) < 1, and T, ... T6 2 
be the integers from 1.1. Assume that there exists 1 < a < 6 such that the 
following conditions are satisfied: 

(a) dM(Ta) 0 0 (modl) for each integer M > 3, MIN; 
(b) r(s, Ta) =((s) for each integer s, 2 < s < N. 

Then s(k, N) 0 (mod 1) for each 0 < k < N - 1 . 

2. SOME AUXILIARY STATEMENTS 

2.1. Lemma. Let p be a prime, f(t), g(t) be polynomials over Z, the leading 
coefficients of which are not divisible by p . If f, g are relatively prime over the 
finite field Z/pZ, then f, g are relatively prime over Q. 

Proof. It is sufficient to prove that gcd(f, g) over Z is a constant. Assume on 
the contrary that there exist polynomials h, u, v over Z such that 

(1) f = hu, g = hv, deg(h) > 0. 

We can consider f, g, h, u, v as polynomials over Z/pZ. Their degrees do 
not change because p does not divide the leading coefficients of these polynomi- 
als. Then the equation (1) holds also over Z/pZ, and this is a contradiction. cl 

2.2. Theorem. Let m be a positive integer. There is an integer Lo = Lo(m) 
with the following property: 

Let 1 > Lo be a prime for which (FLTI), fails. Then there exist two different 
integers a, b, 1 < a, b < 6, such that 

Ta + Tb = 1 (modl), ra > m, rb > m, 

where ra, rb are the orders of the integers Ta, Tb modulo 1. 
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Proof. Let Lo be the smallest integer greater than 

(1 + \)5 

The proof then easily follows from Pollaczek's Lemmas 1.3. and 1.2. 5 

2.3. Theorem. Let N be an integer, 2 < N < 94, d(t) be any common 
multiple of the polynomials dM(t), 3 < M, MIN. Let g(t) be a polynomial 
such that: 

(a) g(t) is a product of some cyclotomic polynomials, 
(b) g(t)jd(t) over the ring Z[t] (we allow g(t) = 1). 

Let the polynomial f(t) = d(t) satisfv 

(2) gcd(f (t), f (1 - t)) = 1 over Q. 

Then there exists a positive integer L such that 

s(k, N)_O- (modl1), O <k <N -1, 

for each prime 1 > L for which (FLTI), fails. 
Proof. Suppose f(t), f(1 - t) are relatively prime over the field Q. Then 
there exist an integer c and integral polynomials u(t), v(t) such that 

(3) f(t)u(t) + f(1 - t)v(t) = c. 

Let c be the smallest integer with this property. 
Let us put nO = max{n, Dn(t)Ig(t)} (oDn is the nth cyclotomic polynomial), 

m = max{no, 45}, Lo = Lo(m) the integer from 2.2. 
Let 1 be a prime, 1 > Lo, 1 t c, for which (FLTI), fails. According to 2.2 

there exist different integers a, b, 1 < a, b < 6, such that 

Ta + Tb = 1 (modl), ra > m, rb > m. 

By (3) we have f(Ta) $ 0 (mod 1) or f(Tb) $ 0 (mod 1). Therefore, we can 
assume 

(4) f (Ta) 0 O (mod l) . 

Since ra > m > no, we have 

(Dn(Ta) 0 O (modl), 1 <n<no, 

and it follows that 

(5) g (Ta) 0 O (mod1) . 

Putting (4) and (5) together, we obtain 

f(Ta)g(Ta) = d (Ta) 0 0 (mod 1); 

therefore, 
dM(Ta) 0 O (modl) 

for all integers M, 3 < M < N, MIN. 
We can see that the integer a satisfies the first condition of Theorem 1.7. 

The second condition is satisfied according to 1.5. The proof now immediately 
follows from Theorem 1.7. El 
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What follows is useful for practical computer calculation. Instead of dealing 
with polynomials dM(t) = detDM(t), it allows to work with polynomials of 
lower degrees. These assertions follow from Washington's book [6, (4.5.26)]. 
For the convenience of readers we include proofs of these assertions. 

Let X be an even Dirichlet's character modM. Let f,(t) be a polynomial 
of form 

fx(t) = EX(i)ti- 1 < i< M, gcd(i, M) = 1. 

2.4. Lemma. Let M be an integer, M > 3. Then 

detDM(t) = FJfx (t), 
x 

where the product is over all even Dirichlet's characters mod M. 
Proof. Let (a) denote the fractional part of a real number a. It is easy to see 
that 

x-M(jM (modM) 

for each integer x. 
According to 1.6 we have 

Dm(t) = [tlI(tz(u,v) + tM-z(u,v))] 1 < u v < M 

gcd(u, M)= gcd(v, M) = 1, 
1 < z(u, v) < M- 1, v = uz(u, v) (modM). 

Putting i-=?u-1 (modl), so that 1 < i < M-, we get 

dM(t) = ?t-,(M)/2 detA, 

where A is a matrix of the form 

A = [tM(iV/M)+tM( iv/M)]v, 1 <i, v 
M 2j. gcd(i, M) =gcd(v, M) = 1. 

