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AN ERROR ESTIMATE FOR FINITE VOLUME METHODS 
FOR MULTIDIMENSIONAL CONSERVATION LAWS 

BERNARDO COCKBURN, FREDERIC COQUEL, AND PHILIPPE LEFLOCH 

ABSTRACT. In this paper, an L?? (L' )-error estimate for a class of finite volume 
methods for the approximation of scalar multidimensional conservation laws is 
obtained. These methods can be formally high-order accurate and are defined 
on general triangulations. The error is proven to be of order h /4, where h 
represents the "size" of the mesh, via an extension of Kuznetsov approximation 
theory for which no estimate of the total variation and of the modulus of con- 
tinuity in time are needed. The result is new even for the finite volume method 
constructed from monotone numerical flux functions. 

1. INTRODUCTION 

In this paper, a modification of the Kuznetsov approximation theory for 
multidimensional scalar conservation laws [28, 29] is obtained which is then 
used to obtain an L? (L1 )-error estimate for the class of monotone finite volume 
methods (which are at most first-order accurate only), as well as for high-order 
schemes constructed upon some of them. We consider the Cauchy problem for 
a multidimensional scalar conservation law ([26, 30, 31, 51]): 

(1.1) at U + div f(u) = 0 in R+ x Rd, 
(1.2) u(O) = uo on Rd, 

where the flux function f: R -- Rd is assumed to be smooth and the initial 
data uo is taken to be in the space L??(Rd) n BV(Rd) of bounded functions 
of bounded variation in Rd. In [28, 41], error estimates are obtained for 
approximations uh to the solution of (1.1)-(1.2) which satisfy the following 
properties (for each T > 0, and some constant C = C(T) > 0 ): 
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(i) 11 UI IILO((O, T)xRd) < C 

(ii) || U0(t) - U(t) IILI(Rd) < C (it - t'| + h), 

(iii) 11 uh IIL??(O,T;BV(Rd)) < C, 

(iv) Eh< Ch, 

where Eh represents the term of entropy dissipation associated with uh. In 
this paper, we obtain an error estimate for numerical schemes that need not 
satisfy the above conditions. Among them are the monotone schemes defined 
on general triangulations (for which no proof of the estimate (iii) is available) 
and the finite volume methods obtained from some monotone schemes by the 
so-called hy-antidiffusion technique (for which none of the above properties 
hold). The main idea in this paper is that the error estimate follows from a 
weak estimate for the uniform norm and a weak upper bound of the entropy 
dissipation of the approximations, i.e., estimates of the form (for each T > 0): 

(i) || uh IIL-((O, T)xRd) < 6(h"V), 

(iv) Eh < 6(hV2), 

for some numbers vi and v2 in (0, 1]. (Compare with the setting due to Tad- 
mor for one-dimensional problems using compensated compactness arguments 
[47].) 

Let us recall that Kuznetzov [28, 29] was the first to obtain an error estimate 
for the monotone schemes for (1.1) after the pionnering works by Kruzkov [26, 
27], and Volpert [51]. Using grids which are Cartesian products of uniform one- 
dimensional partitions, Kuznetsov proved that the error I u(t) - uh (t) IlLI(Rd) 

between the exact solution u and the approximate solution uh is &(h 1/2), 

as h goes to zero (uniformly for t in (0, T) ). Sanders [41, 42] (see also 
Osher and Sanders [39]) later proved that the same rate of the L??(L1)-error 
holds for monotone schemes constructed by using two-point monotone fluxes on 
nonuniform Cartesian grids. Error estimates for other numerical schemes that 
also satisfy the properties (i) to (iv) (or a refined version of them) have been 
obtained by Lucier in [34, 35, and 36]. Hoff and Smoller [22] first proved that 
the error in Glimm's scheme is &(hl161nh). We also refer to Chem [4] who 
proves an error estimate for Glimm's scheme applied to systems of conservation 
laws. Cf. also Johnson and Szepessy [25] who treat a finite element method 
for one-dimensional systems. For the so-called quasi-monotone schemes, [5, 
6,7], the estimate of the entropy dissipation (iv) does not hold. Cockbum [5] 
modified the Kuznetsov approximation theory and proved that the L??(L1)- 
error for these schemes is &(h I2) for some number y E (0, 1]. Recently, 
Tadmor [47] (also [37]) proposed a general framework to obtain error estimates 
for one-dimensional scalar conservation laws. His method allowed him to get 
error estimates for several first-order and second-order methods. The present 
work presents the first result on error estimates for a multidimensional problem 
with general triangulations. 

For a background on the analysis and the convergence of difference schemes, 
we refer to the works by Harten, Hyman, and Lax [20], and Harten, Lax, and van 
Leer [21]. Observe that Crandall and Majda proved in [16] a general theorem of 
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convergence of the monotone schemes. See also Goodman and LeVeque [19], 
Hou and LeFloch [23], LeFloch and Liu [33], Osher [38], Osher and Tadmor 
[40], and Tadmor [46]. 

Szepessy [44, 45], for the streamline diffusion method, and Coquel and 
LeFloch [13, 14, 15], for high-order differerce schemes, proved the convergence 
of numerical schemes without appealing to a uniform BV estimate (iii). To do 
so, the framework of DiPerna's measure-valued solutions [18] was used. The 
importance of deriving an estimate of the rate of entropy dissipation for differ- 
ence schemes was emphasized by Coquel and LeFloch in [14]. Chen, Du, and 
Tadmor [1] next used [18] in their analysis of spectral methods. This approach 
is related to the compensated compactness technique, for which we refer the 
reader to DiPerna [17], as well as [2, 3, 24, and 47], and the references therein. 

The present paper continues the work initiated in [9], where the convergence 
of the monotone finite volume methods was proven. The idea that prompted 
this work is the following. On the one hand, DiPerna's [18] uniqueness result 
for (1. 1), (1.2) in the class of measure-valued solutions was based on Kruzkov's 
techniques [26]. On the other hand, Kuznetsov approximation theory [28] is 
also based on Kruzkov's approach. It is then reasonable to expect that by using 
Kuznetsov's theory, the measure-valued approach could be bypassed. In this 
paper we prove that this is indeed the case. Our technique of proof in this 
paper involves more work than in [9], but has the advantage of providing not 
only the convergence, but also an estimate of the error. 

We consider here a large class of numerical schemes, which can be high- 
order accurate, and derive an error estimate from a suitable modification of 
Kuznetsov's approach. We do not need an estimate of the total variation like 
(iii), nor an estimate of the modulus of continuity in time like (ii). For mono- 
tone schemes, although the modulus of continuity in time is uniformly bounded, 
as a consequence of the LI-contraction property, no proof of the boundedness 
on the total variation is available. The LI-contraction property does not hold 
for high-order accurate schemes, and so an approximation theory that does not 
require any estimate on the modulus of continuity in time is essential. Our 
proof is based on a formulation of the discrete entropy inequalities and on the 
so-called entropy dissipation estimate that were derived in [9]. Note that, in 
order to make use of these inequalities, it is necessary to introduce suitably 
chosen piecewise constant test functions adapted from the original paper by 
Kuznetsov to our case. This is due to the fact that, for general triangulations, 
the property of invariance by translation is lost. The result in this paper can be 
easily extended to the Runge-Kutta type discretizations introduced in [10, 11, 
and 12]. 

