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A ROBUST FINITE ELEMENT METHOD 
FOR NONHOMOGENEOUS DIRICHLET PROBLEMS 

IN DOMAINS WITH CURVED BOUNDARIES 

JAMES H. BRAMBLE AND J. THOMAS KING 

ABSTRACT. In this paper we consider a simple finite element method on an 
approximate polygonal domain using linear elements. The Dirichlet data are 
transferred in a natural way and the resulting linear system can be solved using 
multigrid techniques. Our analysis takes into account the change in domain and 
data transfer, and optimal-error estimates are obtained that are robust in the 
regularity of the boundary data provided they are at least square integrable. It 
is proved that the natural extension of our finite element approximation to the 
original domain is optimal-order accurate. 

1. INTRODUCTION 

During the past twenty years there has been considerable interest in finite 
element methods wherein a given elliptic problem on a domain Q c R2 is solved 
approximately on a convenient nearby domain. In most cases the approximate 
domain is taken to be a piecewise smooth domain whose boundary is made 
up of polynomial curved segments. The simplest and, in many ways, the most 
convenient case is to replace Q by a polygonal domain. In any event it is then 
necessary to estimate the effect of domain perturbation. Such estimates were 
obtained in the early seventies by Strang [23], Strang and Berger [24], Berger, 
Scott, and Strang [2], Blair [3], and Thomee [25, 26] in the case of homogeneous 
Dirichlet data. 

For nonhomogeneous Dirichlet boundary data there has been little work us- 
ing standard finite elements. Bramble, Dupont, and Thomee [5] investigated 
a method on approximating polygonal domains using subspaces of piecewise 
polynomials of degree greater than two in a modified Nitsche [21] method. The 
results in [5] are optimal for smooth solutions but no estimates are obtained for 
rough data. Moreover, the method in [5] is somewhat difficult to implement. 
More recently, Choudury and Lasiecka [10] show that the standard Nitsche 
method is robust on a domain with smooth boundary. 
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In the special case where Q is a convex polygon (and hence Q = Qh) our 
method coincides with the method introduced by Fix, Gunzburger, and Peterson 
[15]. The results in [15], for the boundary data g E H- 1/2 (F) with 1 < r, 
provide optimal L2 but suboptimal H' error estimates. Subsequently, French 
and King [16, 17] obtained optimal-order error estimates ( L2 and H' ) for this 
method, and in particular the method is shown to be robust in the regularity of 
the boundary data. By this we mean that the best possible order of accuracy is 
attained for rough as well as for smooth boundary data. 

For other methods dealing with approximation of the domain by use of 
curved elements we refer the reader to Ciarlet [1 1], Ciarlet and Raviart [12], 
Scott [22], Zlamal [29, 30], Zenifsek [28], and the references contained therein. 

In this paper we consider a simple finite element method on an approximate 
polygonal domain using linear elements. The Dirichlet data are transferred in 
a natural way and the resulting linear system can be solved using multigrid 
techniques (cf. [4]). Our analysis takes into account the change in domain and 
data transfer, and the optimal-order error estimates which are obtained show 
that the method is robust in the regularity of the boundary data. This aspect is 
significant for boundary control problems in which rough boundary data may 
arise (cf. Lasiecka [19]). 

Suppose Q c R2 is a bounded domain whose boundary F is smooth, say 
of class C??. (We will remark at the end on the piecewise smooth case.) Let 
x(l),..., x(N) denote N quasiuniformly spaced points on F with x(Nf+l) = 

x(l) . Let Qh be the polygonal domain with vertices x(l) ..., x(N) and rhJ) 
the "half open" edges from x(i) up to x U+ ) . Similarly, [(i) denotes that part 
of F between x(i) and x U+ ) . Here, h denotes an upper bound for the length 
of the longest edge, and N = Nh is the number of boundary edges. For h 
sufficiently small the maximum distance between F and Fh, the boundary of 
th, satisfies 

d(F, Fh) < Ch2, 

where d(F, Fh) = maxXErh{Ix + tVI: x + tv E F} and v denotes the unit 
outward normal to Fh. We assume that the length hj of FhJ) satisfies Kh < h 
hj < h, where K is independent of h. 

Consider the Dirichlet problem on Q: 

(1.) Au= f in a, u= g onF, 

where A is the uniformly positive definite second-order elliptic operator 

A= 2- E xj (ai(x) )Xi 

with smooth coefficients aij E C2(Q') with Q c Q'. For this problem we 
consider a finite element method in which the domain Q is replaced by Qh C 
Q', the Dirichlet data g are transferred as gh to Fh by some means, and f 
is taken to be zero outside of a. We determine an approximation Uh to u 
obtained by a simple finite element method, using linear elements, applied to 
the perturbed problem 

AU= f in Qh, U = gh on Fh- 
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In this paper we examine a natural choice of gh and derive error estimates 
in (L2-based) Sobolev spaces. We summarize our main results in the following. 

Theorem 1. Let Uh be the finite element approximation defined by (3.1). There 
exists C, independent of h, such that 

IIU - UhIIO,j < C(h2IIfIIo,a + hS+l/2jgjS,r) 0 < s < 3/2, 
and 

IIu - UhIlh,Q ? C(hIIfIIo,a + hS-I/2jgjS,r), 1/2 < s < 3/2, 
where the above norms are defined in ?2. 