Now it is sufficient to show that 

det A = ?t(M)12 - fx (t) 
x 

where the product is over all even characters mod M. 
Let B be the square matrix 

B = [X(i)],x,i 
X an even Dirichlet's character modM, 1 < i < A, gcd(i, M) = 1. It is 
easy to prove that this matrix is nonsingular (see, e.g., Van der Waerden [5, 
?? 124-126]), and we have 

BA= [zx(i)tM(iV/M) = [x-lZ(x)(i)ti] 

(1 < i < M, gcd(i, M) = 1); 
hence 

detBdetA = ?t(M)12 (Ii fx(t)) detB. 

This completes the proof. 5 
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2.5. Lemma. Let X be an even character mod M of order n > 1. Then the 
polynomial 

FX (t) tfXa (t) 1< a <n, gcd(a, n) =1, 
a 

is a polynomial with integer coefficients. 
Proof. The polynomial fx(t) is polynomial over the field Q(n) ,_ - e27iln . 
Let us consider the Galois group G of the extension Q(n)/Q . It is well known 
that 

G={rs, sEZ, 1<s<n, gcd(s,n)=1, Cs(4n) n 

Every isomorphism as can be extended in the natural way on the ring Q(4n)[t], 
and obviously 

qs(Fx(t)) = Fx(t). 

Since F,(t) is an element of Z(4A)[t], we have F,(t) E Z[t]. cl 

3. MAIN RESULTS 

Let N be an integer, 3 < N < 94. By 2.4, 2.5 we can express the polynomial 
dN(t) as a product of integers polynomials F.(t). Let KN denote the number 
of these polynomials. We will enumerate them (for example according to the 
values of their degrees) and add the index N so we have 

KN 

dN(t) = rJFN,i(t) 
i=1 

Let g,1 i be the product of all cyclotomic polynomials dividing FN, i, and put 
fN,i = FN, /gN,i for each 1 < i < KN. According to 2.1 the condition (2) 
holds if we find a prime p = p(L, M, i, j) for each set of integers L, M, i, 
jX 3 < L, M, LIN, MIN, 1 < i < KL, 1 < j < KM such that 

(6) gcd(fL,j(t), fM,j(l - t)) = 1 over Z/pZ. 

This was done using a personal computer. In most cases, (6) holds for poly- 
nomials FL,i(t), FM,j(1 - t), and some prime p < 17, so it is sufficient to 
compute only polynomials FN,i(t), FN, (1 - t) modulo small primes. The 
calculation of polynomials FN,i(t) , gN,i(t), fN,i(t), and fN,i(l - t) over 
Z is necessary only in a few cases (for example, if cD3(t)IFN, i(t) because 
?3(t) = 03(1 - t)). The relation (6) also holds in these cases for some prime 
p , p < 17 . 

Therefore, from our computation we obtain the following lemma. 

3.1. Lemma. Let L, M, i, j be integers, 3 < L, M, lcm[L, M] < 94, 
1 <i<KL, 1 <j<KM. Then there existsaprimepE{2,3,5,7, 11, 17} 
such that the polynomials fL, i(t), fM,j(1 - t) are relatively prime over Z/pZ. 

The Main Theorem follows now immediately from 3.1, 2.6, 2.1, and 1.6. 
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3.2. Theorem. Let N be an integer, 2 < N < 94. There exists an integer L 
such that 

s(k, N) =_0 (modl1), O <k < N- 1, 

for each prime 1 > L for which the first case of Fermat's Last Theorem is false 
for prime exponent 1. 

3.3. Remark. Let us try to find a value for the number L in the last theorem. 
In our calculations we shall suppose that the polynomials g, i have not been 
divided by cyclotomic polynomials 4D (t), n > 45. According to the proofs of 
2.3 and 2.2, the first condition for the number L is that 

L > 2 

The second condition is that L is greater than the largest prime dividing the 
number c in (3). This certainly holds if L is greater than the resultant of 
the polynomials f(t), f(1 - t) (it is known that the number c divides this 
resultant-see [1, Lemma 20]). 

We will find the rough upper bound of this resultant for the cases N being 
a prime. In these cases we have 

f ( t) dN(t) 
g (t) 

k = degf(t) = degf(1 - t) degdN(t) = oX(N)(N- 2) = (N- 1)(N- 2) 
2 2 

Let f(t) = (t - al) (t - ak) over the field of complex numbers. 
Each complex number aj is a root of some polynomial fx(t), so we have 

N-3 

ajIN-2 < E lajli; 

i=O 

hence IaI < 2. 
It follows that 

R(f(t), f(1 -t)) = fJ(aj-(1 -aj)) < <5 < 

i,j 

We have proved the next theorem. 

3.4. Theorem. Let N be a prime, 11 < N < 89. Then 

s(k, N)--=0 (mod 1), 0 < k < N - 1, 

for each prime 1 > 5(N-1)2(N-2)2/4 for which the first case of Fermat's Last The- 
orem is false for prime exponent 1. 
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