The paper is organized as follows. In ?2, we state the hypotheses on the 
triangulations, define the class of schemes under consideration, and state the 
error estimate (see Theorem 2.1). In ?3, we give the proof of Theorem 2.1, de- 
composed into five subsections: (a) the basic inequality, (b) estimating the lack 
of symmetry of the entropy, (c) estimating the entropy production associated 
with the exact solution, (d) estimating the entropy production associated with 
the approximate solution, (e) completion of the proof of Theorem 2.1. Finally, 
in ?4, we prove that high-order accurate schemes built upon monotone schemes 
satisfying sharp entropy inequalities belong to the class of numerical schemes 
for which Theorem 2.1 holds. 
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2. STATEMENT OF THE MAIN RESULT 

Let t, = nT, n = 0, 1, ... , be a uniform mesh for the discretization of R+ 
and, for each h > 0, let h be a triangulation of Rd composed of nonover- 
lapping, and nonempty polyhedra. As is usual in the finite element approach, 
we assume that, if two distinct elements K1 and K2 in Ah have a nonempty 
intersection, say I, then either I is a face of both K1 and K2, or I has 
Hausdorff dimension less than d - 1 . The set of faces of a polyhedron K is 
denoted by oK, and, for each face on K, Ne, K E Rd represents the outward 
unit normal vector to the face e. Given a face e of K, then Ke is the unique 
polyhedron which shares the same face e with K. The volume of K and the 
(d - 1)-measure of e are denoted by IKI and lei, respectively. Without loss 
of generality, we can assume that 

h = sup hK < +o, 
KYE, 

where hK is the exterior diameter of a polyhedron. The perimeter of K is 
defined by PK = ZeEOK lei . The interior diameter of an element K is denoted 
by PK. 

We assume the following conditions on T and Sh: 

(2.1) h 
< T < yh 

and 

(2.2) PK < a for all K E 4h 

where y > 1 and a > 0 are independent of h. We observe that (2.2) implies 

(2.3) - < PKh < for all K E 9h, 

for some ,u > 0. 
The finite volume methods under consideration produce a function, say uh, 

defined from R+ to LI (Rd), which is right-continuous in time and piecewise 
constant, namely, 

(2.4) uh(t, x) = un for (t, x) E [tn , tn+) x K. 

We define the contants un as follows. First of all, we have to approximate the 
exact flux function of equation (1.1). Let us introduce a family of numerical 
flux terms gen, K given for each face e of each polyhedron K of Th that are 
locally Lipschitz continuous functions depending upon a finite number (fixed 
for all the triangulations) of values un, (e.g., un and Un for a two-point 
numerical flux), and satisfy the following two properties: 

(2.5a) conservation: gen, K + gen Ke = 0, 

and, for each real number u, 

(2.5b) consistency: U4 = u for all K' - n> ge,K = Ne,K f(U). 
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The notation z * z' and I z will be used for the Euclidean scalar product and 
the Euclidean norm of vectors in Rd, respectively. Let us also denote by Ph a 
projection operator (for example, the L2-projection operator) into the space of 
functions of the variable x which are constant in each K E Sh . 

We are now ready to introduce the high-order accurate finite volume method. 
By definition, the approximate solutions uh have the form (2.4) with 

(2.6a) uh (0) = Ph (UO), 

and for n = 0, 1, 2, ... and all K E 5h 

(2.6b) Un+1 = UK- 'K E lei gen,K 
eEOK 

To guarantee the stability of the method, the Courant-Friedrichs-Levy number 
v must be less than 1: 

(2.7) v = sup TK 
Ne,K * d 

(U) < 1, su IKI d-u 

where the supremum is taken over all elements K, all faces e, and all values 
u under consideration. 

Since we want to recover the entropy solution to problem (1.1)-( 1.2), the 
numerical flux in (2.6b) must satisfy a discrete version of the entropy inequality. 
Following an idea due to Tadmor [46], and following Coquel and LeFloch [15], 
we express Un+' as a convex combination of one-dimensional discrete operators: 

(2.8a) Un+1 = 1 lei, PKeEOK4~I, 

where 

(2.8b) u = K {ge,K - Ne,K * f(Un K, e K IKI gef(UK)} 

A discrete entropy inequality for un+1 will follow if each of the values Un+1 

e E OK, satisfies an (essentially one-dimensional) discrete entropy inequality. 
Following Kruzkov and Kuznetsov, we focus our attention on the set of 

inequalities associated with the so-called Kruzkov entropies. We recall that the 
classical Kruzkov entropies form a one-parameter family of entropy-entropy 
flux pairs for equation (1.1): 
(2.9) 

U(v, w) = Iv-W, F(v, w) =sgn(w -v)(f(w)-f(v)) (v, w) E R2. 

Observe that (U, F) is an entropy with respect to one variable, when the other 
is kept constant. Moreover, (U, F) is symmetric with respect to (v, w). 

Instead of working directly with (2.9), since this is difficult with high-order 
schemes, cf. the entropy inequality (2.15) below, it will be convenient to con- 
sider the following regularization: 

(2.10) U(\ ) lw-vi12M for Iw-vI ?1/M. 
MkV,W)-M MIW-_V12/2 for Iw -vI<1/IM. 

As M tends to infinity, we recover the Kruzkov entropies. The function UM 
is strictly convex with respect to both variables, and satisfies 

(d U d2U -M. (2.11) UM = 1 dM. 
duL-(R) L- (R) 
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We view UM as an entropy function with respect to the first variable. The flux 
associated with this entropy is given by 

(2.12) FM(v, w)= | M (s, w) f(s) ds. 
O9s 

Notice that, unlike F, the function FM, unfortunately, is no longer symmetric: 

FM(v, w)-FM(w, v) =J( (S, v) + (S, w)) f(s) ds 

and in particular is not an entropy flux with respect to its second argument. 
This is a difficulty when applying Kuznetsov theory. However, we are able to 
overcome this difficulty by using the fact that the difference 

(2.1 3) av (Fm (v, W) - FM(W, V)) = / S2 (s5 v) [f (v) -f (s)]ds 

is of order 1 /M; see the proof of Lemma 3.2. 
We assume that, for each M > 0 and each c, and for each e and K, there 

are numerical entropy flux terms Gn K' which are locally Lipschitz continuous 
functions depending on a finite number of mesh values. We also assume that 
they are conservative and consistent with the entropy flux FM(., c), that is, 

(2.14a) Gn ?nGe = 0, 

(2.14b) Un I= u for all K' =?* GnKNe,K *FM(U, C), 

and for which a discrete entropy inequality holds [5, 14]: 

UM(u14e, C) -UM(4, C) + K {G, -Ne,K FM(U, C)} 

(2.15) TPK n &9UM n 
< IK aK,e (VK, e, C). 

The quantities an e and Vn e in the right-hand side of (2.15) are assumed to 
satisfy for all time T the following estimate: 

(2.16) K E Z aK,e lK,e-vKe,ellelT 
< Clha (2.16) ~~nT<T KE]Th 

eE,9K 

for some a > 0 and C1 = C1 (T) > 0. In addition, the terms aK e are assumed 
to obey the following conservation property, similar to (2.5a): 

(2.17) an e + ae,e 0. 

Finally, we assume that the amplitude of the approximation does not grow 
faster than h-6 for some ,B E [0, 1); specifically for all time T > 0, 

(2.18) 1 U IIL?([O,T]xRd) < 11 UO IIL?(Rd) + C2? A 

for some constant C2 = C2(T) > 0. For instance, for the monotone schemes 
built up with two-point monotone fluxes, we can take an e-0, so that C1 = 
C2 = 0, and take UM as the Kruzkov entropies, i.e., 1/M = 0 in (2.15). 
Finally, we assume that the flux function is at most quadratic at infinity, in the 
following sense: 

(2.19) limsup I d-(w) < o, lim sup (w) < 00. 
(jObvi uwi du ll du2 

(Obviously, (2.19) is irrelevant in the case that IIuh IILOO is uniformly bounded.) 
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We now state the main result whose proof is given in the next section. 

Theorem 2.1. Let u be the entropy solution to problem (1. I)-(1.2) with an initial 
data uo E BV(Rd) n L??(Rd) . Let uh be the approximate solution defined by 
the (possibly high-order accurate) finite volume method (2.4), (2.6). We assume 
that the conditions (2.1)-(2.3), (2.5), (2.7) and (2.15)-(2.19) hold. Then for all 
time t and any positive scalars A and B with B large enough (i.e., larger than 
the maximum speed in the scheme), the following error estimate holds: 

u h(t)-u(t) IILI(At) ? CL h114 || II|2(Rd) + Co h12 (|| UO IILo(Rd) + TV(uo)) 

+ CO" min{a, 1-fi}/2 

where At = {IxI < A - tB} is a domain of influence/dependence, Co and CO 
depend on t and A, and Cq depends on t* TV(uo). Furthermore, CO' = 0 if 
Cl = C2 = 0. 

