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ERROR ESTIMATES FOR A FINITE ELEMENT METHOD FOR 
THE DRIFT-DIFFUSION SEMICONDUCTOR DEVICE EQUATIONS: 

THE ZERO DIFFUSION CASE 

BERNARDO COCKBURN AND IOANA TRIANDAF 

ABSTRACT. In this paper new error estimates for an explicit finite element 
method for numerically solving the so-called zero-diffusion unipolar model (a 
one-dimensional simplified version of the drift-diffusion semiconductor device 
equations) are obtained. The method, studied in a previous paper, combines 
a mixed finite element method using a continuous piecewise-linear approxima- 
tion of the electric field, with an explicit upwinding finite element method using 
a piecewise-constant approximation of the electron concentration. By using a 
suitable extension of Kuznetsov approximation theory for scalar conservation 
laws, it is proved that, under proper hypotheses on the data, the L?? (LI )-error 
between the approximate and exact electron concentrations of the zero-diffusion 
unipolar model is of order Ax 12 . These estimates are sharp. 

1. INTRODUCTION 

This is the second paper of a series in which we introduce and analyze a 
new finite element method for numerically solving the equations of the drift- 
diffusion model for semiconductor devices, [14]. In the first paper of this series 
[ 1 ] we considered the so-called zero-diffusion unipolar model as our model prob- 
lem: 

(I.lIa) UT + (Ufl)X = O, T > 0, X E (0,1) 

(I.lb) U(T, O) = UO(T), if fl(T, 0) > 0, T > 0, 

(lulc) ~~U(T, 1) = U1(T), if ,B(T, 1) < 0, T > 0, 

(l.lc) u(O, x) = ui(x), x E (O, 1)O, 

where u is the (scaled) electron concentration and ,B is the (scaled) negative 
electric field given by 
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(1.2a) -#x = 1 -u, x E (0, 1), T > 0, 

(1.2b) fl = Ox, x E (0, 1), T > 0, 

(1.2c) q(T, 0) = 0, for T > 0, 

(1.2d) O(T, 1) = 01 (T), for T > 0, 

where q is the (scaled) electric potential. This model is obtained from the 
general equations of the drift-diffusion method by a series of simplifying as- 
sumptions; see the references given in [1]. In [1], a numerical scheme using 
a discretization of the equations (1.2) by a mixed finite element method and 
a discretization of the equations (1.1) by an explicit upwinding scheme was 
considered. The negative electric field ,B was approximated by a continuous 
piecewise linear function and the concentration u by a piecewise constant func- 
tion. The scheme was proved to be stable and to converge, in a suitable topology, 
to the unique exact solution; see [1, Theorems 2.1, 2.2, 2.3]. 

In this paper we show that the L??(L1)-error between the exact electron 
concentration of (1.1) and (1.2), u, and its numerical approximation under 
consideration, Uh, is of order AX1/2 under proper conditions on the data. 
The main idea in obtaining the error estimates is to exploit the similarity of 
equation ( 1.1 a) with classical conservation laws: if ,B is an evaluation operator, 
that is, if ,B = ,B(u), then (1.la) is nothing but a classical scalar conservation 
law. It is then reasonable to expect that after suitable changes, the Kuznetsov 
approximation theory for conservation laws [6] could be extended to the case 
under consideration. In this paper we prove that this is indeed the case. No 
error estimates seem to be known for bounded domains. Indeed, the error 
estimates for scalar conservation laws available in the literature consider the 
domain to be Rn; see [6, 12, 8, 9, 10, 2, 3]. (A single convergence result for 
the bounded domain case is given in [7].) 

Error estimates for the equations of the drift-diffusion model have been ob- 
tained in [4] and [ 1] for a finite element method that uses the modified method 
of characteristics, and in [ 13] for a method that extends the Scharfetter-Gummel 
method to the time-dependent case. In [4] and [11], the authors use the pres- 
ence of parabolic terms (which we have dropped) to obtain L2-error estimates 
that depend on second-order derivatives of the concentration u. Since the 
second-order derivatives of the concentration depend on a very small "viscos- 
ity" parameter Ai, the constants for the L2-error estimates blow up as A goes 
to zero. In order to avoid such a situation, we have obtained error estimates de- 
pending only on first-order spatial derivatives of the electron concentration u. 
In [13], the parabolic equations for the concentrations are replaced by parabolic 
equations for the current densities through a suitable transformation. The re- 
sulting equations are then discretized by using a standard finite element method 
in space. This approach has two advantages: (i) it allows the author to use an 
L2-parabolic technique to obtain error estimates, and (ii) it allows the error 
estimates to be independent of the derivatives of the electron and hole concen- 
trations (although they do depend on second-order derivatives of the currents). 
Our approach is different in that (i) no previous transformation of the equa- 
tions is required, (ii) an LI -hyperbolic error analysis technique is used, and (iii) 
only first-order derivatives of the electron concentration appear in the error es- 
timates. 
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The paper is organized as follows. In ?2 we display the numerical scheme 
under consideration. In ?3 we state the extension of the Kuznetsov approxima- 
tion theory [6] to our framework; see Theorem 3.1. We then state and prove 
our error estimates, Theorems 3.2 and 3.3. In ?4 we prove Theorem 3.1. 

2. THE NUMERICAL SCHEME 

For the sake of completeness, we include here the description of the numerical 
scheme for which we obtain error estimates. For a complete discussion of the 
ideas of the numerical method we refer the reader to [1]. 

We first introduce some notation. Let {Xi+1/2}i=O,...,,x be a partition of 
[0, 1] with x112 = 0 and X,x+112 = 1. Similarly, let {T}nn=0,...,T be a par- 
tition of [0, T], with TO = 0 and TnT = T. We set Ii = (xi_112, xi+112), 
AXi = Xi+12- Xi-112, and Jn = [Tn, Tn+l), ATn = Tn+l - Tn. Define Ax = 

maxi=1,...,nxfAxi} and Ar = maxn=o,...fnT-1{ATn}. We associate with these 
partitions the following spaces: 

1Ax = {VAX E W?(0, 1): vAxIl E P1(I), i = 1, ... nx 

WAx ={wAxE L'(0, 1): wAxIiE P0(I) i= 1, Inx. 

WAT = {WAT right-continuous: WATIJn E po(Jn), n = 0, ... , nT - T }. 

If vAx E VAx, then vi+112 denotes vAx(xi+112) for i = 0,..., nx. If wAx E 

Wax, then wi denotes the constant value wAx(x), x E Ii, for i = 1, ..., nx; 
the values wo and wnx+l denote the exterior trace at x = 0, wAx(O-), and 
at x = 1, wAx(1+), respectively. Finally, if WAT E WAT, then Wn denotes the 
constant value wAT(T), T E Jn. 

To discretize (1.1) and (1.2), we first discretize the data as follows: 

I In+I 

(2. 1a) n 
\T Jrn ?(T) dT n = 0,.., nT- 1, 

I 

ITn+1 

(2. 1b) uO , r=/n X o U(T) dT , n = 0, . nT- 1, 

I TIn+1I 

(2. 1 c) Un,4 t n Ul(T)dT, n=0, ..,T- 1, 

I Xj+1j2 

(2. 1d) (Ui, Ax)j = Z ui(x) dx, j =1, .. nx. 