Remark. It should be noted that all computations in our method are carried out 
on an approximate polygonal domain, Qh, and the natural extension to El of 
our approximate solution satisfies the optimal error estimate given in Theorem 
1. At the end of the paper we briefly discuss how the fast multigrid techniques 
of [6] can be applied to solve the system of linear equations resulting from our 
method. 0 

Throughout this paper, C will denote a generic constant which will always be 
independent of the mesh parameter h and the functions involved. Sometimes 
we specifically mention this independence for emphasis. 

We now give a brief outline of the paper. In ?2 the relevant function spaces 
are introduced and some perturbation estimates are proved. The approximate 
problem is defined in ?3, and the main results are proved there. 

2. FUNCTION SPACES AND PRELIMINARY ESTIMATES 

For a domain D in R2 we denote by Hk(D) the usual Sobolev space of 
integer order k > 0 with norm 11 - 11k,D and seminorm I Ik,D involving only 
the highest derivatives. The inner products on L2(Q) = H?(QI) and L2(Qih) = 

H0(f2h) are given by 

(v, w) = jv(x)w(x)dx and (v, W)h = Ji(x)w(x)dx. 
Q Q~~~~~~~~~~~~~~~~h 

Let Hk(r) denote the Sobolev space of integer order k > 0 on r with norm 
denoted by Ik, r. The inner products on L2(F) and L2(]Fh) are given by 

(v, w) =vwds and (v, w)h= vwds. 

For real r > 0, the spaces Hr(Q) and Hr(r) are defined by interpolation (cf. 
Lions and Magenes [20]). As usual, Ho' (Q) and Ho'(Ph) denote the Sobolev 
spaces of order one whose elements have zero trace on r and `h, respectively. 
We define the space H-1/2(r) as the dual of HI/2(r). The norm on H-1/2(r) 
is given by 

IVI-1/2,F= SUP (,~ 
lvl-l/, = ESHI/l2(r') IV11 /2,Fr 

Associated with the elliptic operator A is the bilinear form 
2 

a(v, w)= ai xj~ V Wdx V,WEHP 
i, j=1IOj 
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and ah(',*) denotes the corresponding form on Qh. Note that if Q is convex, 
then i2h C Q2, but in general i2h ? Q2. For f E L2(2) and g E Hr- /2(r) 
with 1 < r < 2 the solution u of (1.1) is defined in the usual way by 

(2.1) a(u, 0) = (f, q), E Ho'j(Q) and u = g on r. 

It is well known (cf. Lions and Magenes [20]) that u E Hr(Q) and the following 
elliptic estimate holds: 

(2.2) IIUIIV,' ? C{IIIfIO,Q + IgIr-1/2,T}, 0 < r < 2. 

For f E L2(Q) and g E Hr-1/2 (r), with 0 < r < 1, a generalized (very weak) 
solution of (1.1) is defined by approximation using (2.2). More precisely, let 
{g } be a sequence of smooth functions converging to g in Hr-1/2(r) and let 
{u,,} denote the corresponding sequence of solutions. Because of (2.2), {u,} 
is a Cauchy sequence. Its limit, u E Hr(Q), is defined to be the weak solution 
of (1.1). 

We want to estimate the effect of domain perturbation and data transfer on 
our finite element approximation. We begin by defining a natural means of 
transferring Dirichlet data on r to Fh. Denote the unit outward normal to 

rhJ) by vi ) and let Xh (t) be the parametrization of rhJ) by arc length. This h~ hbyaclnt.Ti 
induces the following parametrization on r(i): 
(2.3) Xh(t) = Xh(t) + 6x,(t) V 

where I6x5(t) is the distance between Xh (t) and r along v(i) . We assume that 
h is small enough that Xh (t) is well defined. Then define, for a given function 
g on r, 

(2.4) X(xh(t)) = g(Xh(t)), xh(t) E rhJ) 

and note that g(x) = g(x) for x = x(i) or x = x(j+'). The inverse mapping 
is also well defined. Indeed, there are constants c and C, independent of h, 
such that 

(2.5) clglo,r < lklo,r' < C1g1o,r. 
In several places in the analysis in this paper we need to use a bounded 

linear extension operator (cf. Lions and Magenes [20] and Grisvard [18]) E: 
Hr(Q2) i Hr(R2), with 0 < r < 2, satisfying Eq5lQ = X for 0 E Hr(Q) and 

(2.6) IIEkIIr,R2 < CII0IIr,n. 
For an arbitrary function w E Hr(Q), with 0 < r < 2, we shall make the 

convention that w has been extended to all of R2 by E and, with a slight 
abuse of notation, we also call the extended function w. 