For monotone schemes, C0o = 0, Theorem 2.1 shows that the rate of con- 
vergence of the finite volume method is 6(h 1/4) when measured in the Ll 
norm. This rate seems to be optimal, at least with the technique developed 
in this paper. For the monotone schemes defined in Cartesian uniform grids, 
considered by Kuznetsov [28], or in nonuniform Cartesian grids considered by 
Sanders [41], the rate of convergence is h112. However, in this latter case, the 
scheme is uniformly bounded in the total variation norm (TVB), and the orig- 
inal Kuznetsov technique applies. Our result extends the error estimate in [28] 
and [41] to schemes that are not necessarily stable in the BV norm. Note that 
our basic assumption is the set of inequalities (2.15). Our result is new even 
with a e =O. 

Following Coquel and LeFloch [ 14] in the case of Cartesian meshes, one easily 
sees that Theorem 2.1 applies to the class of schemes based on the so-called 
corrected antidiffusive flux technique. Theorem 2.1 indeed applies to the high- 
order accurate schemes (defined on quasi-uniform triangulations) built with the 
so-called hy-antidiffusion method upon monotone schemes that satisfy sharp 
entropy inequalities, in the sense of [14]. In ?4, we prove that these schemes 
satisfy the entropy inequality (2.15), and the estimate (2.16) with a = l/p, for 
some p > 2; moreover, we show that the upper bound (2.18) with ,B = 0 holds 
when the triangulations are quasi-uniform. By Theorem 2.1, this implies that 
these schemes converge with a rate of & (h 12P) . A recent work by Vila [50] also 
treats the extension to more general high-order explicit or implicit schemes. 

We emphasize that the uniformity of the time-discretization has been as- 
sumed for the sake of simplicity. Theorem 2.1 remains true for nonuniform 
time-discretizations satisfying the standard restrictions. Theorem 2.1 also ex- 
tends to more general space triangulations that do not satisfy the properties 
(2.1)-(2.2) and are not necessarily composed of polyhedra, but admit a refine- 
ment made of d-dimensional polyhedra that satisfies (2.1)-(2.2). The trian- 
gulations h themselves could also depend upon tn , as is necessary for mesh 
refinement techniques. 

3. PROOF OF THE MAIN RESULT 

In this section we give the proof of Theorem 2.1. Our proof is based 
on a suitable modification of the classical Kuznetsov approximation result. 
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Proposition 3.1, derived below at the end of the first subsection, yields a basic 
inequality for u - uh measured in the Li norm which: 

(1) does not involve the modulus of continuity in time of the approximate 
solutions, 

(2) is based on the regularization (2.10) of the Kruzkov entropies, and 
(3) involves a piecewise constant approximation of the standard Kuznetsov 

test function, which is necessary to apply the discrete entropy inequali- 
ties derived in [9]. 

This basic inequality involves two kinds of terms: one measures the lack 
of symmetry in the regularized version of the Kruzkov entropies; two other 
terms measure the entropy production relative to the functions u and uh, 
respectively. 

In Proposition 3.2, we use (2.13) to prove that the error term due to the lack of 
symmetry of the regularized entropy flux defined by (2.12) is at most O(1)/M. 
In Propositions 3.3 and 3.4, we estimate the entropy production associated with 
the exact solution u and the approximate solution uh, respectively. Finally, in 
a last subsection, we complete the proof of Theorem 2.1. 

For simplicity in the presentation, and in the rest of the paper, the initial data 
u0 in (1.2) is assumed to have compact support. All the estimates below have 
straightforward extensions to trapezoid-shaped domains (as stated in the main 
theorem), which hold for arbitrary initial data. We denote by Qh (t) the union 
of the supports of the functions u and uh at time t, which clearly satisfies 
I nh(t) I = O(1) td for large t. For convenience in the presentation, we fix a 
bounded time interval [0, T], such that T nT= T, for some integer nT, and 
we then estimate II uh(T) - u(T) IIL1 

We point out that, in the case of monotone schemes (on arbitrary triangula- 
tions), the Kruzkov entropies can be used (i.e., 1/M can be taken to be zero). In 
that case, the Li-contraction property does provide an estimate of the modulus 
of continuity in time, and it can be proven that 

|| uh(t) - Uh(tI) IILI(Rd) < TV(Ph(uo)) (It - tll + T) 

where TV(Ph(uo)) remains uniformly bounded (see, for a proof, [8]), owing 
to the assumptions (2.1) and (2.2). 

3.1. The basic inequality. Our first objective is to derive a generalization 
of Kuznetsov's approximation inequality for fRd I u* (T, x) - u(T, x)I dx, i.e., 
Proposition 3.1 below. We are going to work with a special class of test functions 
0 we now define. Let co and e be arbitrary positive real numbers. Let co: 
R -* R be a smooth nonnegative even function with unit mass, and support in 
[-1, 1], and, for any positive number y, let us set coy(s) = cow(s/y) for all s 
in R. We consider the function q defined by 

d 

(3.1) $(t, x; t', x') = w60 (t-t')We(x-x'), We(x - x') = JJ6 (x - x'). 
i=l1 

To simplify the notation, and if there is no risk of confusion, we will often drop 
either the variable (t, x), or (t', x'), or both. We observe that the support of 
b shrinks to the "line" {(t, x) = (t', x')} as co, e -* 0. We shall use the 
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notation QT = (0, T) x Rd, or QT = (0, T) x Rd if (t', x') are the relevant 
variables. 

To use the entropy inequalities in [9], we must introduce the following piece- 
wise constant approximations of the functions o,, (t - t') and V/6 (x - x') 

(3.2) C)oe,,(t; t') = 
-t'(t+-t) for t E [tn, tn+l) 

(64l0 (t; t') = oeo (t- t'+I) for t' E [t , tn )+I 

and 

@6(X; X') = Y4,K(XI) = - L] (y -x')dF(y), 
PK eEaKe 

(3.3) 1 l x E K, x' E Rd, K E ,h 

'(X ; X ) = <e,x,I(X) = p E , X x -( y' )d (y'), 
PK' eEOK I 

x E Rd, x' E K', K' E 37. 

Next we define the corresponding approximations athqA*,Ot 0, Vhq$, and Vh' q 
of the exact time derivative and space gradients of the test function q, respec- 
tively: 

(3 4) ba h(t, x; t', X') = @/ (X; X')0tW0 0(t -t) 

ahOt'i(t, X; t, X') = -@/(X; X')O0t(t-t') 

and 

V h)(t, X; t, X') = C0,0 (t; t')Vqi6(X -X) 

Vh o(t, X; t, X') = -&l 0(t; t')Vq/ (x - X'). 

Similarly, it will be convenient to introduce a piecewise constant approximation 
of the exact solution u: 

(3.6) iU(t, X) = U(tn, X) for t E [tn, tn+I). 

The quantities u(t, x), iU(t, x), and uh(tI, x') will be abbreviated as u, i, 
and uh, respectively. 

For definiteness, we consider u and uh as right-continuous functions from 
[O, T) to LI (Rd) whose limits from the left exist on (O, T]. The function u 
represents the entropy solution to problem (1.1)-(1.2), while uh denotes the 
piecewise constant approximate solution (2.4) given by the scheme (2.6). We 
start our derivation by introducing the approximate entropy dissipation form 
E0,6 (U, uh) as follows: 

(3.7a) Eh, (U, uh) = j ,e/ (U, uh(t, X'); t', x')dx'dt', 
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where, for all constants c, 

eh (u C; t', x') 

=-'Q| {UM(fi, C)O/hq(tl, x') +FM(U, c) *Vho(tI, x')}dxdt 
QT 

(3.7b) - 
L 

UM(U(O, x), c)q(O, x; t', x')dx 

+J| UM(u(T, x), c)q(T, x; t', x')dx. 