The approximate solution Uh is taken to be in the space WAT 0 Wax and is 
required to satisfy the equation 

(2.2a) (u7+1 - u7)/ATr + (1/ - IL )/Axi = 0 

where the numerical flux 41/2 = f(u7, U7n1; f1in1,2) is the upwinding flux 
given by 

(2.2b) 4in + /= 2 + i+ + 1/2 
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The function (f3h , Oh) E WA, 0 VA, X WA, 0 WA. is defined by the following 
mixed finite element method: 

- x)wA(h) x (T , x)wAx (X) dx 
(2.3a) 

=j|(l-Uh(rT ,x))wAx(x)dx, VwA E WA, 

11h (Tn, X)vAx(x) dx 
(2.3b) 0 

=- jqh(Tn, x)(vAx)x(x)dx + X, AT(Tn)VA(I), VVAx e VAx. 

Thus the algorithm of our numerical method is: 

(1) Compute the functions UO,AT, uI ,AT, ui,A, and X1 ,AT by (2.1); 
(2) Set Uh(,)= ui,Ax(.); 
(3) For n = 0, ..., nT - 1 compute Uh((Tn+I,) as follows: 

(i) Compute (flh(rn, ), qOh(Tr, *)) by using the mixed finite element 
method (2.3); 

(ii) Set Uh(Tn, 0-) = UO,AT(Tn) and Uh(Tn, 1+) = U1 ,AT(Tn); 
(iii) Compute Uh(Tn+1, x) for x E (0, 1) by using the scheme (2.2). 

3. THE MAIN RESULTS 

In this section, we state and briefly discuss our main results. We begin with 
our key result, the extension of Kuznetsov's approximation result [6, Lemma 2] 
to our framework. 

This approximation result gives a measure of the closeness of two arbitrary 
pairs of functions (u, f,) and (v, n) satisfying the following regularity require- 
ments: 

(u, f,) and (v, n) are right-continuous functions from [O, T) 

(3.1a) to L'(O, 1) x W' 1O(O, 1) and have limits from the left on 

(0, T], 

(3.l1b) u, v E L?? (O,5 T; B V(O,5 1)) n L??O(O, 1L; L(O T)),5 

(3.1c) ,B(x), C (x) E BV(O, T) for x E {0, 1}, 

in terms of the so-called entropy form Eeo 0 (v, u; n), which measures how 
close the function (v, n) is to the exact solution of (1.1) and (1.2), and in 
terms of the following smoothness-measuring quantities: 



DRIFT-DIFFUSION SEMICONDUCTOR DEVICE EQUATIONS 55 

T 
+ 0(,V;)= P JV(T, A)-V(T, O-)+(T, ) dT, V~,0(, V; 

o<A< o 

V (e, (v; 1) = sup -j IV(T, 1 -A)-V(T, 1+)Inp(T, 1) dT, 

V+ 70(c0, V) = SUp IIvA-V(O)IL1(01)'1 T 
~~o<A<80 -V0loI0 

) 

(3.2) VTC, V) = SUP IIv(T-A)-v(T)IIL1(o, 1), 
O<A<?0 

VT'(cO, V) = SUP IV(T) - V (T ')IIL1 (0, 1), 
IT-T 1<90 

T,TIE[0 T] 

VT(co, C) = sup X(T + f((T, X)- (T + A, x)) dx dT, 
IAI <JO JO 

where v(., O-) denotes the boundary data for v at x = 0, v(., 1+) the 
boundary data for v at x = 1, and X is the characteristic function of the 
interval [0, T]. 

We now define the entropy form Ee0 e(v, u; n), following [6]. Let co and 
e be arbitrary positive real numbers. Let w: IR -11 R be an even nonnegative 
function in &? (IR) with support contained in [-1, 1] and such that fl1w= 
1. We set 

(3.3a) ^O(T, X; T', X') = Wo(T - ')We(X -X), 

where wz,(s) = w(s/v)/v, VS E R. Finally, we denote by U an arbitrary even 
convex function with Lipschitz second derivative, such that U(O) = 0. Such a 
function will be called an "even entropy". Although Kuznetsov [6] used only 
the Lipschitz entropy U(u) = lul, we need to consider smoother even entropy 
functions, namely, 

(3.3b) UI/M(w) 
l - 

11/2M for lwI > 1/M, 

Notice that L = supUER UI'/M(u) = 1, that the support of U1 is the interval 
[-1/M, 1 /M], and that M = SUPUER U1/M( u). 

For a general entropy function U, the entropy form Ego 9 (v, u; ) is defined 
as follows: 

T Il 
(3.4a) EePo,(v, u; C) = J jJ(V, U(T, X); C; (O(T, X; d, dT, 

where 
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e(V, C; n; ?O(T, X; , 

rT Il 

=-J 
- TJ U(V(T', X') - C) '(T , X; T', x') dx' dT 

T I 

-J 1 J U(V(T', X') - C) nr(T', X')(OXI (T, X; T', x') dx' dT' 

+ JU(v(T, X')-cC)(T, x; T, x') dx' 

(3.4b)I 
U(v(O, x') - C) o(T, X; 0, x') dx' 

rT 

+ JG(V (T', I C, V (T', I+) -C; r/(T', 1)) (O(T, X ; T, 1) dT' 

rT 

-j G(V (T O-) -C, V (T', 0+) -C; r/(T', 0)) f(T, X ; T', ) dT' 

T I 
- 1T jx {1/ X')V(V(T', X'), C)(O(T, X; T', x')}dx'dT' 

and the "entropy" flux G and the function V are defined by 

(3.4c) G(VIeft, Vright; 77) = U(Vleft)>+ + U(Vright)- , 

(3.4d) V(v, c) = U(v - c) - vU'(v - c). 

We indicate that we are taking U equal to U1/M, defined by (3.3b), by writing 
E1/M . We are now ready to state our approximation result. 