We shall need some estimates for functions on the region between Q and 

Le * 
Let Qih) be a typical region bounded by VA and FrJ) . Without loss of 

generality we may assume that rhJ) has its left endpoint at the origin and is 

given by rF - {(x, y)ly = 0, 0 < x < Clh} and VAi) = {(x, y)ly = 6x > 

0, 0 < x < Clh}. Now 5x < C2h2 and 1xkI < C3h. It is easy to see, using the 
divergence theorem that 

(2.7) 2( + (61)2)-112ds- 2dx = 2 dxdy 
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and 

(2.8) |f2 dxdy = / yf2( 1 + (4g)2)-1/2 ds -21 y( o?f dxdy. 
Ji) J1() 0J) ay 

It follows from the Cauchy-Schwarz inequality that 

(2.9) ?o n() <C h2lql2,r_(+h4 (v), 

(2.10) IkII j ? C h 0() +h4 
h 

and 
2 

(2.11) kt'I2Xr,() < Ch2 '' if V/ = 0 on rtJ) 
Dy h 

We can now prove some lemmas which will be used later. 

Lemma 1. Suppose w E Hr(Q) (extended by E) with r > 1 and yw = g 
denotes the trace of w on IF Then there is a constant C, independent of h 
and w, such that 

(2.12) Iw - gIO,rh < ChrllWIr,Q, 1 < r < 2. 

Proof. We consider Q(J) and apply (2.11) with V = w(x, y) - w(x, 0) to 
obtain 

(2.13) 1w - i2 I j(,) I2dx < CIV/12,J) < Ch2 OW 2 

h h~~y 
Applying (2.9) to !2w, we see that 

t9y 

lw - 4i2 pi) < C (h4 | ON + h6Ijwjj2 ). 

Summing over j and using the trace inequality 
2 

(2.14) Z IDW/aX,I12r < CIIW12Q 
i=l 

yields the lemma for r = 2. Similarly, summing over j in (2.13) proves the 
lemma for r = 1, and the result follows by interpolation. 0 

The next two lemmas follow immediately from (2.9) and (2.10), summing 
over the appropriate indices j. 

Lemma 2. Suppose that w E H1 (Q) (extended by E) . Then there is a constant 
C, independent of h and w, such that 

(2.15) 11WI12, (<2\(i)U((i\Q*) ? C(h21W2 r, + h41wI2 ,). 

Lemma 3. Suppose that w E H1 (Qh). Then there is a constant C, independent 
of h and w, such that 

(2.16) IIWI12 h\ ? C(h2IW0 2r_ + h 4IwI,2h). 
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For the purpose of defining and analyzing our finite element method we now 
define certain spaces of piecewise polynomial functions on F and Fh. Let 
Sh(rh) consist of piecewise linear functions of t on Fh, continuous on Fh 
and linear on each edge rhJ) . The space Sh (F) is defined to be all functions of 
the form 

X (Xh (t)) = X (Xh (t)), 

where X E Sh(Fh). We define the orthogonal projectors Qh: L2(Fh) | 4 ShTh) 
and Qh L2(F) i' Sh (F) as follows: 

(Qhg, X)h = (g,x )h for all X E Sh(Fh) 

and 
(Qhg, X) = (g, X) for all X E Sh(F). 

Now Sh (F) is the space of continuous piecewise linear (with respect to the 
parameter t) functions on F. That is, vo E Sh (F) if vo is continuous and on 
each arc, V(A), is a polynomial of degree less than or equal to one in t. The 
space Sh(F) satisfies the following approximation property. For q E Hr(F) 

(2.17) inf (lq - ('lo,r + hlq - 'Il ,r) < Chrlqlr,r 1 <r < 2. 
,'ESh(TF) 

From (2.17) we get 

(2.18) (I - Qh)qlo,r = inf Iq - plo,r ? Ch2IqI2r. 
,PESh(rT) 

We also have the trivial estimate 

(2.19) (I - Qh)qlo,r < IqJo,r. 

It follows, by interpolation between (2.18) and (2.19), that 

(2.20) 1(1 - Qh)qlo,r < Ch'lqlsr 0 < s < 2. 

It also follows from (2.17) that 

(2.21) inf (lq - oIJo,r + h1/2Iq - 011/2,r) < Chrlqlr,r5 1 < r < 2. 
,PESh (r) 

The inverse property 

Iolij,r < Ch-1I(lo,r lo E Sh(F) 

is standard. It follows by interpolation that, for 0 < s < 1, 

(2.22) Iols,jr < Ch-sl(lo,jr, (0 E Sh(F). 

Finally, using (2.20), (2.21), and (2.22), we can easily show that 

(2.23) j(I - Qh)q1/2, r < Chs-l/2qis,r- 1/2 < s < 2, 

and, using the definition of H-1/2(F) that 

(2.24) j(I-hQh)q /2r ? Ch1/2jqIs,r 0 < s < 2. 

The following perturbation estimate will be of importance in our analysis. 
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Lemma 4. Let g E L2(r). Then 

IQhk - QhgI0,rh < Ch2IgIo,r, 
where C is independent of h. 
Proof. With t the arc length parameter on Fh and J(t) the Jacobian of the 
piecewise smooth parametrization t 

- Xh(t), we have, for (0 on r, 

(ds o=j | Jdt. 

Note that J(t) is smooth except at the nodes. Also, it is easy to see that if 
(0 E Sh(r), then 0 E Sh(rh), and if q E Sh(rh), then there is a function 

X E Sh(r) such that q = i. Now let j = Qhk -Qhg. Then, since X E Sh(r), 

IQhk-QhgIo, QhkJ Qhg)JJdt = Fdth- Qhg dt 

(2.25) = jgxds - j Qhgx ds + j(- QhgX(1 - J) dt 

= 'Fh - Qhg)9(l - J)dt. 