The term hCO e(u, c; t', x') is a measure of the entropy dissipation associated 
with the entropy solution u: it is basically nonpositive; Proposition 3.3 be- 
low will give a precise statement. Observe that ii defined by (3.6) appears in 
the first term of the right-hand side of (3.7b): this is due to the fact that the 
time derivative of uh needs special treatment, as was observed in [9]. Set- 
ting ah = uh (which is a natural definition in view of the definition (3.6) of 
ui and the fact that uh is piecewise constant), we can define Eh , h(u, u) and 

eOh (c, uh; t, x) by the same formulas. 
Following Kuznetsov, and using the fact that UM is a symmetric function, 

we have the following identity: 

(3.8a) Rho( uh) = Sh S (u, uh) + Eeh (u,uh) + Eh ",(uh, u), 
where 
(3.8b) 

Rehoe(u uh) = j UM(uh(T, x'), u(t, x))>(t, x; T, x')dx'dxdt 
QT 

+ | |UM(uh(t,' xI), u(T, x))O(T, x; t', x')dxdx'dt' 
QTR 

- 'QT JAd UM(uh(O, x'), u(t, x))q(t, x; 0, x')dx'dxdt 
QT 

JI, I UM(uh(tI, x'), u(0, x))q(O, x; t', x')dxdx'dt', 

and 

Sh,e(U, uh) 

(3. 8c) - 'I'I {FM(u, uh) &e0 -FM (Uh, U)&C4)0V} *V dx'dt'dxdt 

+ | | {UM(i, Uh)@6 - UM(U, Uh)@1}oto,0dxIdt'dxdt. 
QT QT 

Since, as c, co -* 0, the term Rh ,(u , uh) is expected to converge to 

L UM(uh(T, x), u(T, x))dx-j UM(uh(0, x), u(O, x))dx, 

it will be called the error term. Note that Sh , 6(u, uh) = 0 if we would use the 
original Kruzkov entropies (2.9), if ui is replaced by u, and if the exact time 
derivative and space gradient are used. As we prove in Proposition 3.2, this 
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term is essentially bounded by a quantity proportional to 2/M, which is the 
size of the support of d2 U 

du2 
Our treatment of the term Rh e (u, uh) is different from [28] and [41], where 

the LI contraction property was used. Our motivation (for the application 
to formally high-order schemes) is to obtain a lower bound for Reh (u, uh) 

independent of the modulus of continuity of the function uh: [0, T] -* L1 (Rd) . 

Lemma 3.1 (Lower bound for Reh (u, uh) ). We have 

2R h e(U, uh) 

> |UM (uh(T, x'), u(T, xl)) dx' - UM (uh(o, X'), u(O, xi)) dx' 

- 21 W)0(t')UM (uh(tl, x'), u(t', x')) dx'dt' 
QT 

-3 Q+co jdf(uo) TV(uo). 

Proof. In view of (3.8b), we can write Reh = R1 +R2 + R3 + R4, with the 
obvious notation. We estimate R2 in the following crude manner: R2 > 0. In 
order to estimate RI , we consider the decomposition 

UM (uh(T, x'), u(t, x)) 

= UM (uh(T, x'), u(T, x')) 

+ {UM (uh(T x'), u(T, X))-UM (uh(T, x'), u(T, x'))} 

+ {UM (uh(T x'), u(t, x)) -UM (uh(T, x'), u(T, x))} 

and get 

UM (uh(T x'), u(t, x)) 

> Um u h(T, X/), U(T, X')) -II .(T, X)-U(T, x')I-lu(t, X)- U(T, x)I, 

since the Lipschitz norm of UM is 1. Taking into account the fact that u is 
the entropy solution, as was done by Kuznetsov, we obtain 

R1 > 2 j UM (uh(T, x'), u(T, x')) dx' 

- e TV(U1)- 1O df (uo) TV(uo). 

We proceed in a similar way to estimate R3 and R4: 

R3 > - J | u()UM (uh(, X, U(O, Xu) dx')- ) ( +o d (uo) TV(uo)d 

R4 > - (O E0 (tl)M (Um (tl, 5X ), u(t, x )) dx dt' 
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The desired result follows by adding the above inequalities. El 

For clarity in the following statement, we render here explicit the dependence 
of Sh, 6(u, uh), Eh ">(u, uh) and Eh "(Uh, u) upon T by writing, instead, 
SEO, (u, uh; T), E h(U, uh; T), and E* (uh, U; T), respectively. Ourbasic 
approximation result follows from Lemma 3.1 by an application of Gronwall's 
inequality. 

Proposition 3.1 (Basic approximation inequality). We have 

uh(T, x) -u(T, x)l dx 

< Inh (T) Rd + uh(o,x)-u(O,x)ldx 2M I 

+ 9Q(+~o e?jlldf (uo) ) TV(uo) 

+ 6 sup (Sh (U, uh;t) +Eh (U, Uh; t) + Eh (Uh, U;t)), 
O<t<T 

E OE 

where Qh ( T) is the union of the supports of u and uh. 

Proof. By Lemma 3.1, we have 

UM (uh(T, x'), u(T, x')) dx' 

< A + 2 w(E60(t )UM (uh(t, X'), u(t', x)) dx'dt', 

where 

A= J| U (R d5 X ) U(O,X)) dxL+3 (+ io d (uo) TV(uo) 

+ 2 sup (Sh* 'JU, u h; t) +E ho u t) +E OtT E O(5U; EhO (Uh, 5u; t)) 

A simple application of Gronwall's inequality gives 

J UM (uh(T, x'), u(T, x')) dx' <Aexp (2 jTE0(tl)dtl), 

and the result follows from the fact that fT coe0 (t')d t' < I (actually f0T wo0 (t')dt' 

- 2 if T > co) and the inequalities, cf. (2.10), 

Iw-vI-1/2M?UM(v,w)<Iw-vI. n 
3.2. Estimating the lack of symmetry of the entropy. In this subsection, we 
prove the following result. 

Proposition 3.2 (Estimate of Sh, E(U, Uh) ). We have 

Se,( f7Uh) < CT + -(1 + C2hl) +-M TV(uo)+Ck (u0oHLo+C2h-fl ), 

where the constant C does not depend upon h, c, co, M, T, and uo. (The 
constant C2 was introduced in (2.18).) 

In view of the formula (3.8c), we can set Sh E (u, uh) = SI +S2 with obvious 
notation. The next two lemmas provide estimates for SI and S2, respectively, 
which immediately imply the estimate stated in Proposition 3.2. 
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Lemma 3.2 (Estimate of SI ). We have 

SI < CT(-+ M ) TV(uo). 

Lemma 3.3 (Estimate of S2 ). We have 
_ h h 

S2 < CT -+- TV(uo) + C- (I1UoIjL- + C2h-f). 

Proof of Lemma 3.2. We consider the decomposition SI = S' + S"', where 

25 =- ' {FM(u, uh) + FM(Uh, U)} VqVi {&Eo - Colo} dxdtdx'dt', 

and 

2Sf' = jJ| {FM(u, uh) FM(u U)} - Vm6 { &c + o } dxdtdx'dt'. 

We shall assume u smooth. If u is not smooth, it is not possible to integrate by 
parts as we do below. However, the formulas we shall derive are still valid, as 
is easily checked by a standard regularization argument. Using the divergence 
theorem, the definition (2.12) of FM and by (2.19), one gets 

2IS| I < J V {FM(U , U) +FM(Uh, u)} 16WEo - -4l q Yie dxdtdx'dt' 

c 1 IV * u(t, x)I (f COd l - 6e I dt') (Ld dx6d td) 

60~~~~~ 0 fT 

< C-iTV(u(t))dt, 

thus, since TV(u(t)) is a nonincreasing function of t, 

(3.9) IS ? < CT TV(uo) - 

Here we have used the following estimates: 

fT I6(0(tn+1 - t') - 6Eo(t - t')I dtl < C- for t E [ta, tn+l), 

T 

fT I(60(tn+I - t) - w6o(t -t )I dt' < C- for t E [tn , tn+1). 

On the other hand, by (2.13) and the assumption (2.19), we have 
0 1~~~~~ d 2f <C 

|-(FM(u, v)-FM(v ,u)) <2M du2 L< O M 

and thus, 

2IS/I = j j {FM(U, uh) - FM(Uh, U)} VY/6{&h0 + &40o}dxdtdx'dt' 

= 'QT jV.* {FM(u, uh) - FM(Uh, I)}i/E{CEo + Co/40}dx'dt'dxdt 

< IV * u(t, x)I ( kdx') (I {hoE +& 0}dt') dxdt. 
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From the above inequality, we deduce that 

(3.10) IS"'I < C 
T 

TV(uo). 