Theorem 3.1. Let (u, ,8) and (v, q) be functions satisfying the regularity con- 
ditions (3.1). Then, there exists a constant C, which is bounded provided that 
T is bounded and the regularity conditions (3.1) are satisfied, such that 

llv(T) - u(T)IILI(o, 1) 

<C {IIV((O)-U(O)IILI(O,1) 

+ IIV(1+) - U(l+)IILI(O,T) + IIV(O-) - U(O-)IILI(O,T) 

+T (j(T, X) x-J(T, x)) dx dT 

T 
+ J 9IIO X,(T') + (1 - V(T'))IILI(o, 1) dT 

T 

+ j I0Xfi(T) + (1 - U(T))IILI(o, 1) dT + c + co + 1/M 

?{vx,(E, u; f)?+vx,(, V; )?+VX+0(c, u; fi)+vx+0(c, V; q)} 

T+ { T ('0 I U) + VT,T ('0 I V) + VT+ 0 ('0 I U) + VT+,0 ('0I V)} 

+ {VT(co, U) + VT(co, V) + VT(o0 fi)} 

+E?/(V, u; 7) + E1?/M(u, v; A) 
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and, for T E [0, T], 

6ln(T) - f3(T)ILo(0, 1) 
< |IV(T) - U(T)IILI(O, 1) + 1I0X6(T) + (1 - V(T))I1LI(O, 1) 

+ 1O9xfl(T) + (1 - U(T))IILI(o,1) + j (n(T, X) - (T, x)) dx 

Next, we give estimates for the error between the exact solution (u, f,) of 
(1.1) and (1.2) and the approximate solution (Uh, flh) given by the numerical 
scheme described in ?2. Such an approximate solution was proven to be stable 
[1, Theorem 3.1] and to converge to the exact solution [1, Theorem 3.3] under 
the following regularity conditions on the data: 
(3.5a) Uo(T), UI(T), ui(x) E [0, u*], T E [0, T], x E [0, 1], 
(3.5b) uo, ul E BV(O, T) and ui(x) E BV(O, 1), 

(3.5c) +1(T) E [O, qfl, T E [0 T], 
(3.5d) X1 E BV(O, T), 
where u* > 1, and under the condition that, for n = 0, ..., nT - 1, the 
following CFL condition is satisfied: 

(3.6) AT~ -min{ (u A }} 
(3qu* ' (2u - 1)xi + 0 + 2 max{ l, u* - 1} 

We assume this CFL condition to be satisfied from now on. 
Under the general conditions (3.5), it is possible to obtain an upper bound on 

the entropy forms E0o t; see [1, Theorem 3.4]. However, additional hypotheses 
on the data seem to be necessary, in our technique, to estimate the forms v 
defined in (3.2) that measure the smoothness of the flux at the boundaries; see 
[1, Theorem 3.5]. We consider two different hypotheses that lead to different 
estimates of the continuity forms v and hence, by Theorem 3.1, to different 
error estimates. These hypotheses are the following: 

(3.7a) u* = 1, uo 0= O, and ulIK,, bIIK, are constant, / = 1, ... , N, 

(3.7b) 01 IK, E W" (KI), I =1 ...,5 N,5 

where {K1 }lIN is a set of disjoint intervals such that (O, T) = UN I K1 . The first 
hypothesis allows us to control the signs of ,B and fh at the boundary in such 
a way that the quantities vx(ie) defined in (3.2) can be bounded by a constant 
times (e + Ax). The second hypothesis allows for a possibly highly oscillatory 
behavior of the signs of ,B and j9h at the boundary, which is nevertheless 
suitably controlled by the smoothness of ql . In this case, smoothness at the 
boundary deteriorates: the quantities vx(e) defined in (3.2) can be bounded 
only by a constant times (e + AX) 1/2. 

Theorem 3.2 (Error estimates: the case (3.7a)). Suppose that the hypothesis 
(3.7a) is satisfied. Then there exists a constant C, depending solely on T and 
the initial and boundary data, such that 

IIU -UhILoo(o,T;LI(o 1)) < CAx1/2, 

ll8 flhIIL'(0, T;L(O, 1)) < CAx/2. 

These error estimates are sharp; see the numerical experiments in [1]. 
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Theorem 3.3 (Error estimates: the case (3.7b)). Suppose that the hypothesis 
(3.7b) is satisfied. Then there exists a constant C, depending solely on T and 
the initial and boundary data, such that 

IIU -UhILoo(O,T;LI(O 1)) < CAx13,1 

Ifl - flhIIL(o,T;L(O 1)) < CAx1/3. 

Proof of Theorem 3.2. Set (v, q) = (uh, flh) in Theorem 3.1. To prove our 
result, we first have to estimate each of the terms appearing on the right-hand 
side of the inequalities of Theorem 3.1. The following estimates follow easily 
from the fact that the discrete initial and boundary data are local averages of 
the corresponding continuous functions. Thus, 

llv(O) - U(O)IILI(O, 1) < uiIBV(O, l)Ax by (2.1d) and (3.5b), 

llv(1+) - U(l+)IILI(0, T) < IUlIBV(O,T)AT by (2.1c) and (3.5b), 

IIV(O-) - U(O-)I|LI(O,T) < |UOIBV(O, T)AT by (2.lb) and (3.5b), 

1A j(q(T X)-f3(T x)) dx dT 

rT 

= j$1l1,AT(T) - l(T)I dT by (2.3) and (1.2) 

< k1IBV(O, T)AT by (2.1a) and (3.5d), 

where If IBV(o, 1) denotes the total variation of the function f . We also have 

IT 
J IIO1 9x(T') + (1 - V(T'))IILI(o, 1) dT = 0 by (2.3a), 

T 

J9IIXfl(T) + (1 - U(T))IILI(O, 1) d = 0 by (1.2a). 

Finally, (most of) the following estimates have been obtained in [1]: 

{, 1 v( V; 1) + Vx+(, v; q)} < C(E +Ax) by [1, (2.13)], 
{-,(E u; fl) + vx,0(E, u; fl)} < CE by [1, (2.13)] and [1, Theorem 2.3], 

{v-,T(80 v)+VT+0(8o, v)} < C(co+AT) by [1, Proposition 3.14], 

{vT'T(8O, u) + VT+0(0o, u)} < CEO by [1, Proposition 3.14, Theorem 2.3], 

VT(8o, V) < C(8o +AT) by [1, Proposition 3.14], 

vT(go, u) < C(go) by [1, Proposition 3.14, Theorem 2.3], 

VT(8o, ,B) < CEO by (1.2) and (3.5d), 

E1/M(u, v; /f) < 0 by [1, Theorem 2.4], 

E1/M(V, U; C) < C(AX/c + AT/8O) + CATM by [1, Theorem 2.4]. 

By Theorem 3.1 and the above estimates, we easily obtain that 

IIv(T) - u(T) ILI(o, 1) ? C{Ax + AT + e + AX/E + co + AT/co + ATM + 1/M}. 

The first error estimate follows by minimizing with respect to M, c, and c0 
and by enforcing the CFL condition (3.6), which is of the form AT < CAX. 
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The second error estimate can now easily be obtained from Theorem 3.1, the 
first error estimate of Theorem 3.2, and from the fifth and sixth inequalities of 
this proof. 5 

Proof of Theorem 3.3. The only difference from the preceding proof is that now 
we have, by [1, (2.14)], 

Lfvx-,(E, u; fi)+vx-1(e, v; n)+vx+io(e, u; fi)+vx4o(e, v; n)} < C(e+Ax)1/2 

and hence, for e small enough, 

llv(T) - u(T) 1L1 (0, 1) < C{Ax1/2 +AT + 61/2 + Ax/e + co + AT/eo +A TM+ 1 /M}. 

The results follow as in the previous proof. 5 

4. PROOF OF THEOREM 3.1 

In this section we prove Theorem 3.1. We begin with a very simple result 
linking the distance between n and ,B and the distance between v and u. 