Using (2.25) and the Cauchy-Schwarz inequality, we get 

lQhk- QhsIo,Th ? (max I 1- J(t)) I -JQhglO,rhlQh - QhglO,rh, 

where lh is the length of Fh. It follows easily from the definition of Fh that 
maxtE[O,lh] I1 - J(t)i < Ch2. Hence we obtain 

IQhg - Qhglo,rh ? ChI -QhglO,rh- 

Using (2.5), we have 

IQhg - QhgIo,rh < Ch 2Ig -Qglo,r < Ch21glo,r, 

which is Lemma 4. 0 

We will also need to introduce another boundary space for our analysis. Let 
Sh (F) be the space of functions which are cubic polynomials with respect to 
arc length on each V(A) and which are continuously differentiable. Define the 
orthogonal projector Qh L2(r) |4 Sh (r) as follows: 

(Qg, X) = (g, X) for all X E Sh(r). 
It is well known that Shl (r) is a subspace of H2(r) and that the following 
inverse, approximation, and boundedness properties are satisfied. For 0 < s < 2 
and ( E Sh(r), 

J(lfsj, < Ch sl(loj,, (p E Sh(r), 
1(1 - Q')ql-112,r + h1/21(I - Q)qlo,r < Chs+l/2lqlsr 

and 0 

IQsqlsosr < Clqls,re i 
These inequalities are easy generalizations of results in [9]. 
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3. THE FINITE ELEMENT METHOD 

We define the approximate boundary data on Fh by 

gh = Qhk- 

We assume the family of polygonal domains, {Qh}, and corresponding fam- 
ily of triangulations, {9h}, satisfy the usual sort of quasiuniformity condition. 
The only vertices on Fh of a triangle Th E gh are vertices of Fh, and every 
triangle Th E h is affine equivalent to a reference triangle. Define the space 
Vh to consist of continuous piecewise linear functions relative to the triangula- 
tion Xh. The boundary space Vh(Fh) denotes the restriction of Vh to Fh and 
coincides with Sh (Fh) - 

The Approximate Problem. The approximate solution Uh E H' (Q) of (1.1) 
is defined as follows: In Qh let Uh E Vh be the solution of 

(3.1) ah(Uh, 0) = (f ,q)h, 0 E Vh, and uh = gh on Fh, 

where Vh = Vh n Ho (Qh) and f = O outside Q. Further define Uh in O \ lh 

as follows: In QhJ) t nh with T(j) the triangle in lh having FhJ) as one of its 
sides, Uh is the linear extension from Th) to QhJ) h h 

Note that this definition of Uh outside the region lh is the most natural one 
and Uh is thus defined in all of Q. 

As a consequence of the quasiuniformity assumptions, the space Vh has the 
following simultaneous approximation property. For w E Hr(Qh), 1 < r < 2 
there is a function Wh E Vh such that 

(3.2) IIW - WhIIO,Qh + hlw - WhIII,nh < Ch rlW 11r,nh, 

where C is independent of h and w. This property can be established using 
a trianglewise argument that is given in Bramble and Xu [9]. 

The following result will be needed in our analysis. 

Lemma 5. Let w E H2(Q) and O$h E Vh . Then 

invf {llW Qh XIIo,Qh +hllw Xh Xlll,nhI < C(h 211W11 2 nh + h11 - O-h 10, Fh)- 

Proof. Let Wh E Vh satisfy (3.2). Choose X E Vh? equal to Wh - Okh at the 
interior nodes of Oh . Then, a straightforward calculation yields 

/ 1/2 

IWh -Oh -XIIO,nh + hIlWh -h -XIII,nh < Ch E IWh(X(j)) - hX(j))12 
\j=l 

< Ch112lWh -h IO, rh - 

The last inequality follows since Wh - Oh E Sh(Fh) and on Sh(Fh) the norms 
on the right above are equivalent. Thus, using the triangle inequality, we have 

inf {||w - Oh - XIIO,h + hIlw ?'h %XII1,Qh} 
(3.3) X E Vho 

?IIW - WhIIO,nh + hllw - WhhI14h + Ch 1/2IWh - Okhlo,rh 
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Moreover (see Dupont [14]), for v E HI (nh), the following estimate holds 

Ivl rh < CIIV llo, Qlh IIV 11 1, Qlh 

where C is independent of h. Consequently, taking v = w - Wh, we get 

h 1/1 |w -Wh|Orh < QIlW - WhilIO, Oh + hillw Wh III, Qh)- 

Hence, using (3.3), the triangle inequality and this inequality, we obtain 

inf {||w - Oh - XIIO,fh + hllw- Oh %ll XI,Qh} 
X E Vho 

< IIW - WhIIO,Jh + hllW- WhI 1,Qh + Ch IIW - OhIO, rh- 

The lemma now follows from this and (3.2). o 

We will need to know that functions in Ho' (Q) can be approximated well by 
functions in Vh?. This is provided in the following lemma. 