In view of (3.9) and (3.10), the proof of Lemma 3.2 is complete. Ol 

Proof of Lemma 3.3. As in the proof of Lemma 3.2, we can assume that u is 
smooth. Consider the decomposition S2 = S' + S2, where 

s2= ]J j {UM(a, Uh) - UM(U, Uh)} at@'O,wdxdtdx'dt' 

S2' = - J J UM(U, uh)0t060 {/e - @/} dxdtdx'dt'. 
QT QT 

In view of (3.2) and (3.3), we can estimate S2 as follows: 

IS21 < J (t, x) - u(t, x) I (J 1(x; x') dx') ( lJO 6e I dt') dxdt 

T d~~~C 
< T sup IIfi(t)-u(t)ILI(Rd)- sup - L I e(xx-x') dx'dr(x). 

0<t<T 60 KEghj PK eEaK e Rd 

Since u satisfies the LI contraction property, and in view of the definition 
(3.6) of ui, one obtains 

(3.1 1) IS21 < CT-TV(uo). 

To estimate S2', we integrate by parts, i.e., 

s2 Jj ~M X dv(u, u )Ot Uw{Y/e - @1,}dxdtdx'dt' 

+ J J UM(U(T, x), uh) 6E0 (T - t'){ - }dxdx d tl 
RQT 

- JRd J UM(U(O, X), uh) wo(t'){@6 - th'}dxdx'dt'. 
RQT 

In view of 

jd I@6(x; x)-, (x x ldx < ch V l)(xI; x-,-(x x Idx < c 

and (3.3), we get 

|JQTJQ V (u, uh) atU U w0{@ - x}dxdtdx'dt' 

? UM L t 'QT Iu(t, x)Ij I/E 
- @EI (JOI Eodt') dx'dtdx 

< CT- TV(uo). 
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The remaining two terms are easily estimated; for instance, using (2.18), we 
have 

IJd J UM(U(T, x), u h) w6o (T - tl){ - } dxdx'dt' Rd QT 

? C(|Uo1 1L(Rd) + I|UhIIL?([o, T]xRd))he 

? C(uo1L(Rd) + C2h-9).h 

This shows that 

(3.12) IS21 < Ch(IIUOIILoO(Rd) + C2h-f + T TV(uo)). 

The proof of Lemma 3.3 is complete in view of inequalities (3.11) and 
(3.12). o 

3.3. Estimating the entropy production for the exact solution. 

Proposition 3.3 (Estimate of E ho6 (u, Uh) ). We have 

Eo ,(U1 uh) UC-(I1UoIIL-(Rd) + C2h- + T TV(uo)), 

where the constant C does not depend upon h, 6, 60, M, T, and uo. (The 
constant C2 was introduced in (2.18).) 
Proof. Since u is an entropy solution to (1.1), for each (t', x') and n, one 
has 

/ { UM(U(tn+1 , X), Uh (t, X')) - UM(U(tn, X), Uh (t/ ,X'))} q/i (x - x') dx 

/tn+1 h/V 
-J ~J FM(u(t, x), u)v VI (x - x')dtdx < 0. 

tn R 

Multiplying this inequality by co6 (tn+I - t'), using (3.2), and summing in time, 
we arrive at the following inequality: 

nT-1 

- E I UM(u(tn, x), Uh) {W60(tn+I - t') - Wco(tn - t')} qI/(x - x')dx 
n=o - 

-| Fm(u(t, x), uh)V V,(x-x')_X O(t; t')dtdx 
QT 

+ j UM(u(T, x), u h)w6)0 (T - t') q/ (x - x')dx 

- Ld UM(U(O, x), uh)w60)(t)qV4(x - x')dx < 0. 

By the definition of ui, (3.6), we have the identity 

I UM(u(tn, x), Uh) {W0 (tn+ - t') - Wco (tn- t') } , (x - x') dx 
f tn+I h 

t = / / UM(ii(t, x), uh)0tw60(t - t')q4(x - x')dxdt, 
Jnt JRd 
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so Eeh (u, uh) defined by (3.7) is bounded above by the quantity 

J j UpM(fi(t, x), uh)0tw6o0 (t - t') { qiJ (x - x')- J (x; x') } d tdxd t'dx'. 
QT QT 

Using integration by parts in time, we can rewrite this term as follows: 

JQT| UM( a(t, x), uh)0at6Eo (t - t') {qi6(x - x') - @6(x; x') } d tdxd t'dx' 
QTX Ql 

nT-I1 

=- x {UM(U(tn+,1 x), Uh) -UM(u(tn, x), uh)} 
n=O Jdx QT 

- ( @ - 6)(6o0(tn+l - t')dxdx'dt' 

+ j UM (u (T, x), uh{) {q(x_x )- 6 (x; x') }I0 o (T-t') dxdx'dt' 
RQT 

- d UM(U(O, x), uh){,/E(x-x ) -IE(x; x')}69E0(t')dxdx'dt'. 
RQT 

Each term in the right-hand side above can be estimated along the lines in the 
proof of Lemma 3.3. We omit the details. O 

3.4. Estimating the entropy production for the approximate solution. In this 
subsection, we prove the following result. 

Proposition 3.4 (Estimate of Eh ", 
(U, uh)). We have 

Eeh (uh u) < C(IIuoIILoo + C2h-fl) + MC1 ha 

+ C(TIQh (T) I) l/2 -(| UOIoL2(Rd) + C1/2ha/2 

where the constant C does not depend upon h, c, co, M, T, and uo. 

This result is a direct consequence of Lemmas 3.4, 3.5, 3.6, and 3.7, which 
we prove in the remainder of this section. 

Lemma 3.4. We have 
Eh ,(uh, u) < E1 + E2, 

where 

El =|P UM(Unl e (X) - , e(X))W60Eo(t+l -t)dxdt 
QT n=O K PEKh 

eEaK 

+ UM(uh(T, x'), u) 60o (T - t) {q i/e (x - x') - (x; x') } d tdxdx' 

-| 'QTd UM(u h (O, X' ), u)6E0 (T) {q i/, (x - x') - @ (x; x')} d tdxdx', 
QT Rd 

and 

E n (~~ vn 
(V,,U U 

E E aK e U e ( U)- v (VKe,U) 

eEaK 

*V,,e(X)CEo (tn+I -t)rleldtdx. 
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Note that, if we set 

(3.13a) / el(x) = V1 , q16(x -y')dF(y'), e' E aK', K' /E h 

then, in view of (3.3), we have 

(3.13b) (x; x') = I 
S e(x)Ie'I, xeRd, xK', K' , 

PK e'EOK' 

by the definition of @/; cf. (3.4). We use this identity in the proof below. 

Proof of Lemma 3.4. Following [9], we use the entropy inequalities (2.15) as 
follows: we sum the entropy inequalities (2.15), written for the polyhedron K 
and for the polyhedron Ke, respectively; in view of the conservation properties, 
(2.14a) and (2.17), the numerical entropy fluxes cancel each other, and only the 
exact entropy fluxes remain; then we get 

I UM(UK, e C) + II UM(AK4e, c) + T{FM(VK , c) - FM(K4, c)} NK,e 
PK PKee 

{ nKIO M(VC)9KeIOUM(Vn ,C)} < 
TaK, e { 3(VK C )-a(Ke,C 

We multiply the last inequality by e Ie I and sum over all faces and all poly- 
hedra: 

I KI - UM(U e C) Kh, e - U M(Un+e , C) qlhlK 
KE/Jh eEaK KKE, 

+ y FM(Un, c) * NK,e /(x - x')dF(x') 

eEaK 

< Z ane {4 
M (v+nI C)- a 

UM(Vn+l C) e 
KEgh eEaK 

Observe that for each polyhedron K 

Z, j 
FM(Un, C) * NK e -(X ')dF(x') =j FM(Un4 , C) *V Y/(X-X ')dx'. 

eEK 
K 

eK,( eEaK 

We multiply the last inequality by coo (t+l - t) and sum with respect to the 
time variable: 

-|j UM (uh x'), C) 4t'W60 + FM(uh, c) * V'qi&4(t; t')dt'dx' 
QT 

+ UM(uh (T , x') , c) @1,w60o (T - t)dx' -J UM(uh (o, x), c) w,09o (t)dx' 

nT-l 

< E |Kl| 6tI(Iton+1 - t) {UM(UK+ C) /I-- Z UM1 (UK+e, C)@-eIeI} 
n=O KE ghP eEaK 

+ an ~~~ (vnA+lc) (vn jY4ec(t+ t)Tlel. +eE aK 
{ 

- OVK,e5 C)-V Ke e, C) 1 e Wfo ( +I 
n=o K E 5rh 

eEOK 
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The statement in Lemma 3.4 then is a consequence of Jensen's inequality ap- 
plied to the convex decomposition (2.8). o 

The following a priori estimate of the entropy dissipation of the scheme was 
derived in [9]. 