Lemma 4.1. We have 

11n(T) - flr(T)IIL(O, 1) 
< |IV(T) - U(T)IILI (O 1) + IIjoXn(T) + (1 - V(T))IILI(o, 1) 

+ IIxf(T) + (1 -U(T))IIL1(0,1) + ] (n(T, X) - fi(T, x))dx 

Proof. It is very simple to see that, for T E [0, T], 

11r(T) - 6Q(T)IIL(o, 1) 

< IIXO}(T) - OXf(T) IIL1(0 XI) + j(i1(T, X) - fi(T, x)) dx 

The results follow from the triangle inequality. 5 

The above result will allow us to proceed as in [5] and [6] to obtain an estimate 
on the approximation of the electron concentration. First, we consider the sum 
Ego, (v, u; n) + Eo? I(u, v; ,B) and rewrite it as a sum of seven terms. 

Lemma 4.2 (The basic equality). We have 

Eo? I(v, u; ,) + Eeo? (u, v; ,B) 
- Teff, (u, v) + Teff,X(U, ,B; v, 1) + Tu- (u, v) 

+ Tvel(u, /f; v, t) + Tfl(u, v) + T,(u, v) + Tul,(U, v), 
where 

T I I 

Teff,(U, v)= J U(v(T, X') - U(T, X))p(T, x; T, x')dx'dxdT 

+ 1U1 U(V(T', x') - u (T, x)) (o(T, X ; T', x') dx dx'd dT' 

- T j U( + J J JUU(V (T ,X')- U(T, X)) f9(T, X; T, ,X) dx'dx dT 
T I I 

U rV XT X) 
-s U (0 X) \9 (0 X r; TI x' dx dxI T 
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Teff,X(u, f,; v, 77) 
I rT rT 

11 JT JT G(v(T, 1-)- U(T, X), V(T', 1+) - U(T, X); r(T, 1)) 

*( O(T, X; T )dT'dxdT 
I rT T 

+ 1 JJG(v(T, X') - U(T, 1-), V(T, X') -U(, 1+); fl(T1 1)) 

* O(T, 1; T, X') dTdx'dT' 
1 {T {T 

-J Jl JT jTG(v(T', O-) - U(T, X), V'(T, 0+) - U(T, X); /(T', 0)) 

* O(T5, X; T, 0) dT'dx dT 
1 {T {T 

-J JT JTG(v(T, X') - U(T, O-), V(T', X') - U(T, 0+); fl(T'O)) 

O(T, 0; T, x ) dT dx' dT', 

Tu-(u5 v) = j f jU(T X))U(V(T', X') 

- U(T, X))fO(T, X; T', x') dx' dT'dx dT, 
T 1 IT I1 

*9x((fi(T, X) - r(T', X'))fO(T, X; T', x')) dx'dT'dxdT, 

Tfl(u, v) = | 1 j (xfl(Tr x) + (1- U(T, X)))U(T, X) 

* U'(V(T', X') - U(T, X))fO(T, X; T', x') dx' dT'dx dT, 

T,(u, v) =- j j j (jxY , (TW X') + (1 -V(T', x'))) 

* V(V(T,/ X' ), U(T, X))fO(T 5 X; T', X )d dx'T'dx dT 

Tu"(u, V) =-| j -V(T', X') - U(T ,X)) 

( T v(X ,x-)-U(T,X) 

sU" (s) ds (O(Tr, X; T', x') dx' dT dx dT. 

We now briefly discuss the meaning of each of the terms appearing in this 
result. First, notice that the term Teff, T goes (formally) to 

j U(v(T, x) - u(T, x)) dx - U(v(O, x) - u(O, x)) dx 

as e and co go to zero. Thus, this term contains the information of "the 
flow of the errors" of the approximation of the electron concentration across 
the boundary {0, T} x (0, 1). Similarly, the error term Teff,x contains the 
information of "the flow of the errors" of the approximation of the electron 
concentration across the boundary (O, T) x {0, 1 }. The term Tu- (u, v) can 
be considered to be a measure of the influence of the negative values of u in 
the approximation. Notice that only nonnegative values of u have a physical 
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meaning and that negative values of u might be very difficult to control, since 
the point u = 0 is an unstable equilibrium point of the equation along the 
characteristics 

d 
U= u( - u). 

The term Tvel(u, /B; v, 77) contains information about the smoothness and 
closeness of the velocities ,B and il; notice that even if ,B = 7l, this term is not 
equal to zero. The terms T,(u, v) and Tf(u, v) contain information about 
how close O, 77 and aj,B are from being the negative electric fields associated 
with the corresponding electron concentrations. Finally, the term Tu" (u, v) 
contains information of how far the entropy U(.) is from 1 I; notice that this 
term is equal to zero for U( ) = I -I. 

Proof of Lemma 4.2. With (3.4) taken into account, it is very easy to see that 

Ee6?(v , u; 77)+Eeo?e(u, v; /3) 
= Terr,A(U, v) + Terr,x(u, /B; v, 77) + T(u, /B; v, 77), 

where 

T(u, fi; v, ir) = -jjjj / (D:, x; I', x') dx' d' dx d 

and (supressing the arguments of the functions for the sake of clarity) 

D = U(v - u)(/3 - i7)Oax( + 9x,i7V(v, u)q + 9fJV(u, v)(o 
= U(v - u)(,B - 17)0xp 

+ (09x'7 - (-1 + v))V(v, u)p + (9XfJ - (-1 + u))V(u, v)p 
+ {-U(v - u) - (1 - v - u){U(u - v) - (u - v)U'(u -v)}0, 

by (3.4d). Since U(w) - wU'(w) = - f sU"(s) ds, we obtain 

'D= U(v-u){-(o+(fl -7)O9x(} 
+ (09x'7 - (-1 + V))V(v, u)(o + (O09J - (-1 + u))V(u, v)p 

rV-U 

+{(1 -v - u) J sU"(s) ds} I . 

Finally, since, by (3.4d), V(u, v) = U(u - v) - uU'(u - v), we get 

D = U(v - u){-u(o + 9x((f3 - 7)()} 

+ (O9'? - (-1 + v)) V(v, u)(o + (O0f9 - (- 1 + u))uU'(v - u)(o 

+ {(1-v-u) j U" (s)ds qp. 

This completes the proof. E1 

We now obtain lower bounds for each of the T-terms appearing in the right- 
hand side of the main equality of Lemma 4.2. The following lemmas contain 
these bounds. We begin with a couple of lemmas in which we collect all the 
inequalities involving the auxiliary functions we,. 
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Lemma 4.3. We have 

jW) (Z-T)dT = 1/2, j {1W x-x )dx} d < e, 

jw,(x-x')dx<1, Vx'e[O,1], 

j j WE(x - xl)If(x) - f(x')l dx dx' < CIfIBV(o, 1). 