Lemma 6. Let w E H2(Q) n Ho' (Q) (extended by E) . Then 

inf {llw XI?,Oih + hllw- X 11l,fh} I< Ch 211W112, Q- 
X E Vho 

Proof. Take Oh = 0 and w E Ho' (Q) in Lemma 5. Then 

inf {llIw- XIIO,Oh + hIlw- X1 ,5h} ? C(h 211WII2Q, + h1/1wIo,rh). 
X E Vho 

It follows from Lemma 1 that 

IWIOJ'h ' Ch 211W112,fl. 

Combining the last two inequalities proves Lemma 6. n 

Our goal is to prove Theorem 1 with Uh defined by (3.1). To this end, we 
will consider separately the cases f = 0 and g = 0, and let Uh,o be defined 
analogously to Uh in (3.1) but with gh = 0. Define u0 to be the solution of 

AUo = f in Q, uo = 0 on F. 

We now prove the following. 

Proposition 1. There exists a constant C, independent of h, such that 

(3.4) IIuO - Uh,Olli,fh < Ch2-iIlfIIo,X, i= 0, 1. 

Proof. Without loss, because of ellipticity, we may take the seminorm to be 

I,2h h = (, .). For XE Vho, 

(3.5) u0-1Uh,oIl h = ah(UO - Uh,O, UO - X) + ah(UO - Uh,O, X - Uh,O). 

Now, since X - Uh 0 E Vho 

ah(UO - Uh,O, X - Uh,O) = (Auo, X - UhO)h - (f, X - Uh,O)h 

Auo(X-uh,O) dx 

< CIIUOII22IIX - Uh,OIIO,1h\.- 

By (2.2) and Lemma 3, 

ah(Uo - Uh,O, X - UhO )< Ch IfIo, - Uh,OI1,Qh- 
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This inequality, together with (3.5) and the Cauchy-Schwarz inequality, yield 
for any X E V? 

IUo - Uh,01 ,?h CQUO - Xll,nh + h2 IfIo, D). 

Using Lemma 6 and (2.2), we obtain 

(3.6) IUo - Uh,o01,nh < Chllfljo,. 

We next estimate I - U,o Io, nh by using a duality argument. To this end, 
let (0 E Co (Qh) and define w E H2(Q) n HO(Q) to be the solution of 

(3.7) Aw=(oinQ, w=Oon]F 

and extended by E. Then for X E Vh? 

(UO - Uh,O, (O)h = (UO - Uh,O, Aw)h + (UO - Uh,O, g' - Aw)h 

(3.8) = ah(uO-uh,0, w-X) + ah(uo-uh,o, X) 

- (UO, aW/aVh)h + (UO - Uh,O, - Aw)h, 

where aW/lvh is the outward conormal derivative defined almost everywhere 
on rh . Now we have 

ah(UO - Uh,O, w - X) + ah(UO - Uh,0, X) 

? IUO-Uh,011,nhIW - XI,4h + (AUo-f, X)h 

? (Uo - Uh,0o1,h I+W h IIf,h + C XIfII0,+i C fII,Iih\n 

? (IUO - Uh,011,nh + Ch2jjfjj0,n)jW - XII,nh + Ch2jjfjjO,QjjWjII l,Q 

where the last inequality follows by the triangle inequality and Lemma 3. Using 
Lemma 6 (with X taken to be the minimizing function) and (2.2), we get 

(3.9) ah(UO-Uh,O,w-X)+ah(Uo-Uh,o,X) 

< C(hjuo - Uh,0o1,nh + h 2IfIlIo, n)1DIo11,nh- 
We also have, using Lemma 1 and (2.2), 

(uo, aW/aVh)h < IUoIo,rhIaW/aVhIo,rh 

(3.10) < Ch 2IIUOI12,nIIW112, 

< Ch2jjfjj0,njj9jj0 ilfh- 

Here we used the inequality (see Lemma 8 of [5]) 

(3.11) IaW/aVhIo,rh < C11WI12,n, 

with C independent of h. This inequality is also easily derived using (2.7), 
(2.8), and (2.14). Finally, using the definition of w and the Cauchy-Schwarz 
inequality, we obtain 

(Uo - Uh,O, (0- Aw)h < CIIUo - Uh,0II10,h\(IWI12,R2 + I1111I,nih). 

By Lemma 3, 

(UO - Uh, 0, ( - Aw)h < C(hIuolo,rh + h2 luo - Uh,0I11,nh)I1(110,I h 

Thus, by Lemma 1 and (2.2), 

(3.12) (uo - Uh,0, (0- Aw)h < C(h3IlfIo0,Q + h21uo - Uh,011,nh)11(I11,-h. 
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Combining (3.8), (3.9), (3.10), and (3.12), we have 

(UO- Uh,0 (;)h < Q(hjluo - Uh,1 O , Oh 
+ h2 Ilf 11o, n). 

Thus, using (3.6), we have 

IIUO - Uh,0110,nh = Sp lhO ll )h < Ch2jIfIlo n 
,PEC,,"(nh) 11ko1104nh 

This proves Proposition 1. o 

We now consider the case f = 0. We handle this case by an indirect analysis 
where we introduce another finite element approximation, Vh . Specifically, let 

Vh be defined as in (3.1) but with f = 0 and vh = Qh g on Fh. We further 
define uh and uh to be the A-harmonic functions satisfying 

uh = Qg, uh = Qg, on F. 