Lemma 3.5. We have 

(3.14) El UK -U +1)2 < IIUO1122(Rd) + Cih, 
n=O KE5 Ph 

eEaK 

where C1 was introduced in (2.16). 

Proof. The entropy inequalities (2.15) hold for all M, so, for each h fixed, we 
can take M to be larger than IIuh IIL??, and in view of (2.10), condition (2.15) 
then reduces to a discrete entropy inequality for the quadratic entropy u2. 
By summation in space and time, we can deduce from this quadratic entropy 
inequality that 

nlT1 lelIKI 
(UnT)2 KI + E E (vn+l -v+1)2 

KEJ-h n=O KEYr PK 
eEaK 

nT -1 

?<~ (UO~)2IKI + JZI an ,IIUnil - une1Iez 
< U 2KI +E E|K e |Ke -Ke,eIIeIT. 
K E5"h n=O KEYrh 

eEaK 

The proof is based on the arguments already used in the proof of Lemma 3.4. 
See [9] for a proof. The proof is complete in view of (2.10). o 

In the derivation of (3.14), the assumption (2.16) is used to estimate the en- 
tropy production only. When the antidiffusive term an e vanishes identically, 
(3.14) holds with C1 = 0. 

Equipped with (3.14), we now turn to estimating E1 and E2. In view of 
Lemma 3.4, Proposition 3.4 is an immediate consequence of Lemmas 3.6 and 
3.7 below. 

Lemma 3.6 (Estimate of E1 ). We have 

E1 < C-(IIUOIIL- + C2h-fl) + C(TI Qh (T)Il () 1 I (|uoIt||L2(Rd) + C11 ha/2) 

Proof. In view of the identity (3. lOb), for all K E h we have 

1 K UMl+1\ -hE _ _chelej = 05 
eEaK 

and thus E1 can be rewritten in the form 

E1 = (t x) + 02(t' x) + 03(t, x)}dtdx, 
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with 

6i(t,x =ZZ leliKi { UM(Une1 U)-U(n+ IU 
n=O KE PKU 

eEOK 

- - ~~~~~t) *(~/ tY- te, e) l)eo (tn'+ It) 

02(t, x) = j UM(uh(T, x'), u)w60o(T - t){/(x- x') - (x; x')}dx', 

03(t, x) =-j UM (uh (O, x ), u) 6o (t) {q/ (x - x') - @,(x; x') }dx'. 
Rd 

In order to estimate 01, we write 

I J AI t, )dx t|< pK I UK e UK I I 
1/ W c, e I dx 

QT n=O E PK Rd 
eEaK 

c nT-1 ~~~~IKIlel 
n=O K EYh P 

eEaK 

where we have used the following estimate valid for all x': 
h 

JI@(X; X') - @IE,e(X; x')Idx ? C-. 

Since the triangulation satisfies condition (2.1), and by using the Cauchy- 
Schwarz inequality, we deduce that 

nTIKilI 
IJ tW(t, )dtd| < E E I UK, e UK I P 

Tn= KE PK 
eEaK 

-C ( TI Q( T) |I EE K -Un+ 1 I 2 lI T) 
n=O K EY-h 

PK 
eEaK 

where IQh (T) I represents the Lebesgue measure of the support of the approx- 
imate solution at time T. Using the entropy dissipation estimate (3.13), we 
thus get 

(3.15) 'QT 6,(t, x)dtdx ? C|(TICTh((T)II)-/2 l (IIuol2(Rd )+ + 112ha/2) 
Similar arguments as those used in the proof of Lemma 3.3 yield the following 

estimate for 02 and 03: 

J {102(t, X)I + 103(t, x)l}dtdx < C(IIUh IIL-o([O,T)XRd) + IIUOIIL??) 
(3.16) QT 

< C- h(IIUOIIL-O + C2h-fl)- 

The proof of Lemma 3.6 is complete in view of (3.15) and (3.16). El 

Lemma 3.7 (Estimate of E2 ). We have 

E2<MCGht. 
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Proof. By the definition of E2 in Lemma 3.4, the definition (2.10) of UM, and 
the property (2.1 1), one has 

|E2j < M nz Z Ic4,eIIvKe~ V7(eI (fR @,e(x'; x)dx) (fTweiodt~) 'riel 
eEaK 

nT- 1 
< M E laK,e |VK, e Ke, e eTe W;xd 

n=O KE ' 
eEaK 

where we have used the following identity: 

IRd @e,e(X)dX= delTJ ( @(x; x')dx) dF(x') =1. 

The conclusion is a consequence of assumption (2.16). 5 

3.5. Completion of the proof of Theorem 2.1. From Propositions 3.1 to 3.4, 
we immediately deduce that 

llu(T) - u(T)IIL1(Rd) < A-IM-1 + Ao + A1M, 

where 

AL1 = C+ CTTV(uo), 

Ao = 2 IPh(uo) - UOIIL(Rd) + C TV(uo) e 

+ - ((T TV(uo) + 11 UO IILoo(Rd)) h 

+ T112 || UO 1IL2(Rd) h1/2 + T1/2 C112 h(l+a)12 

+(1 + T TV(uo)) C2 h'-m), 

A1 = C1 ha, 

where C depends on oh (T), a, y, and on the ratio o0 IIdf(uo)IILoo/e ,which 
we set equal to a fixed constant. 

Minimizing over M, we obtain 

IIuh(T) - u(T)IL1(Rd) < 2 A/AI + Ao, 

that is, 

IIuh(T) -u(T)IIL1(Rd) < 2 IIP(UO) - UOIIL1(Rd) + C TV(uO) c 

+ - ((T TV(uo) + 1I Uo IILoo(Rd)) h 

+ T1/2 || UO 1IL2(Rd) h1/2 + T1/2 C112 h('+a)/2 

+ (1 + T TV(uo)) C2h1fl) 

+ C C:'/2 ha/2 
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Minimizing over , we get 

Iuh(T) - u(T)IILl(Rd) 

< 2 IIPh(UO) - UOIIL1(Rd) 

+ C TV(uo)1/2 ((T1/2 TV(uo)1/2 + |U0 || / 1 ) h 12 

+ T1/4 11 uo 112(Rd) h1/4 + TP/4 C14 h1/4+a/4 

+ ( 1 + T1/2 TV(U0)1/2) C12 h1/2-fl/2) 

+ C Cll12 ha/2. 

The result follows from the fact that IIPh(UO) - UO ILI(Rd) < Ch TV(uo) . (See, 
for example, [8] for a proof.) This completes the proof of Theorem 2.1. El 

4. THE ANTIDIFFUSION SCHEMES 

In this section, we prove that Theorem 2.1 does apply to the so-called mod- 
ified antidiffusive flux schemes constructed from monotone schemes. For sim- 
plicity, we assume here that the underlying monotone scheme satisfies sharp 
entropy inequalities, in the sense of [14]. The antidiffusion schemes are for- 
mally high-order accurate schemes of the form (2.6) with a numerical flux gen K 

given by 

(4.1a) gK = g,n + an gnK gem,K e,K' 

where 

(4. 1b) nKn is a two-point monotone flux, 

and an K satisfies the conservativity property (2.17) and the estimate 

(4.1c) Iae,KI < AhK 

for some number y in (0, 1]. To apply Theorem 2.1 to the schemes under 
consideration, we only have to verify that the discrete entropy inequality (2.15), 
the estimate (2.16), and the L?? bound (2.18) hold. 