Proof. The first three inequalities can be easily obtained by using the definition 
of we, (3.3a). We now prove the last inequality. Assume that the function f 
is very smooth. Then, 

j j W.E(x - x')If(x) - f(x')I dx dx' 

1b(y) 
- ]1We(Y) I I jf(x'+Y) - f(x')Idx'dy 

- 1 a~~(y) 

- j wE(y) If(. +Y) - f(.) IILl (a(y) ,b(y)) dy 

< |19xf lL'(0, 1) WS(y)Jyj dy = IlfIIBV(O, 
1)]_ W6(y)JyI 

dy 

< Elif IIBV(, 1) w (y) dy = elifIIBV(O, 1) 

This completes the proof for smooth functions f . The general result follows 
by a standard density argument. OJ 

Lemma 4.4. Set f+ = max{f, O}. Then we have 

rT I, I1 

fTflfF(x )(/)(T, X; T, x')dx'dxdT 

(4.1a) I I1 I 
> - j F(x') dx' --e sup F+(x'), 2 JO 2 O<x'<1 

T I1 I 
-| JTj1 j IF(T, X')I(o(T, x; T, x')dx'dxdT 

(4.l1b) 1 {,.1 ')d} 
> sup jjFQT, X x f 

2 IT-TI<eo0 
TE[O, T] 

T I I 

| j j If(Tr,x')-f(Tr,x)I (T,x; T,x')dx'dxdr 

(4. lc) 1 
> -v e SUp If(T) IBv(o, 1). 

O< < 
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Proof. We begin with the proof of (4. la). Let T1 denote the left-hand side of 
inequality (4. la). We have 

T= { we0(T- T)d}j {j We(X-x')dx}F(x')dx' by (3.3a) 

= {jTwe6(T- T)dT}j F(x') dx' 

-{j, -0(T T)dT} , {,1 -j we(x - x') dx} F(x') dx' 

> - JF(x') dx'- -'e sup F+ (x'), 2 2 o<x, < I 

by the first and second inequalities of Lemma 4.3. 
Now we prove (4. Ib). Let T2 denote the left-hand side of inequality (4. Ib). 

Then, 

T2= jT W0 {jT {jW(x - x') dx} IF(T, x')I dx'} d 

? T I{j1 x} 

> -- sup {/ 1F(T, x')Idx}, 2 j-Tj<eo o 
E[0, T] 

by the third and first inequalities of Lemma 4.3. 
Finally, if T3 denotes the left-hand side of inequality (4. 1c), we have 

T3= | WeO(T-T){j We(X-X')If(T x)-f(T x')Idx dx} dT 

T 
> -e SUp If(T)IBV(O, 1)j We0(T - T) dT 

0<-r<T J 

- e sup If(T)IBv(o, 1) 
2 <-r<T 

by the fourth and first inequalities of Lemma 4.3. This completes the proof. E1 

We are now ready to estimate all the T-terms appearing in the right-hand 
side of the main equality of Lemma 4.2. 
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Lemma 4.5 (Lower bound for Tea, ,(u, v)). We have 

Terr,z(U, v) > J U(v(T, x) - u(T, x))dx - U (v(O, x) - u(O, x))dx 

-esup U(v(T, x) - u(T, x)) 
XER 

- 2L{ZJ T(EO, U) + V%, o(eo, U)} 

1~~~~~ 
- L{av T(EO, V) + ? ,v%(co, V)} 

-Le{IUILoo(o T;BV(O 1)) + IVILO(O, T;BV(O, 1))}. 

Proof. Consider the first term of Terra, 

rT I 1 

(D = U(v(T, x') - U(T, X))v(PT, x; T, x') dx'dx dT. 

By using the definition of (0, (3.3a), and the following simple inequality, 

U(v(T, x') - U(T, X)) = U(v(T, x') - u(T, x')) 
+ {U(v(T, x') - U(T, X')) -U(v(T, x') - u(T, x'))} 
+ {U(v(T, x') - u(T, x)) - U(v(T, x') - u(T, x'))} 

> U(v(T, x') - u(T, x')) 

- LIu(T, x') - u(T, x')l - LIu(T, x) - u(T, x')j, 

we get 
D> T1 + T2 +T3, 

where 
{T 1 1 

T, = J J U(v(T, x') - u(T, x')) Q(T, x; T, x')dx'dxdT, 

{T 1 1 
T2 = -Lj J u(T, x') - u(T, x')jp(T, x; T, x')dx'dx dT, 

,T 1 1 
T3 =-L Ljj j U(T, X) - U(T, X')I(pT, x; T, x')dx'dxdT. 

By (4. la) with F(x') = U(v(T, x') - u(T, x')), we get 

1ft1 1 
T1 > U(v(T,x)-u(T,x))dx--e sup U(v(T,x)-u(T,x)). 21o 2 O<x<1 

By (4.lb) with ]F(T, x') = U(T, x') - u(T, x'), we get 

>- 2~L o sup {J IUxT X)-u(T, x')Idx'} =-.Lv7T(eo, U), T2 > 

-r-Tl<eo 2O,T(0U 
TE[O, T] 

by the definition of vM T(uO, U), (3.2). 
Finally, by (4. 1c) with f = u, we get 

T3 >--Le SUP IU(T)IBV(O, 1) = LL6 u IL??(0 T;BV(o 1)) 2 O<z<T 
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As a consequence, we have 

D > - |U(V(T, X) - U(T, X)) dX - 1 8 SUP U(V(T, x) - U(T, X)) 
2 OO<X 1 

- ILv T(Lo, U)- 2LEIUILoo(o,T;BV(0, 1)). 

The remaining three terms are treated in a similar way. 0 

Lemma 4.6 (Lower bound for TelT,x(u, B; v, i)) . We have 

Terr,x(u f;V,) 

> inf I(n1 (T, 1)+fl(T, 1))/2} 1 U(V (T, I+) -U(T, 1+)) dT 
TE[O, T]1)/j 

- SUP {(+(T, 0) + fl,+(T, 0))/2} j U(V(T, 0-) - U(T, 0-)) dT 
TE[O, T]0 

-- L{vx I(e, u; fl)+vxI(e, v ; 11)}--2L{vx(e, u; fl)+vx,(e, v; ?j)} 

2L{IIfhIL(O,T;L-(O, 1)){IU(l+)IBV(O,T) + IU(O-)IBV(O, T)} 

+ 2{Ifl(i)IBV(o, 1) + I/j(O)IBV(o, 1)}IIUIILO(o, T;L?(O, 1))190 

2 2{II1II1LO(o, T;L?(O, 1)){IV(l+)IBV(O, T) + IV(O-)IBV(O, T)} 

+ 2{I11(J)IBV(o 1) + I?1(O)IBV(O )11VIIL?(O,iT;L?(O,i))}I0 

-4L{IUIILOO(o, T;L?(O, 1)) + 11V11L?(0, T;L?(O, 1))} 

J /T {IIV(T) - U(T)IILI(O, 1) + llxO(T) + (1 - V(T))IILI (0,1) 

+ IIxfl(T) + (1 - U(T))llL1(o 1) + IJ T) X) - fl(T, x)) dx } dT. 

Proof. The proof of this lemma is similar to that of Lemma 4.5. We begin by 
considering the first term of Teff,X(u, fi; v, 1), 

(D= || | G(V(T', I-) -U(T, X), V(T', 1+) -U(T, X); ?1(T',1) 

*.(T,x;z', 1)dT'dxdz. 