Then, since Qlg E H3/2(F), it follows from (2.2) that uh E H2(Q). This, as 
we will see, is the reason for introducing Sh (F) C H2(F) . We prove that Vh is 
an optimal approximation to u - uo. First we need the following estimate. 

Proposition 2. There exists a constant C, independent of h, such that 

(3.13) |Uh -Vh|lO,Qh < Chs+I12IgIS rX 0 < s < 3/2, 

and 

(3.14) lUh -VhII1 1,h < Chrl1/2g11rr, 1/2 < r < 3/2, 

where we recall that, by convention, uh is defined in Qh by Euhh. 
Proof. The analysis in what follows is similar to that of Proposition 1, however 
the differences are significant. We first note that it suffices to prove (3.14) with 
11h replaced by uh since, by (2.6), (2.2), and properties of Ql and Qh, 

llh- Uhlll,Qh < IE(ih- uh) III ,R2 < CII|ih _uh1,n < hr 1/2191r,r 

for 1/2 < r < 3/2. We first consider the seminorm. Then, for X E Vh0, 

(3.15) Iuh -Vh2Q = ah(uh Vh, Uh - Vh- X) + ah(Uh - Vh, x)- 

Now, since y E Vh 

ah(u h- Vh, X) = (Auh, X)h = / AuhX dx < Clluh II2,nIIXIIonh\n. 
Qh 

By (2.2) and Lemma 3, 

ah (u h-Vh, X) < Ch 21QhghI3/2,rlIXI1,Qh 

_ h9I312(lu _Vh- XI1,nh + IUh _Vhl1 h) 

This inequality, together with (3.15) and the Cauchy-Schwarz inequality, yield 
for any X E Vh 
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Using Lemma 5 and (2.2), we obtai. 

Iuh - VhIl,nh < C(hIQ19 r + -h VhIOT2h). 

But, from the definitions of uh and Vh, 

uh - Vh1O91 <h Q 0gIo,rh + IQhg - Qhglo,rh- 

Using Lemma 1, (2.2), and (2.5), we conclude that 

(3.16) Iuh _ Vhll,Qh < C(hlQ'g1312,r + h -QhgIo,r) 

From the properties of Qh and Qh we obtain 

Ifi h-Vhll,nh < Ch r1/2 191r,r 1/2< r <3/2. 
This proves (3.14) for the seminorm. 

We next estimate lljh - Vh lb, nh by using a duality argument. This time, we 
estimate juh - Vh directly, but, even so, uh plays a role in the analysis. To this 
end, let (0 E Co??(Qh) and define w E H2(Q) n Ho'(Q) as in (3.7). Then for 
X E Vh? 

(fjh - Vh )h 
= 

(h -Vh, AW)h 
+ 

(Uh-Vh, o-Aw)h 

(3.17) = ah(uh-vh, w-X) + ah(uh-Vh, X) 

-(Uh - Vh, aW/OVh)h 
+ 

(f4h - Vh, ( - Aw)h- 

Now 
(3.18) 

ah(uh - Vh, W - X) + ah(u -Vh, x) 
? Ifh - Vhll,nhlW- XlI,nh + (AUh, X)h + ah(fih - Uh, X) 

_ - Vhll1,hlW - 
XIl,nh + Clluh l2,illlXo,0,h\n + ah(iih - Uh , X) 

< (IU _ f |,h + Ch 21QIg32)w%lQ ~ 1'h- Vhll,nh + h2Qgl3/2,r,)Iw - XlII,nh 

+ Ch2 |QhghI3/2,r IIwIIi,| + ah(U -uh x)- 

In order to estimate the last term in (3.18), recalling that w E Ho (Q), let w 
denote w extended by zero outside of Q. Similarly, extend X by zero outside 
Oh * We then write 

(3.19) ah( -Uh uX)=ah(^_U ,X-w) +ah(U u, W). 

Then, since j'h - uh is A-harmonic, a(uih - Uh, w) = 0 and hence 

a(Nh _ Uh, W) < CIE(ih - Uh)II,R2lw| ,Q\Qh. 

Now from the definitions of w and w 

ah(uh _ Uh, X - ) < CIE(ih - Uh)II1R21| - | 1 

< CIE (fth - ) |I , R2 (I W- XI 1, Qh + I W I 1, (Qh \f1)u(f1\fh))- 

Combining the last two inequalities with (3.19), we conclude that 

ah(uh - uh X) < Cllih _ UhIII(IW ( X I1,h + IWI1,(nh\n)U(n\nh))- 

Using Lemma 2, (2.2), and (2.14), we have 

(3.20) ah(uh- Uh, X) ? ClQhg - Qg9I112,r(W - XII,nh + hIIwII2,n)- 
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Combining (3.18) and (3.20) gives 

ah(u h- Vh, W - X) + ah(U h- Vh, X) 

< (Iz - VhIl +Cl,nh hQ 13/2,r' + 19-Q191+IQg - Qg2 Xr)w-liI,nh 

+ C(h21QIgI312,r + h|hg- 

Taking X to be the minimizing function in Lemma 6 and using (2.2), we have 

(3.21) ah(uvh-h,w -X) + ah(uh-Vh, X) 
? (hIft - Vh l, nh + Ch29Q1g312,Fr + hlQhg - Qh1gI/2,r)II(oIIo,n. 