We first show that the entropy inequality (2.15) is satisfied. By (2.8), we have 

n+1 1+ li UK UK,eIeI, 
PK eEaK 

where 

u = U- {g + ae,K -Ne,K f(un)}. 

Setting 
Wn+l = Un+l + TPKan 

K, e K, e +IKI1 e,K' 

we get 

w UK Ne,K * f(un)j, 
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and so, by (4.lb) and the CFL condition (2.7), 

UM(z4, c) - C)-UM(Un, C) + TKI {GK -Ne,K FM(UK, c))} 

<MUM (z N, C)K-MUM(WK , C) =(K, e- K+e (VKIeC=IIa e K} (K , 
OUc M ZWK &UM(VCC 

where 

42 n = 1 _ 
on, Un+1 on Wn+l = Un+1 n TPK n 

(4.2) 1,e =(1 K ,e)UK, e K + e WK, - K,e K, e IKI ae,K 

and OKe is some number in (0, 1). This proves that the entropy inequality 
(2.15) is satisfied for the schemes under consideration. This, together with 
(4.1c), proves that the LOO bound (2.18) holds with /8 = 1 - y. 

Now, we prove the estimate (2.16). By (4.2) and (4.1c), we have 

IV ,e - V ne < I Un+1 -Un+1 I + 2A hK 
< I un+I~~~~~~~~K -IKI1 
<|UK*1-U~I+ l2 A li,l h Y 

and hence, 
NT-1I 

(4.3a) NT-i Z I v~vK e Ke Ke| 4,el leI T< Ti + T2, 
n=O KE&?/ eEOK 

where 
NT __ T 

(4.3b) T, K A _21U-Ke lKleT 
n= I KEgh- eEo9K 

v NT - I 

(4.3c) T2 =2A2 II f > J L hK lel T. 
fL n=O KE-h eEaK 

KCQ(T) 

If 2y > 1, the term T2 can be easily estimated by using the compactness of 
the support of the approximate solution and the property (2.3) of the triangu- 
lation: 

NT-I 

T2 = 2A2 2 vhyZ z hk (pKhK/IKI) IKI T 

(4.4a) L n=O KEgh, KCQ(T) 

< 2A2 IL iT j((T)jh2y-. 

Estimating the term T1 is a more delicate matter because we need to control 
the differences jUn - Un I . To be able to do that, we require that the values 

(4.5a) wK+1 = UnK1 + iTZ an,K|e| 
eEJf9K 

satisfy the so-called sharp entropy dissipation estimate 

(4.5b) ( U*(w+1 )-U* (U)) IKI + C4 Dpn < 0, 
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where 

p Z ZUKKeII 
KEgh eEaK 

for some p > 1 . In [9], it is shown indeed that (4.5) holds with U*(w) w2/2, 
and p=2 or p=3. 

We start with the following result. 

Lemma 4.1. Assume that y > 1 - Il/p. Then we have 

T, <, Apl(TQ )) hY1+ /P, 

where e)p = ZNTl Dpn. 

Proof. By H6lder's inequality, we obtain easily that 
NT-I 

T=A Z Z U-U I hy lei T 
n=O KE?h eEaK 

NT-1 I l/q 

<A4 /P(Z Z Z hyqlei ) 
n=O KEh, KCQ2(T) eEOK 

/ NT-1 I\ llq 

=fE)/pt I: E hK PK T 
n=O KEh, KCQ2(T) 

/ NT-Iy-1 llq 

=-Ael/ (N i hK (PK hK /IKI) IKI T 
n=O KEh, KCQ2(T) 

/ NT \l/q 

* 
Ae1P( Ep U1 I: IKI T) hy-l 

n=O KEh,4 KCQ2(T) 

* A EWpP (u T IQ( T) I hy-ll/q 

This completes the proof. El 

Next, we use the sharp entropy inequality (4.5) to obtain a bound on Ep . 

Lemma 4.2. Assume that y > max{l - l/p, 1/2}. Then one has 

E -p < Z U*(U) IKI 

+ (--) T,u I Q(T) I ( A )h-l/p)(Y-1+l/P) 

+2M*A2 l ,TIQ(T) Ih2Y1. 
C4II1f'IJILOO 

In the case of the (first-order) monotone schemes, A -= , and the above 
inequality becomes Ep < c- ZKE, U* (UK) IKI, which is (up to a factor 2) the 
weak estimate proven for monotone schemes in [9]. In the case of the hy- 
antidiffusion schemes, we can say, roughly speaking, that E)p remains bounded 
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if the scheme does not produce too much antidiffusion. This is reflected in the 
condition y > max{1 - 1/p, 1/2}. 

Proof of Lemma 4.2. If we sum over n in the sharp entropy inequality (4.5b), 
we get 

NT S S (U* (Wn) - U*(UnK')) IKI + C4Qp < 0, 
n=1 KEYh 

and hence 
NT 

C4 Ep < (UK(Un 1) -U* (WK)) IK| 
n=1 KE3h 

NT NT 

= 5 5 ( U* (UK(Un1) - UK(u )) IKI +5 5 ( U*(U) -U*(WK)) |KI 
n=lK&?7, n=1 KE?4 

< 5E, U*(UK) IKI + 5 5 (Un(UK) -KU*(WK)) IKI 
KE? n=K1 KEh1 

NT 

= S U*(U4) IKI + 5 U n(e) (UK-Wn) IKI, 
KE$h n=1 KEgh4 

where 
^n (I _ 

X)X On on, n+1 =nU+1 + f9n TPK an VK 1 - Gn)Un+l + Wf+ - ef+~j6 P 
Ke K,', e K,e K,e 'K K 

and on e is some number in (0, 1) . Then, 

C4Q 5p< U*(UK)I|KI-5 5 5 U*(VK ) a%IeI z| 
K E, en=1 KE,eE&K 

NT 

= S U*( ) IKI- S (U*( )-U ))ae lel T , 
KE5/j n= 1 KE,h e&EK 

where on = (VKne + Vn e)/2* Hence, with M* = supUR I U*'(u) |, which by 
hypothesis is a constant, we have 

NT- I 

C4 ep < S U*()K) IK + 2 M* I7VK e-K e I IaK,el lel T. 

K Eg 371h'n=0 KE$heE0K 

By (4.2) and (4.1c), we have 

C40p?< 5 U*(UO) IKI + M*{T1+T2} K 2 

and, by (4.4a) and Lemma 4.1, 

C4 E)p < E U*(uo) IKI + M* A 2 #,I T I Q(T) h2,-1 
K 21 MA TiQ )If' )ILl 

1 
*EpI TIK2('T)lI\ 1-i/ph'1P 

2 ~ 



ERROR ESTIMATE FOR CONSERVATION LAWS 101 

By using the inequality 

ab < -2 aP + (__)(2) b, 

with a = , we get, after some simple algebraic manipulations, 

C4p<2Z U*(uO)IKI 
KE 

+2M*A2 t ,iTIQ(T)Ih2Y-M If IIL I/ 

This completes the proof. El 

In this way, by Lemmas 4.1 and 4.2, if y > max{1 - l/p, 1/2}, then 

(4.4b) T, < Cs h Y -l+'IP 

Finally, by (4.4a) and (4.4b), we get that the scheme under consideration satisfies 
the estimate (2.16) with 

a = min{2y - 1, y - 1 + l/p}. 

Since I? = 1 - y, Theorem 2.1 states that the scheme under consideration 
converges to the entropy solution, with an order of convergence no smaller than 

min{a, 1 - B}/2 = min{y - 1/2, y/2 - 1/2 + 1/2p, y/2}. 

Taking y = 1 , we see that the order of convergence is no smaller than 1/2p. 

ACKNOWLEDGMENTS 

The first author would like to thank Guangshan Jiang and Chi-Wang Shu 
for their comments that led to a better presentation of this paper. This paper 
was completed when the third author was a Courant Instructor at the Courant 
Institute of Mathematical Sciences at New York University, supported by NSF 
grant DMS-88-06731. The third author would like to thank Gui-Qiang Chen, 
Jonathan Goodman, Peter Lax, Jian-Guo Liu, Richard Sanders, and Eitan Tad- 
mor for fruitful conversations on the content of this paper. 