By (3.4c), we have 

G(v(T', I-) - U(T, x), V(T', 1)-U(T, x); ?I(T',1) 

= U(v(T', 1+) - u(T, x))r-(T', 1) + U(v(T', 1-) - u(T, x))n+(T', 1) 

> U(V(T', 1+)-U(T, X)) Q (T', 1). 
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Since 

U(V(T', 1+) - U(T, X))Q(T', 1) 
= U(V(T', 1+)-U(T', 1+))p (T', 1) 

+ {U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}t (T', 1) 

=U(V(T', 1+)-U(T', 1+))1F(T', 1) 
+ {{U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}Q (T', 1) 

- {U(V(TQ, 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}/3(T, 1)} 
+ {U(V(TQ, 1+) - U(T, X)) - U(V(T', 1+) -u(T, 1+))}/3UT', 1) 

= U(V(T', l+)-U(T', l+))7 (T', 1) 
+ {{U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}IQ(T', 1) 

- {U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}fl(T', 1)} 
+ {{U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))},B(T', 1) 

- {U(V(T', 1+) - U(T, X)) - U(V(T', 1+) - U(T', 1+))}/3 (T, 1)} 
+ {U(VQ(T', 1+) - U((T, 1+)) - U(V(T, 1+) - U(T, 1+))}, (T, 1) 

+ {U(V(T', 1+) - U(T, X) - U(V(T', 1+) -U, 1+))}T (T, 1), 

we obtain 

G(v(T', 1-)- U(T, X), V(T', 1+)-U(T, X); Q(T', 1)) 
> U(V(T', 1+)-U(T', 1+))7Q (T', 1) 

-LjU(T', 1+)-U(T, X)j II (T', 1)- fl(T, 1)1 

-LIU(T', 1+)-U(T, X)I fl(T', 1)-fl(T, 1)l 
+ LIU(T, 1+)-U(T', 1+)1,Bf(T, 1) + L|U(T, X)-U(T, 1+)|fl(T, 1), 

and so 
?> T1 + T2+ T3+ T4+ Ts, 

where 
I rT rT 

T1 = JJ U(V(T, 1+) - U(T, 1+))6(Tj, 1)(O(T, X; T', 1)dT'dxdT, 
rl T rT 

T2 =-LJ J U(T', I+) -U(T, X)| 

* |76 (T, 1) - ,B (T,5 1) I 0(T, X; T', ) dT'd dXT , 
I rT Tl 

T3 = -L || JIU(T', I+) -U(T, X)I 

To estimate each of these terms, we use the inequalities of Lemma 4.4 in which 
the role of (x, x') is now played by (T, T') and the role of (T, T) is played 
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by (x, 1) . Thus, by (4. la), we get 

T1 > - j U(v(T', 1+) - U(T', 1+))?E(T', 1) dT'. 

Since 
1 rT rT 

T2 ? 2LIIUIILOO(O,T;L??(O ffJ j?7 r 1) - / ' 1)j 

*q,(T, X; , 1)dT'dxdT, 

we have, by (4.lb), 

T2 -2LIIUIILOO(o,T;L- (o,1)) J ?F(r, 1)-/Q(T', 1)fdTz 

rT 

> - 2LI|U||IL[ (O, T;L?? (0, 1)) j 1I1i(T') - fl(T')IIL??(0, 1) dT'. 

Since 

T3 > -2LjUIILOO(O,T;L??(O1I)) j jjfflkc( 1)-f-r1 1)f 

* V(T,x; X, 1)dT'dxdT, 

we have, by (4.1c), 

T3 > -LI|U||LOO(O, T; L??(O, 1)) -O IA(1)|IBV(O, T)* 

Since 

T4 > -Cj wB(X- 1){IT W60 (T- T')Iu, 1+)- U(T', 1+)lIdT}dT dx, 

where C = LI,/JIILoo(o,T;Loo(o,1)), we have, by (4.1c), 

1 
T4 >-L I IL - (0 T;L?? (O, 1)) 90 I U+) IBV(O, T)- 

Finally, by (4. ib), 

T5 > -L sup U(T, X)-U , 1+)Ir, dT 
2 Ix-1I<? 

XE[O, 1] 

= - 2Lvx1(e, U; /). 

We can thus write 

If1 
?? > 2 U(V(T, 1+) -U(T, 1+))17 (T, 1) dT 

T 
- 2LIIUIILOO(O T;L??(O,1)) J 1/(T) - ?/(T)IILOO(O, 1) dT 

- 2L{I1fllLoo(O, T;L??(O, 1))1U(l+)IBV(O, T) 

2 x, 
+ 21fl(1)IBV(O,1)IIUIILOO(O,T;L-(O,1)) }80 

-2Lvx- 1(8 u; fl). 
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Finally, by Lemma 4.1, 

(D > - U(V(T, 1+) - U(T, 1+))Q-(T, 1)dT 

- 2LII UIILoo (O, T; L? (O, 1)) J {IIV(T) - U(T)IIL1(O, 1) 

+ II0X?1(T) + (1 -V (T))IILI (O, 1) 

+ IIOfJ(T) + (1 -U(T))IILI(O, 1) 

+ j(n(T, X) f(T, x)) dx} dT 

- _L{IIflIILoo(O, T;L?(O, 1))IU(l+)IBV(O,T) 

+ 21fl(l)IBV(O, 1)IIUIILOO( ,T;L(O, 1))10 

--Lvx-I(e ;f) 2 
The remaining three terms are treated similarly. E1 

To estimate the remaining T-terms, we need an auxiliary result similar to 
Lemma 4.4. 

Lemma 4.7. We have 
rT rT 1 1 

- fT ff [1 JIF(T', x')I(o(T, x; T', x')ddTdxdT'dx' 
(4.2a) o o o o 

> - X IF(T' x) Il dT'dx', 

(4.2b) Jill / ; If(T', x')-f(T, x') I(oT, x;; T', x')dTdxdT'dx' 
> - Tv,T(8O, f ), 

rT rT 1 1 

(4.2c) -J - c J tf(TX)-f(TX')I9(TX ';,x')dT dxdT'dx' 
> -T flpL?? (0, T;BV(O, 1)), 

rT 7' 

- 1T 1T IT(T T')IWeo(T - T')dTdT' 

(4.2d) (T 

>- sup X (T'+ )IT(T'+ ,T/) dT' dC5 
ICI?eo 110 

where X is the characteristic function of the interval [O, T]. 
Proof. Let T1 denote the left-hand side of inequality (4.2a). Then, 

T, = - IIPrF(T', x')I {j q; , x; ', x')dxdT} dx'dT' 

bT ol 
> - j IF(T' x )j dx dT', 

by the definition of (p, (3.3a). 
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We now prove (4.2b). Let T2 be the left-hand side of inequality (4.2b). 
Then, 

T2= j/ {J TJ T {(x-x)dx} We(} T) 

.If(T, X') -f(T', x')IdTdT'} dx' 

> - Weo(T - ')IIf(T) - f(T')IILI(O, 1) dTdTc, 

by Lemma 4.3. Finally, by the definition of vT(Co, f), (3.2), we get 
rT rT 

T2 > j j W"o(T-T dTdT 

> -TvT(8O, f) 

by the third inequality of Lemma 4.3 with T and T' playing the role of x and 
x', respectively. This proves (4.2b). 