We also have, using Lemma 1 (twice), (3.1 1) and (2.2), 

(jih - Vh, aW/OVh)h < 
lh - Vh0,rhlaW/OVhlo,rh 

< Cl|Uh-u ,rh|W12Q 

(3.22) < C (I (uh _ Uh)-y(fu-Uh)|r + |Uh-yhor)lql 

<CIz~~~~h - 2I4thrh-orulojhII(Olo, 

? C(h|I'Ih _ 
uhIII,n + h2lluhll2,n)kllo,n 

? C(hlQhg - Q1gl1/2,r + h 2IQg93/2,r)11o11o,n. 
Finally, we estimate the last term in (3.17). Since Aw = (q in Q, 

(-h - Vh, (0- Aw)h < Cllih - Vhllo,Qh\QlI(Illo,nQ 

Analogously to (3.22), it follows that 

(3.23) (fh - Vh, (0- Aw)h < C(hIQhg - Qlgll/2,r+ h + Qh 

Combining (3.17), (3.21), (3.22), and (3.23), we conclude that 

lfh- Vhllo0, h = sup (jih - Vh,5 (P)h 

(ECoc (flh) 11(911o,nh 

? C(hlQhg - Qhgl1/2,r + h 21QhgI32,r) 

< Chr+l/2lglr,r, 0 < r < 3/2. 

This completes the proof of Proposition 2. o 

We next prove the following 

Proposition 3. Let UH be the A-harmonic function equal to g on IF. Then 
there exists a constant C, independent of h, such that 

11UH -VhlIIoJh < Chs+ 1/21gls r, 5 0 < s < 3/2,5 

and 
|UH - Vh 14h < Chs 1/2gI,, r, 1/2 < s < 3/2, 

where we recall that UH is extended to Oh by EUH. 
Proof. It is clear from Proposition 2 that we only need to estimate II UH - 1h Ili,Qh 
for i = 0 and 1. But, from (2.2), we have 

IhUH - 1h110,h < CIIE(UH -U )h10,R2 < CIIUH -_ fhII0Q 
< Clg - Qg9l-/2r < Chs+l/2gIs,r, 0 < s < 3/2, 

with the analogous inequality when i = 1. This, together with Proposition 2, 
proves Proposition 3. o 

We now can prove an estimate for u - uh. 
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Proposition 4. There exists a constant C, independent of h, such that 

IIu - UhIIo,nh < C(h2jjfjIo,n + hs+1l2jgjSr,) 0 < s < 3/2, 

and 
11 U - Uh 11 1,Qh <5 C(hIlfIflIo, + hs- 1l21gls r,) 5 1/2 < s < 3/2. 

Proof. Set Uh, H = Uh - Uh, o . Because of Proposition 1, it remains to estimate 
UH-Uh, H. For i = 0 or 1, 

(3.24) IIUH - Uh,H11i,nh < IIUH - Vhhi,Qh + hlVh - Uh,H111,nh. 

By Lemma 2.7 of Dupont [14] we have, for some constant C, independent of 

h, 

(3.25) lIVh - Uh,Hll1,Qh < CQVh -Uh,Hl1,Qh + lVh - Uh,HIO,J7h)- 

Since Vh - Uh, H is discrete A-harmonic, it follows that 

lVh-Uh,Hll,nh < lVh-Uh,H - X h 

for any X E Vh?4. Applying Lemma 5 with Oh = Uh - Vh and w = 0 shows that 

(3.26) IVh-Uh,Hh1,Qh< inf lVh-Uh,H -X11,nh < Ch-1/22lVh-UhIH1O r lVh - UhH11,h 
X E Vh 

h 

Thus, using (3.25) and (3.26), we get 

(3.27) IlVh - Uh,Hlll,nh < Ch /2I Vh - Uh,HIO,rh- 

By the definition of Uh,H_and Vh, we have Uh,H - Vh = Qh -Qhg on rh - 

Also, Qh Qh g = Qh g = Qh Qh g * Hence, setting G = g - Qh g and using Lemma 
4, we obtain 

(3.28) lUh,H - VhIO,rh = lQhG - QhG1O,rh < Ch IGIo,r = Ch2h(I-9Qh)go,r. 

Combining (3.27), (3.28), and (2.20), we see that 

(3.29) IVh - Uh,Hll1,h < Chs+3121gls r for 0 < s < 3/2. 

This estimate, (3.24) and Proposition 3 together prove Proposition 4. o 

We now prove Theorem 1. For i = 0 or 1, 

(3.30) |Iu - Uhlli,n < |Iu - Uhlli,nh + IIu - Uh11i,n\nh. 

Because of Proposition 4, it is sufficient to estimate 11u - Uh hi, . To do this, 

we set wh = uo + uh and note that wh E H2(Q). Recall that, according to our 

convention, wh also denotes the extension by E to R2. Now 

(3.31) hhU Uhhhi,n\nh < hhu - whhh,n + hhwh - Uhhhi, \nh. 