BIBLIOGRAPHY 

1. G.-Q. Chen, Q. Du, and E. Tadmor, Spectral viscosity approximation to multidimensional 
scalar conservation laws, Math. Comp. 61 (1993), 629-643. 

2. G.-Q. Chen and Ph. LeFloch, Entropy flux-splittings for hyperbolic conservation laws. Part 
1: generalframework, submitted to Comm. Pure Appl. Math., in preparation. 

3. , Entropy flux-splittings for hyperbolic conservation laws. Part 2: Gas dynamics equa- 
tions, in preparation. 

4. I.L. Chern, Stability theorem and truncation error analysis for the Glimm scheme and for 
a front tracking method for flows with strong discontinuities, Comm. Pure Appl. Math. 42 
(1989), 815-844. 

5. B. Cockburn, The quasi-monotone schemes for scalar conservation laws. I, SIAM J. Numer. 
Anal. 26 (1989), 1325-1341. 



102 BERNARDO COCKBURN, FREDERIC COQUEL, AND PHILIPPE LEFLOCH 

6. , The quasi-monotone schemes for scalar conservation laws. II, SIAM J. Numer. Anal. 
27 (1990), 247-258. 

7. , The quasi-monotone schemes for scalar conservation laws. III, SIAM J. Numer. Anal. 
27 (1990), 259-276. 

8. , On the continuity in B V(Q) of the L 2-projection into finite element spaces, Math. 
Comp. 57 (1991), 551-561. 

9. B. Cockburn, F. Coquel and Ph. LeFloch, Convergence of finite volume methods for multi- 
dimensional conservation laws, SIAM J. Numer. Anal. (to appear). 

10. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin 
finite element method for conservation laws II: general framework, Math. Comp. 52 (1989), 
411-435. 

11. B. Cockburn, S.-C. Hou, and C.-W. Shu, The Runge-Kutta local projection discontinuous 
Galerkin finite element method for conservation laws IV: the multidimensional case, Math. 
Comp. 54 (1990), 545-581. 

12. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection PI discontinuous Galerkin 
finite element method for scalar conservation laws, ICASE Report No. 91-32, 1991. 

13. F. Coquel and Ph. LeFloch, Convergence of finite difference schemes for conservation laws 
in several space dimensions, C. R. Acad. Sci. Paris, Serie I, 310 17 (1990), 455-460. 

14. , Convergence offinite difference schemes for conservation laws in several space dimen- 
sions: the corrected antidiffusive flux approach, Math. Comp. 57 (1991), 169-210. 

15. , Convergence offinite difference schemes for conservation laws in several space dimen- 
sions: a general theory, SIAM J. Numer. Anal. 30 (1993), 675-700. 

16. M. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, 
Math. Comp. 34 (1980), 1-21. 

17. R.J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational 
Mech. Anal. 82 (1983), 27-70. 

18. , Measure-valued solutions to conservations laws, Arch. Rational Mech. Anal. 88 
(1985), 223-270. 

19. J.B. Goodman and R.J. LeVeque, On the accuracy of stable schemes for 2D scalar conser- 
vation laws, Math. Comp. 45 (1985), 15-21. 

20. A. Harten, J.M. Hyman, and P.D. Lax, On finite-difference approximations and entropy 
conditions for shocks, Comm. Pure Appl. Math. 29 (1976), 297-322. 

21. A. Harten, P.D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes 
for hyperbolic conservation laws, SIAM Rev. 25 (1983), 35-61. 

22. D. Hoff and J.S. Smoller, Error bounds for the Glimm scheme for a scalar conservation law, 
Trans. Amer. Math. Soc. 289 (1988), 611-642. 

23. T.Y. Hou and Ph.G. LeFloch, Why nonconservative schemes converge to wrong solutions: 
error analysis, Math. Comp. 62 (1994), 497-530. 

24. C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear 
hyperbolic conservation law, Math. Comp. 49 (1988), 427-444. 

25. , A posteriori error estimate for a finite element method, Preprint (1993). 
26. S.N. Kruzkov, First order quasilinear equations in several independent variables, Math. 

USSR Sb. 10 (1970), 217-243. 
27. , On the methods of construction of the general solution of the Cauchy problem for first 

order quasilinear equations, Uspehi Mat. Nauk 20 (1965), 112-118. (Russian) 
28. N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions 

of a first-order quasi-linear equation, USSR Comput. Math. and Math. Phys. 16 (1976), 
105-119. 

29. , On stable methods for solving nonlinear first-order partial differential equations in the 
class of discontinuous solutions, Topics in Numerical Analysis III (Proc. Roy. Irish Acad. 
Conf.), Trinity College, Dublin, 1976, pp. 183-192. 

30. P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 
537-566. 



ERROR ESTIMATE FOR CONSERVATION LAWS 103 

31. , Hyperbolic systems of conservation laws and the mathematical theory of shock waves, 
SIAM, Philadelphia, PA, 1973. 

32. Ph. LeFloch, Convergence des methodes de volumes finis monotones pour les lois de con- 
servation scalaires, Communication to Ecole CEA-EDF-INRIA, Meeting on finite volume 
methods, October 1992 (unpublished notes). 

33. Ph. LeFloch and J.G. Liu, Entropy and monotonicity consistent EMO schemes for conserva- 
tion laws, in preparation. 

34. B.J. Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Numer. 
Anal. 22 (1985), 1074-1081. 

35. , A moving mesh numerical methodfor hyperbolic conservation laws, Math. Comp. 46 
(1986), 59-69. 

36. , On nonlocal monotone difference schemes for scalar conservation laws, Math. Comp. 
47 (1986), 19-36. 

37. S. Nessyahu and E. Tadmor, The convergence rate of approximate solutions for nonlinear 
scalar conservation laws, SIAM J. Numer. Anal. 29 (1992), 1-15. 

38. S. Osher, Riemann solvers, the entropy condition and difference approximations, SIAM J. 
Numer. Anal. 21 (1984), 217-235. 

39. S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with 
locally varying time and space grids, Math. Comp. 41 (1983), 321-336. 

40. S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conser- 
vation laws, Math. Comp. 50 (1988), 19-51. 

41. R. Sanders, On convergence of monotone finite difference schemes with variable spatial dif- 
ferencing, Math. Comp. 40 (1983), 91-106. 

42. , Finite difference techniques for nonlinear hyperbolic conservation laws, Lectures in 
Appl. Math., vol. 22, Amer. Math. Soc., Providence, RI, 1985, pp. 209-220. 

43. J.S. Smoller, Shock waves and reaction diffusion equations, Springer-Verlag, New York, 
1983. 

44. A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for 
scalar conservation laws in two space dimensions, Math. Comp. 53 (1989), 527-545. 

45. , Convergence of a streamline diffusion finite element method for a conservation law 
with boundary conditions, RAIRO Model. Math. Anal. Numer. 25 (1991), 749-783. 

46. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, 
Math. Comp. 43 (1984), 369-382. 

47. , Semi-discrete approximations to nonlinear systems of conservation laws; consistency 
and LI' imply convergence, ICASE Report 88-41 (1988). 

48. , Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, 
SIAM J. Numer. Anal. 28 (1991), 891-906. 

50. J.P. Vila, Problemes nonlineaires appliques, Ecoles CEA-EDF-INRIA, Clamart, France, 
1993. 

51. A.I. Volpert, The space BV and quasilinear equations, Math. USSR Sb. 2 (1967), 257-267. 

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, 127 VINCENT HALL, MINNEAPOLIS, 

MINNESOTA 55455 
E-mail address: cockburnQmath. umn. edu 

ONERA, 29 AV. DE LA DIVISION LECLERC, BP 72, F-92322 CHATILLON CEDEX, FRANCE 

E-mail address: coquelJonera. f r 

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, 251 MERCER 

STREET, NEW YORK, NEW YORK 100 1 2 
E-mail address: leflochQcmapx .polytechnique. fr 


	Cit r112_c112: 
	Cit r102_c102: 