Next, let T3 be the left-hand side of inequality (4.2c). Then, 

T3 = j {{ j(T T,dT} 

J J WE(X-X')If(T X)-f(T, x')Idx'dx} dT 

> j { j We(X - X') If(T, X) -f(T f x')| dx1 dx} dT, 

by the third inequality of Lemma 4.3 with T and T' playing the role of x and 
x', respectively. By the last inequality of Lemma 4.3, we get 

T3 > -e 1I if(T)IBV(O, 1) dT > -eTjfIL- (o, T;BV(O, 1))- 

Finally, let T4 denote the left-hand side of inequality (4.2d). Then, 
xT oT 

T4 =-j f T(T, TT')1Wo(T(-T')dTdT' 

I 60 f b(C) 

W80 I T(T~~'+, T')jIdT } 
J-E0 1 Ja(c)J 

where, for 4 E [-co, eo], 

a(4) = max{O, -4}, b(4) = min{T, 7T- C}. 
The above integral can also be rewritten as follows: 

T4 = Weo (C) { (T +C I T(T' + C, T) I| dT } dC. 

The inequality (4.2d) follows easily from the above expression. This completes 
the proof. O 

We are now ready to complete the remaining estimates. 
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Lemma 4.8 (Lower bound for Tu- (u, v)). We have 

Tu-(u, v) > u {Jj U(vQr, x) - U(T, x))dxdr 

+ LeTIUILOO(0o, T; BV(o, 1)) + LTvJT(eo, u) 

where u* = inf(T, x)E(o, T) x (0, 1) U- (T, X). 

Proof. We have 
T 1 IT I1 

Tu- (u, v) ? u*jjUj U(VQT', X') - UQrT, X)) 

*9(z, x; T', x') dx'dT'dx dz. 

Since, by the triangle inequality, 

U(v(T', x') - u(T, x)) 

= U(v(T', x') - u(T', x')) 

+ {U(v(T', x') - u(T, x')) - U(v(T', x') - u(T', x'))} 

+ {U(v(T', x') - u(T, x)) - U(v(T', x') - u(T, x'))} 

< U(v(T', x') - u(T', x')) + LIu(T, x') - u(T', x')I + LIu(T, x) - u(T, x')I, 

we have that 
Tu-(u, v) > T1 + T2 + T3, 

where 

T1 = Ujj j U(V(T', X') - U(T', X'))((T, X; T', x' )dx'dT'dxdT, 

T2 = u*Lj I J U(T, X') - U(T', X')Iep(T, X; T', x')dx'dT'dxdT, 

T3 = u*L J Jf IU(T, X) - U(T, X')I(T, X; T', x')dx'dT'dxdT. 

Since u* < 0, by (4.2a) with IFI = U(v - u), we have 

T1 > u* j U(v(T', x') - u(T', x')) dx' d '. 

By (4.2b) with f = u, 
T2 > u*LTVLT(eo, U). 

Finally, by (4.2c) with f = u, 
T3 > U*LeTIUILoO(O,T;BV(O,1)). 

Thus, 

Tu-(u, v) > u* { J U(V(T, X) - U(T, x))dxdT 

+ L6TIUILo(0,T;BV(0,1))+LTlVT(60, U)}. 

This completes the proof. 0 
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Lemma 4.9 (Lower bound for Tvel(u, /; v, ij)). We have 

Tvel(u, fl; v, ) > {2U* + LIUILoo(o T;BV(o 1))} 

*{j; IIU(T) - V(T)IILI(O 1) dz 

+ l 70x 7(T) + (1 - V (T)) IILI (o, 1) dT 

T 

+ 3j llOJ(T) + (1 - U(T))IILI(o, 1) dT 

+ j(I(T, x) - 7(T, x)) dx dz 

+ TCII9xJlIILo(O, T;Lo(O, 1)) + Tv,(eO, u) + v,(eo, fl)} 

where U* = SUP(TI,xI),(T,x)E(o,T)x(o,1) U(V(T', X') - U X)). 

Proof. To avoid too many technicalities, we assume that u and ,B are very 
smooth functions; the result remains true if u and ,B satisfy the regularity 
assumptions (3.1). Integrating by parts in Tvei(u, ,8; v, 77), we obtain 

Tvel(U, /B; v, 7) = T1 + T2 + T3, 

where 

JT 1 {T I1 
T = 1 1 OU(V(T', X') - u(T , x)) 

{(fl(T, x) - 77(T', x'))V(TQ, x; T', x')}dx'dT'dxdTc, 

{T 1 {T 
T2 =-jjj U(VU(T' x')-uQ , 1)) 

* {(fl(T, 1) - IQ(T', X'))o(T , 1; T', x')} dT dx' dT', 

{T 1 {T 

T3 = 11 T j', x') - u(T , 0)) 

* {(/J(T, 0) - 77(T', x'))(oQT, 0; T', x')}dTdx'dT'. 

Consider T1 . By the triangle inequality, we have 

- IJ(T, X) - 77(T', X')l 

> -fl/(T', x') - 77(T', X')l - fl/(T', x) - fJ(T', X')l - flJ(T, x) - JJ(T, x')I 
? X-1113 X'l) - 9f')lT)lLo(o, 1) 

-IlX- x' llOXIJ(z')IIL??(O, 1) -11/3(z) -3(z')IIL??(O, 1). 
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By Lemma 4.1, we have 

- fI(T, X) - 7(T', X')| 
> IIU(T') - V(T')IILI (0, 1) -9IIX 1(T') + (1 - VQc'))IILI(o, 1) 

- IIXfl(T') + (1 - U(T'))IIL1(o, 1) - (T', X) - 7(T', x)) dx 

-IX - X'| IIOxfl(T')IIL?(O, 1) - IIU(T) - U(T')IILI(O, 1) 

II9Xfl(T') + (1 - U(T'))IIL'(o, 1) - II9Xfl(T) + (1 - U(T))IILI(O, 1) 

- jl; (I3(T, X) - I3(T',x)) dx 

_RI (T, T) )-|X-X xIR2 (T) =-R(T, T'; x-x X), 

where R2(T') = lX.fl(T')IIL-(O, 1). Hence, 

T j > IU'(v(T', X') - U(T, X))I kaxU(T, x)jR(T, T'; x - x') 

*(T, x; T, x')dx'dT'dxdT 

? L jj10{j0 1Oiu(z, x)I {jXwe( x-x) dx'} dx} 

TR1(z, ')w (r- ) dr'd 

-L J{a xu(T x)I{j jx x'jw(x x')dx'} dx} 

R2(T ')w0(T - T') dT' dT 

? LIUILO j T;BV(O, 1)) j j WeI(I - z)RI(l, - )) dx d 

- LIUILOO(O,T;BV(O,1))e R2(T')dT', 

by the third inequality of Lemma 4.3. By (4.2d), we get 

rT 

T1 > LIUILOO(O,T;BV(o,1)) Sup x(T' + C)R1 (T' + C, T') dT' 