Since A(u - wh) = 0, we have from (2.2) and the properties of Qh, 

(3.32) ju - whh1,f < Chs-i/2gls IF, 1/2 < s < 3/2 

and 

(3.33) llu - whlho,n < Chs+?121g r 0 < s < 3/2. 
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Therefore, it remains to estimate IIwh - Uh IIi, Q\h , and we do this as follows. 

Apply (2.10) to the derivatives of wh - Uh and note that Uh is linear on QhJ) 
so that its second derivatives vanish there. Then it follows that 

(3.34) hw - 
1 
2() < C (h2 E alaxi(wh - 1U2)IQ) + h4IiWhII|2(i)) 

It is easy to show from the divergence theorem that 

(3.35) hIvIo r2 < C(IIvII2 (j) + h2 1V ( 

Applying (3.35) to the derivatives of wh - Uh in (3.34), we obtain 

I wh _ 
UhI12 () < C(hlw h - Uh11 

2 
(j) + h I|w hI12a(u )) 

Summing over the appropriate indices j, we have 

(3.36) wh UhIl Q\h < C(h 1/2WI - UhIl h + h3/2lIwh 12,0). 

Similarly, apply (2.10) to wh - Uh, use (3.35) with v = wh - Uh and sum over 
the appropriate indices j to obtain 

(3.37) fwh - Uh II0, \Oh < C(h /2IIWh - UhIIO Oh + h3/2Iwh - UhaI OUnh). 

Combining (3.37) and (3.36), we have 

(3.38) I|Wh UhIIO,Q\Qh < C(hl/2IIWh -UhIIo,h+h312Iwh-UhI|,nh+h3lWhII2, ). 

Consequently, applying the triangle inequality in (3.36) and using Proposition 
4 and (3.32) , we conclude that 

lwh -UhIl ,\0, < Ch1/2((hIfIIo,Q + hS 112jgl5,_), 1/2 < s < 3/2. 

We also used here (2.2) and the properties of Qh . Using (3.31), (3.32) and this 

inequality gives 

(3.39) IU - uhll,Q\Q, < C(hIIfIIoa, + hsl121gls,_), 1/2 < s < 3/2. 

In order to estimate llwh - Uh IIO,\0h, we use (3.38). From Proposition 4 and 
(3.33) we see that 

(3.40) hl/2IIwh - UhIIo,Qh < Ch1/2(h2IIfllo,! + hs+l/2jgjSr), 0 < s < 3/2. 

By using (2.2) and the properties of QI, we have 

(3.41) h3ltwh 12,0 < Ch(h211fio ,n + hs+l/2jglsr), 0 < s < 3/2. 

In order to estimate the second term on the right of (3.38), we write wh - Uh - 

(UO - Uh, o) + (Uh - Vh) + (Vh - Uh, H) . Applying Proposition 1 to (uo - Uh, o) 
(3.16) to (uh - Vh), and (3.29) to (Vh - Uh,H), we conclude that 

(3.42) h312Iwh - UhIl Qh < Ch1/2(h211flIo,Q + hs+l/21gls r), 0 < s < 3/2. 

Hence, combining (3.40), (3.41) and (3.42), we get 

(3.43) IlWh - UhII0O,\0h < Ch 12(h211fIlo,n + hs+l/12jgjr,), 0 < s < 3/2. 

Using (3.31), (3.33) and (3.43) gives 



16 J. H. BRAMBLE AND J. T. KING 

(3.44) IIu - UhIIo,n\nh < C(h2IIfIIo , + hS+l/2Igl,r,), 0 < s < 3/2. 

Theorem 1 now follows from (3.44), (3.39) and Proposition 4. o 

Remark. There is no difficulty extending all of the above to the case in which 
the boundary is piecewise smooth, provided that there are a finite number of 
corner points with interior angles less than or equal to zz. In such a case we 
require that the corner points be contained in the set of points {x(j)}. The 
requisite regularity results may be found in [13]. 

Remark. The system of linear equations which arises from our approximate 
method is not adversely affected by the inhomogeneous boundary data. This 
simply changes the right-hand side in the matrix equation. In order to apply 
multigrid techniques, we can develop a set of nested spaces as is done in [6]. 
One starts with a coarse grid of the type described here and successively re- 
fines the mesh, using a halving strategy. New triangles are introduced near the 
boundary by halving the boundary arcs with respect to the parameter t. This 
process is continued until a sufficiently fine mesh is reached. The space Vh is 
then defined relative to the fine mesh. The set of nested subspaces, for the 
purpose of defining an efficient multigrid algorithm, is defined as in [6] by tak- 
ing subspaces of the succesively coarser spaces with elements that vanish on all 
triangles having vertices on the boundary. The resulting multigrid algorithm is 
uniformly convergent, independent of the mesh parameter h. 5 

We note that our method has the following features: It (1) is relatively simple 
to implement, (2) is robust in the regularity of the boundary data, (3) provides 
an optimal-order approximate solution on all of Q, and (4) the resulting ap- 
proximate solution is computable using fast multigrid techniques. 
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