-LIUILOO(0, T;BV(O, 1))eTII9xfllILoo(0, T;L-?(0, 1)), 

where X is the characteristic function of the interval [0, T]. 
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Finally, using the definition of the T(T, T') and the definitions of v,(eo, u) 
and v,(eo, /J) given in (3.2), we easily get 

T1 > -LIU ILoo (O T; BV(O I1)) { j IIU(T) - V(I)IILI(O, 1) dI 

T 
+ J IIOX,(T) + (I - 

V(T))IILI(O, 1) dT 

T 

+ 3 II0Jf(T) + (1 - U(T))IILI(O, 1) dT 

+ j(f3(T, x) - n(T, x)) dx dT 

+ TII OxIIILoo(O, T;Loo(O, 1)) + Tv(eO, u)+vT(eo, 

The other terms are treated in a similar way. El 

Lemma 4.10 (Lower bound for Tf(u, v)). We have 

Tf(u, v) > -LIIUIILo(O, T;L??(0 1)) j Io0X/J(i) + (1 - U(i))IILI(o 1) dT. 

Proof. By the definition of Tf(u, v) in Lemma 4.2, we have 

Tf(u, v) > -Cj 1T lx8(T, x) + (1 - u(T, x))I 

(*(iT, x; c', x') dx' dT' dx dT , 

where C = LIIUIIL- (o,T;L-(o, 1)). The result follows from (4.2a). This com- 
pletes the proof. E1 

Lemma 4.11 (Lower bound for T,(u, v)). We have 

T,(u, v) > -{U* + LIIVILOO(0, T;L?(0, 1))} j IIOX/ n(iT) + (1 - V(T:))IILI (0,I) di:' 

where U* = SUP,, IE(o,T);X,X,E(o,1) U(V((T', X') -U(T, X)). 

Proof. By the definition of T,(u, v) in Lemma 4.2, we have 

Tt(u, v) > _C jjx1T1 IO t(T', x') + (1 v(', x')) 

*o(T, x; T', x')dx'dT'dx dT, 

where C = SUPz,,zE(O,T);X,XE(O,1) IV(V((T', X'), U(T, x))I . By the definition of 
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V, (3.4d), we get 

C < {U + LIVIILOO(O,,T;L??(o,1))} C, 

and hence, 

T,,(u, v) ,-Cy OX q !IX(T', X') + 1V(T', X'))l 'Jo 

*(oT, x; T', x') dx'dT'dx dT. 

The result follows from (4.2a). 0 

Lemma 4.12 (Lower bound for TUI m (u, v)) . We have 

Tull (u, v) > -IIM(T+ ||VIILI(O,T;LI(0,1)) + IIUIIL1(O,T;LI(O,1))). 

Proof. By the definition in Lemma 4.2, we have 

I~~~ I T I Tull(u, v)> jj T j 1-VQT', X') - UQT, X)I 

* o(T, x; ', x') dx'dT'dx dT 

> -C(T + 
IIVIIL1(O, T;LI(O, 1)) + IIUIIL1(O, T;L(0, 1))), 

by (4.2a), where 

V (T' I X')-U(T, X) 

c = sup s Ul M(s) ds 
T,T'E(0, T);x,x'E(0, 1) 

Since, by (3.3b), 

U//(s 
M for Isi ? 1/M, I/M( ) { 0 otherwise, 

we have 

V(T', X')-U(T, X) I1/M 

SU//M(s) ds <? sMds = 1/2M, 

and the result follows. ol 

We now put together the estimates obtained in the previous results. 

Corollary 4.13. Let (u, IJ) and (v, '1) be functions satisfying the regularity 
conditions (3.1). Then there is a constant C, which is bounded provided that 
T is bounded and the regularity conditions (3.1) are satisfied, such that 
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j U1,M(V (T, x) - u(T, x)) dx 

o~~~~~~~~ 
< C {j U1/M(v(0, x) - u(0, x)) dx 

I 

+ j UIM(V(T, 1+) - U(T, 1+)) dT 

I 

+ j UiIM(V(T, 0-) - U(T, O-)) dT 

{T I1 
+ jTj UI/M(V(T, X) - U(T, x))dxdT 

+ / OIV(T) - U(T)IIL 1(d 1) dT 

+ {v,1(c,(T, X)+-vl(T, x))udx d) 

T 

+ / IaX 1j(T') + (I1 - V (T')) IIL1(0, 1) d T' 
T 

+ / IaXfl(T) + (I1 - U(T)) IIL1(O , 1) d T 

+ e + 60 + I /M 

+ fVx,l1(8' U; A) + vx-, 1('6 V; C1) + VX+ 0('6, U; Al) + VX+ 0('6, V; C1)} 

+ {VT,T(80, U) + VT,T(8o, V) + VT0o(8o0 U) + VT+,(o( I V)} 

+ {VT(c0 I U) + VT(co, V) + VT(o, I A)} 

+ E1 /M(v, U; r1) + E1 /M(U, V; 

We can now prove Theorem 3.1. 

Proof of Theorem 3.1. The second inequality of Theorem 3.1 is nothing but 
Lemma 4.1. To obtain the first inequality of Theorem 3.1, we notice that 
Corollary 4.13 holds for (u, ,B) equal to the weak solution of the problem 
(1.1), (1.2), and (v, '1) equal to (Uh , Ih), the approximate solution defined by 
the numerical method described in ?2, if these functions satisfy the regularity 
conditions (3.1). The regularity properties (3.1a) and (3.1b) follow from [1, 
Theorem 2.1] and [1, Theorem 2.3]. To prove the regularity property (3. ic), we 
can proceed as in Lemma 4.1 to get, for x E {0, 1 }, 

I (X) IBv(o, T) ?< fl x) + IaxIJBv(0, T; LI(0, 1)) 
0G BV(O, T) 

- I01IBV(O T) + IUIBV(O,T;L1(O,1)) < X' 

by hypothesis (3.5d) and [1, Theorem 2.3]. A similar result can be easily proven 
for I3,h (X) IBv(o, T) for x E {O, 1}I - 

Thus, the inequality of Corollary 4.13 holds for the exact and approximate 
solutions of (1.1) and (1.2). In such an inequality, we can replace the terms 
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involving the function U1/M by using the following inequalities: 
I 

IIV IILI (0,1) - 1/2M2<1 UL/M(v(x))dx < IIVILo(, 1), 

which follow from the definition of U1/M, (3.3b). After doing that, we obtain 
an inequality of the form 

T 

IIUh(T) - U(T) IILI (O, 1) < A + C - Uh(T)-U(T)IILI(O, 1) dT, 

which after a simple application of Gronwall's Lemma becomes 

IIUh(T) - u(T) IILI(O, 1) < AeCT. 
This completes the proof of Theorem 3.1. El 
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